51
|
Merrikh H. Spatial and Temporal Control of Evolution through Replication-Transcription Conflicts. Trends Microbiol 2017; 25:515-521. [PMID: 28216294 DOI: 10.1016/j.tim.2017.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
Evolution could potentially be accelerated if an organism could selectively increase the mutation rate of specific genes that are actively under positive selection. Recently, a mechanism that cells can use to target rapid evolution to specific genes was discovered. This mechanism is driven by gene orientation-dependent encounters between DNA replication and transcription machineries. These encounters increase mutagenesis in lagging-strand genes, where replication-transcription conflicts are severe. Due to the orientation and transcription-dependent nature of this process, conflict-driven mutagenesis can be used by cells to spatially (gene-specifically) and temporally (only upon transcription induction) regulate the rate of gene evolution. Here, I summarize recent findings on this topic, and discuss the implications of increasing mutagenesis rates and accelerating evolution through active mechanisms.
Collapse
Affiliation(s)
- Houra Merrikh
- Department of Microbiology, Health Sciences Building - J-wing, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
52
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 PMCID: PMC5305214 DOI: 10.7554/elife.19848] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 12/19/2022] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts. DOI:http://dx.doi.org/10.7554/eLife.19848.001
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States.,Department of Microbiology, University of Washington, Seattle, United States.,Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
53
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 DOI: 10.7554/elife.19848.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 05/21/2023] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts.
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
54
|
Deaconescu AM, Suhanovsky MM. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Photochem Photobiol 2017; 93:268-279. [PMID: 27859304 PMCID: PMC5672955 DOI: 10.1111/php.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Margaret M. Suhanovsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
55
|
Pif1-family helicases cooperatively suppress widespread replication-fork arrest at tRNA genes. Nat Struct Mol Biol 2016; 24:162-170. [PMID: 27991904 PMCID: PMC5296403 DOI: 10.1038/nsmb.3342] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/14/2016] [Indexed: 12/03/2022]
Abstract
Saccharomyces cerevisiae encodes two distinct Pif1-family helicases – Pif1 and Rrm3 – which have been reported to play distinct roles in numerous nuclear processes. Here, we systematically characterize the roles of Pif1 helicases in replisome progression and lagging-strand synthesis in S. cerevisiae. We demonstrate that either Pif1 or Rrm3 redundantly stimulate strand-displacement by DNA polymerase δ during lagging-strand synthesis. By analyzing replisome mobility in pif1 and rrm3 mutants, we show that Rrm3, with a partially redundant contribution from Pif1, suppresses widespread terminal arrest of the replisome at tRNA genes. Although both head-on and codirectional collisions induce replication fork arrest at tRNA genes, head-on collisions arrest a higher proportion of replisomes. Consistent with this observation, we find that head-on collisions between tRNA transcription and replication are under-represented in the S. cerevisiae genome. We demonstrate that tRNA-mediated arrest is R-loop independent, and propose that replisome arrest and DNA damage are mechanistically separable.
Collapse
|
56
|
Darrigo C, Guillemet E, Dervyn R, Ramarao N. The Bacterial Mfd Protein Prevents DNA Damage Induced by the Host Nitrogen Immune Response in a NER-Independent but RecBC-Dependent Pathway. PLoS One 2016; 11:e0163321. [PMID: 27711223 PMCID: PMC5053507 DOI: 10.1371/journal.pone.0163321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022] Open
Abstract
Production of reactive nitrogen species is an important component of the host immune defence against bacteria. Here, we show that the bacterial protein Mfd (Mutation frequency decline), a highly conserved and ubiquitous bacterial protein involved in DNA repair, confers bacterial resistance to the eukaryotic nitrogen response produced by macrophage cells and during mice infection. In addition, we show that RecBC is also necessary to survive this stress. The inactivation of recBC and mfd genes is epistatic showing that Mfd follows the RecBC repair pathway to protect the bacteria against the genotoxic effect of nitrite. Surprisingly given the role of Mfd in transcription-coupled repair, UvrA is not necessary to survive the nitrite response. Taken together, our data reveal that during the eukaryotic nitrogen response, Mfd is required to maintain bacterial genome integrity in a NER-independent but RecBC-dependent pathway.
Collapse
Affiliation(s)
- Claire Darrigo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elisabeth Guillemet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rozenn Dervyn
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
57
|
Ambriz-Aviña V, Yasbin RE, Robleto EA, Pedraza-Reyes M. Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations. Curr Microbiol 2016; 73:721-726. [PMID: 27530626 DOI: 10.1007/s00284-016-1122-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.
Collapse
Affiliation(s)
- Verónica Ambriz-Aviña
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Ronald E Yasbin
- College of Arts and Sciences, University of Missouri-St Louis, St Louis, MO, USA
| | | | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
58
|
The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response. Sci Rep 2016; 6:29349. [PMID: 27435260 PMCID: PMC4951645 DOI: 10.1038/srep29349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 01/23/2023] Open
Abstract
Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO.
Collapse
|
59
|
Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes (Basel) 2016; 7:genes7070033. [PMID: 27399782 PMCID: PMC4962003 DOI: 10.3390/genes7070033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu+ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu+ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.
Collapse
|
60
|
The nature of mutations induced by replication–transcription collisions. Nature 2016; 535:178-81. [PMID: 27362223 PMCID: PMC4945378 DOI: 10.1038/nature18316] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Abstract
The DNA replication and transcription machineries share a common DNA template and thus can collide with each other co-directionally or head-on1,2. Replication-transcription collisions can cause replication fork arrest, premature transcription termination, DNA breaks, and recombination intermediates threatening genome integrity1–10. Collisions may also trigger mutations, which are major contributors of genetic disease and evolution5,7,11. However, the nature and mechanisms of collision-induced mutagenesis remain poorly understood. Here we reveal the genetic consequence of replication-transcription collisions in actively dividing bacteria to be two classes of mutations: duplications/deletions and base substitutions in promoters. Both signatures are highly deleterious but are distinct from the well-characterized base substitutions in coding sequence. Duplications/deletions are likely caused by replication stalling events that are triggered by collisions; their distribution patterns are consistent with where the fork first encounters a transcription complex upon entering a transcription unit. Promoter substitutions result mostly from head-on collisions and frequently occur at a nucleotide conserved in promoters recognized by the major sigma factor in bacteria. This substitution is generated via adenine deamination on the template strand in the promoter open complex, as a consequence of head-on replication perturbing transcription initiation. We conclude that replication-transcription collisions induce distinct mutation signatures by antagonizing replication and transcription, not only in coding sequences but also in gene regulatory elements.
Collapse
|
61
|
Schroeder JW, Hirst WG, Szewczyk GA, Simmons LA. The Effect of Local Sequence Context on Mutational Bias of Genes Encoded on the Leading and Lagging Strands. Curr Biol 2016; 26:692-7. [PMID: 26923786 DOI: 10.1016/j.cub.2016.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
All organisms must replicate their genetic information accurately to ensure its faithful transmission. DNA polymerase errors provide an important source of genetic variation that can drive evolution. Understanding the origins of genetic variation will inform our understanding of evolution and the development of genetic diseases. A number of factors have been proposed to influence mutagenesis [1-10]. Here, we used mutation accumulation lines, whole-genome sequencing, and whole-transcriptome analysis to study the locations and rate at which mutations arise in bacteria with as little selection bias as possible [11, 12]. Our analysis of greater than 7,000 replication errors in over 180 sequenced lines that underwent a total of more than 370,000 generations has provided new insights into how DNA polymerase errors sculpt genetic variation and drive evolution. Homopolymer run enrichment outside of genes causes insertions and deletions in these regions. Genes encoded in the lagging strand are transcribed such that RNA polymerase and DNA polymerase collide head-on. Head-on genes have been proposed to mutate at a higher rate than genes transcribed codirectionally with DNA polymerase progression due to conflicts between transcription and DNA replication [6, 10]. We did not detect associations between the number of base pair substitutions in genes and their orientation or expression. Strikingly, any higher mutation rate for head-on genes can be explained by differing sequence composition between the leading and lagging strands and the error bias for DNA polymerase in specific sequence contexts. Therefore, we find local sequence context is the major determinant of mutagenesis in bacteria.
Collapse
Affiliation(s)
- Jeremy W Schroeder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William G Hirst
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriella A Szewczyk
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
62
|
Microscale insights into pneumococcal antibiotic mutant selection windows. Nat Commun 2015; 6:8773. [PMID: 26514094 PMCID: PMC4632196 DOI: 10.1038/ncomms9773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/30/2015] [Indexed: 11/26/2022] Open
Abstract
The human pathogen Streptococcus pneumoniae shows alarming rates of antibiotic resistance emergence. The basic requirements for de novo resistance emergence are poorly understood in the pneumococcus. Here we systematically analyse the impact of antibiotics on S. pneumoniae at concentrations that inhibit wild type cells, that is, within the mutant selection window. We identify discrete growth-inhibition profiles for bacteriostatic and bactericidal compounds, providing a predictive framework for distinction between the two classifications. Cells treated with bacteriostatic agents show continued gene expression activity, and real-time mutation assays link this activity to the development of genotypic resistance. Time-lapse microscopy reveals that antibiotic-susceptible pneumococci display remarkable growth and death bistability patterns in response to many antibiotics. We furthermore capture the rise of subpopulations with decreased susceptibility towards cell wall synthesis inhibitors (heteroresisters). We show that this phenomenon is epigenetically inherited, and that heteroresistance potentiates the accumulation of genotypic resistance. The emergence of antibiotic resistance in bacteria is driven by inhibitory but non-lethal antibiotic concentrations. Here, Sorg and Veening study the effects of different antibiotics on the pneumococcus, with a focus on inhibition dynamics, metabolic activity and processes at the single-cell level.
Collapse
|
63
|
Merrikh CN, Brewer BJ, Merrikh H. The B. subtilis Accessory Helicase PcrA Facilitates DNA Replication through Transcription Units. PLoS Genet 2015; 11:e1005289. [PMID: 26070154 PMCID: PMC4466434 DOI: 10.1371/journal.pgen.1005289] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
In bacteria the concurrence of DNA replication and transcription leads to potentially deleterious encounters between the two machineries, which can occur in either the head-on (lagging strand genes) or co-directional (leading strand genes) orientations. These conflicts lead to replication fork stalling and can destabilize the genome. Both eukaryotic and prokaryotic cells possess resolution factors that reduce the severity of these encounters. Though Escherichia coli accessory helicases have been implicated in the mitigation of head-on conflicts, direct evidence of these proteins mitigating co-directional conflicts is lacking. Furthermore, the endogenous chromosomal regions where these helicases act, and the mechanism of recruitment, have not been identified. We show that the essential Bacillus subtilis accessory helicase PcrA aids replication progression through protein coding genes of both head-on and co-directional orientations, as well as rRNA and tRNA genes. ChIP-Seq experiments show that co-directional conflicts at highly transcribed rRNA, tRNA, and head-on protein coding genes are major targets of PcrA activity on the chromosome. Partial depletion of PcrA renders cells extremely sensitive to head-on conflicts, linking the essential function of PcrA to conflict resolution. Furthermore, ablating PcrA’s ATPase/helicase activity simultaneously increases its association with conflict regions, while incapacitating its ability to mitigate conflicts, and leads to cell death. In contrast, disruption of PcrA’s C-terminal RNA polymerase interaction domain does not impact its ability to mitigate conflicts between replication and transcription, its association with conflict regions, or cell survival. Altogether, this work establishes PcrA as an essential factor involved in mitigating transcription-replication conflicts and identifies chromosomal regions where it routinely acts. As both conflicts and accessory helicases are found in all domains of life, these results are broadly relevant. In bacteria the concurrence of DNA replication and transcription leads to potentially deleterious encounters between the two machineries. These encounters can destabilize the genome and lead to mutations. Both eukaryotic and prokaryotic cells possess conflict resolution factors that reduce the detrimental effects of these collisions. In this study we show that without the essential Bacillus subtilis accessory DNA helicase, PcrA, the replication machinery slows down at certain regions of the chromosome in a transcription-dependent manner. PcrA is essential to life but incomplete depletion of PcrA only partially inhibits cell survival. We find that, under these conditions, partial survival defects are significantly exacerbated in the presence of a single severe conflict. In summary our work identifies a high degree of conservation for accessory helicase function in conflict resolution, directly establishes PcrA’s role in co-directional conflict resolution, and maps the natural chromosomal regions where such activities are routinely needed. Because both conflicts and accessory helicases are found in all domains of life, the results of this work are broadly relevant.
Collapse
Affiliation(s)
- Christopher N. Merrikh
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bonita J. Brewer
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
64
|
Replication Restart after Replication-Transcription Conflicts Requires RecA in Bacillus subtilis. J Bacteriol 2015; 197:2374-82. [PMID: 25939832 DOI: 10.1128/jb.00237-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/27/2015] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Efficient duplication of genomes depends on reactivation of replication forks outside the origin. Replication restart can be facilitated by recombination proteins, especially if single- or double-strand breaks form in the DNA. Each type of DNA break is processed by a distinct pathway, though both depend on the RecA protein. One common obstacle that can stall forks, potentially leading to breaks in the DNA, is transcription. Though replication stalling by transcription is prevalent, the nature of DNA breaks and the prerequisites for replication restart in response to these encounters remain unknown. Here, we used an engineered site-specific replication-transcription conflict to identify and dissect the pathways required for the resolution and restart of replication forks stalled by transcription in Bacillus subtilis. We found that RecA, its loader proteins RecO and AddAB, and the Holliday junction resolvase RecU are required for efficient survival and replication restart after conflicts with transcription. Genetic analyses showed that RecO and AddAB act in parallel to facilitate RecA loading at the site of the conflict but that they can each partially compensate for the other's absence. Finally, we found that RecA and either RecO or AddAB are required for the replication restart and helicase loader protein, DnaD, to associate with the engineered conflict region. These results suggest that conflicts can lead to both single-strand gaps and double-strand breaks in the DNA and that RecA loading and Holliday junction resolution are required for replication restart at regions of replication-transcription conflicts. IMPORTANCE Head-on conflicts between replication and transcription occur when a gene is expressed from the lagging strand. These encounters stall the replisome and potentially break the DNA. We investigated the necessary mechanisms for Bacillus subtilis cells to overcome a site-specific engineered conflict with transcription of a protein-coding gene. We found that the recombination proteins RecO and AddAB both load RecA onto the DNA in response to the head-on conflict. Additionally, RecA loading by one of the two pathways was required for both replication restart and efficient survival of the collision. Our findings suggest that both single-strand gaps and double-strand DNA breaks occur at head-on conflict regions and demonstrate a requirement for recombination to restart replication after collisions with transcription.
Collapse
|