51
|
Li F, An Z, Zhang Z. The Dynamic 3D Genome in Gametogenesis and Early Embryonic Development. Cells 2019; 8:E788. [PMID: 31362461 PMCID: PMC6721571 DOI: 10.3390/cells8080788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/11/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022] Open
Abstract
During gametogenesis and early embryonic development, the chromatin architecture changes dramatically, and both the transcriptomic and epigenomic landscape are comprehensively reprogrammed. Understanding these processes is the holy grail in developmental biology and a key step towards evolution. The 3D conformation of chromatin plays a central role in the organization and function of nuclei. Recently, the dynamics of chromatin structures have been profiled in many model and non-model systems, from insects to mammals, resulting in an interesting comparison. In this review, we first introduce the research methods of 3D chromatin structure with low-input material suitable for embryonic study. Then, the dynamics of 3D chromatin architectures during gametogenesis and early embryonic development is summarized and compared between species. Finally, we discuss the possible mechanisms for triggering the formation of genome 3D conformation in early development.
Collapse
Affiliation(s)
- Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ziyang An
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
52
|
Mustafin RN, Khusnutdinova EK. Prospects in the Search for Peptides for Specific Regulation of Aging. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
53
|
Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther 2019; 41:675-698. [PMID: 30910331 DOI: 10.1016/j.clinthera.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease. METHODS A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool. FINDINGS Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection. IMPLICATIONS Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences ("junk repetitive DNA"), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.
Collapse
|
54
|
Mustafin RN. Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418070019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
55
|
Matsushima Y, Sakamoto N, Awazu A. Insulator Activities of Nucleosome-Excluding DNA Sequences without Bound Chromatin Looping Proteins. J Phys Chem B 2019; 123:1035-1043. [DOI: 10.1021/acs.jpcb.8b10518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuki Matsushima
- Department of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Research Center for Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Research Center for Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
56
|
Pirogov SA, Maksimenko OG, Georgiev PG. Transposable Elements in the Evolution of Gene Regulatory Networks. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Mustafin RN. The Relationship between Transposons and Transcription Factors in the Evolution of Eukaryotes. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
59
|
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol 2018; 19:199. [PMID: 30454069 PMCID: PMC6240941 DOI: 10.1186/s13059-018-1577-z] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes. However, the extent of their impact on genome evolution, function, and disease remain a matter of intense interrogation. The rise of genomics and large-scale functional assays has shed new light on the multi-faceted activities of TEs and implies that they should no longer be marginalized. Here, we introduce the fundamental properties of TEs and their complex interactions with their cellular environment, which are crucial to understanding their impact and manifold consequences for organismal biology. While we draw examples primarily from mammalian systems, the core concepts outlined here are relevant to a broad range of organisms.
Collapse
Affiliation(s)
- Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0G1, Canada.
- Canadian Center for Computational Genomics, McGill University, Montréal, Québec, H3A 0G1, Canada.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michaël Imbeault
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Henry L Levin
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of BC, Vancouver, BC, V5Z1L3, Canada
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
60
|
Mustafin RN, Khusnutdinova EK. The Role of Transposable Elements in Emergence of Metazoa. BIOCHEMISTRY (MOSCOW) 2018; 83:185-199. [PMID: 29625540 DOI: 10.1134/s000629791803001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systems initially emerged for protecting genomes against insertions of transposable elements and represented by mechanisms of splicing regulation, RNA-interference, and epigenetic factors have played a key role in the evolution of animals. Many studies have shown inherited transpositions of mobile elements in embryogenesis and preservation of their activities in certain tissues of adult organisms. It was supposed that on the emergence of Metazoa the self-regulation mechanisms of transposons related with the gene networks controlling their activity could be involved in intercellular cell coordination in the cascade of successive divisions with differentiated gene expression for generation of tissues and organs. It was supposed that during evolution species-specific features of transposons in the genomes of eukaryotes could form the basis for creation of dynamically related complexes of systems for epigenetic regulation of gene expression. These complexes could be produced due to the influence of noncoding transposon-derived RNAs on DNA methylation, histone modifications, and processing of alternative splicing variants, whereas the mobile elements themselves could be directly involved in the regulation of gene expression in cis and in trans. Transposons are widely distributed in the genomes of eukaryotes; therefore, their activation can change the expression of specific genes. In turn, this can play an important role in cell differentiation during ontogenesis. It is supposed that transposons can form a species-specific pattern for control of gene expression, and that some variants of this pattern can be favorable for adaptation. The presented data indicate the possible influence of transposons in karyotype formation. It is supposed that transposon localization relative to one another and to protein-coding genes can influence the species-specific epigenetic regulation of ontogenesis.
Collapse
|
61
|
Mustafin RN, Khusnutdinova EK. The Role of Transposons in Epigenetic Regulation of Ontogenesis. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418020066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Wang L, Jordan IK. Transposable element activity, genome regulation and human health. Curr Opin Genet Dev 2018; 49:25-33. [PMID: 29505964 DOI: 10.1016/j.gde.2018.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations.
Collapse
Affiliation(s)
- Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia
| | - I King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia.
| |
Collapse
|
63
|
Buckley RM, Kortschak RD, Raison JM, Adelson DL. Similar Evolutionary Trajectories for Retrotransposon Accumulation in Mammals. Genome Biol Evol 2018; 9:2336-2353. [PMID: 28945883 PMCID: PMC5610350 DOI: 10.1093/gbe/evx179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
The factors guiding retrotransposon insertion site preference are not well understood. Different types of retrotransposons share common replication machinery and yet occupy distinct genomic domains. Autonomous long interspersed elements accumulate in gene-poor domains and their nonautonomous short interspersed elements accumulate in gene-rich domains. To determine genomic factors that contribute to this discrepancy we analyzed the distribution of retrotransposons within the framework of chromosomal domains and regulatory elements. Using comparative genomics, we identified large-scale conserved patterns of retrotransposon accumulation across several mammalian genomes. Importantly, retrotransposons that were active after our sample-species diverged accumulated in orthologous regions. This suggested a similar evolutionary interaction between retrotransposon activity and conserved genome architecture across our species. In addition, we found that retrotransposons accumulated at regulatory element boundaries in open chromatin, where accumulation of particular retrotransposon types depended on insertion size and local regulatory element density. From our results, we propose a model where density and distribution of genes and regulatory elements canalize retrotransposon accumulation. Through conservation of synteny, gene regulation and nuclear organization, mammalian genomes with dissimilar retrotransposons follow similar evolutionary trajectories.
Collapse
Affiliation(s)
- Reuben M Buckley
- Department of Genetics and Evolution, The University of Adelaide, South Australia, Australia
| | - R Daniel Kortschak
- Department of Genetics and Evolution, The University of Adelaide, South Australia, Australia
| | - Joy M Raison
- Department of Genetics and Evolution, The University of Adelaide, South Australia, Australia
| | - David L Adelson
- Department of Genetics and Evolution, The University of Adelaide, South Australia, Australia
| |
Collapse
|
64
|
Suh A, Smeds L, Ellegren H. Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 2017; 27:99-111. [DOI: 10.1111/mec.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
65
|
He DD, Lu Y, Gittelman R, Jin Y, Ling F, Joshua A. Positive selection of the TRIM family regulatory region in primate genomes. Proc Biol Sci 2017; 283:rspb.2016.1602. [PMID: 27733547 DOI: 10.1098/rspb.2016.1602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Viral selection pressure has acted on restriction factors that play an important role in the innate immune system by inhibiting the replication of viruses during primate evolution. Tripartite motif-containing (TRIM) family members are some of these restriction factors. It is becoming increasingly clear that gene expression differences, rather than protein-coding regions changes, could play a vital role in the anti-retroviral immune mechanism. Increasingly, recent studies have created genome-scale catalogues of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To improve our understanding of the molecular evolution mechanism of antiviral differences between species, we leveraged 14 130 DHSs derived from 145 cell types to characterize the regulatory landscape of the TRIM region. Subsequently, we compared the alignments of the DHSs across six primates and found 375 DHSs that are conserved in non-human primates but exhibit significantly accelerated rates of evolution in the human lineage (haDHSs). Furthermore, we discovered 31 human-specific potential transcription factor motifs within haDHSs, including the KROX and SP1, that both interact with HIV-1 Importantly, the corresponding haDHS was correlated with antiviral factor TRIM23 Thus, our results suggested that some viruses may contribute, through regulatory DNA differences, to organismal evolution by mediating TRIM gene expression to escape immune surveillance.
Collapse
Affiliation(s)
- Dan-Dan He
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yueer Lu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Rachel Gittelman
- Department of Genome Sciences, University of Washington, Seattle, WA 98125, USA
| | - Yabin Jin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Akey Joshua
- Department of Genome Sciences, University of Washington, Seattle, WA 98125, USA
| |
Collapse
|
66
|
Simonti CN, Pavličev M, Capra JA. Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints. Mol Biol Evol 2017; 34:2856-2869. [PMID: 28961735 PMCID: PMC5850124 DOI: 10.1093/molbev/msx219] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transposable element (TE)-derived sequences make up approximately half of most mammalian genomes, and many TEs have been co-opted into gene regulatory elements. However, we lack a comprehensive tissue- and genome-wide understanding of how and when TEs gain regulatory activity in their hosts. We evaluated the prevalence of TE-derived DNA in enhancers and promoters across hundreds of human and mouse cell lines and primary tissues. Promoters are significantly depleted of TEs in all tissues compared with their overall prevalence in the genome (P < 0.001); enhancers are also depleted of TEs, though not as strongly as promoters. The degree of enhancer depletion also varies across contexts (1.5-3×), with reproductive and immune cells showing the highest levels of TE regulatory activity in humans. Overall, in spite of the regulatory potential of many TE sequences, they are significantly less active in gene regulation than expected from their prevalence. TE age is predictive of the likelihood of enhancer activity; TEs originating before the divergence of amniotes are 9.2 times more likely to have enhancer activity than TEs that integrated in great apes. Context-specific enhancers are more likely to be TE-derived than enhancers active in multiple tissues, and young TEs are more likely to overlap context-specific enhancers than old TEs (86% vs. 47%). Once TEs obtain enhancer activity in the host, they have similar functional dynamics to one another and non-TE-derived enhancers, likely driven by pleiotropic constraints. However, a few TE families, most notably endogenous retroviruses, have greater regulatory potential. Our observations suggest a model of regulatory co-option in which TE-derived sequences are initially repressed, after which a small fraction obtains context-specific enhancer activity, with further gains subject to pleiotropic constraints.
Collapse
Affiliation(s)
| | - Mihaela Pavličev
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - John A. Capra
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
67
|
Smith CEL, Alexandraki A, Cordery SF, Parmar R, Bonthron DT, Valleley EMA. A tissue-specific promoter derived from a SINE retrotransposon drives biallelic expression of PLAGL1 in human lymphocytes. PLoS One 2017; 12:e0185678. [PMID: 28957425 PMCID: PMC5619815 DOI: 10.1371/journal.pone.0185678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
The imprinted gene PLAGL1 is an important regulator of apoptosis and cell cycle arrest. Loss of its expression has been implicated in tumorigenesis in a range of different cancers, and overexpression during fetal development causes transient neonatal diabetes mellitus (TNDM). PLAGL1 lies within an imprinted region of chromosome 6q24, and monoallelic expression from the major, differentially methylated promoter (P1) occurs in most human tissues. However, in peripheral blood leukocytes, the active promoter (P2) is non-imprinted and drives biallelic transcription. We report here a novel PLAGL1 promoter (P5) derived from the insertion of a primate-specific, MIR3 SINE retrotransposon. P5 is highly utilized in lymphocytes, particularly in T cells, and like P2, directs biallelic transcription. Our results show that it is important to consider P5 in relation to PLAGL1 function in T cells when investigating the dysregulation of this gene.
Collapse
Affiliation(s)
- Claire E. L. Smith
- School of Medicine, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Alexia Alexandraki
- School of Medicine, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Sarah F. Cordery
- School of Medicine, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Rekha Parmar
- School of Medicine, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - David T. Bonthron
- School of Medicine, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
| | - Elizabeth M. A. Valleley
- School of Medicine, University of Leeds, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
Wang L, Norris ET, Jordan IK. Human Retrotransposon Insertion Polymorphisms Are Associated with Health and Disease via Gene Regulatory Phenotypes. Front Microbiol 2017; 8:1418. [PMID: 28824558 PMCID: PMC5539088 DOI: 10.3389/fmicb.2017.01418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
The human genome hosts several active families of transposable elements (TEs), including the Alu, LINE-1, and SVA retrotransposons that are mobilized via reverse transcription of RNA intermediates. We evaluated how insertion polymorphisms generated by human retrotransposon activity may be related to common health and disease phenotypes that have been previously interrogated through genome-wide association studies (GWAS). To address this question, we performed a genome-wide screen for retrotransposon polymorphism disease associations that are linked to TE induced gene regulatory changes. Our screen first identified polymorphic retrotransposon insertions found in linkage disequilibrium (LD) with single nucleotide polymorphisms that were previously associated with common complex diseases by GWAS. We further narrowed this set of candidate disease associated retrotransposon polymorphisms by identifying insertions that are located within tissue-specific enhancer elements. We then performed expression quantitative trait loci analysis on the remaining set of candidates in order to identify polymorphic retrotransposon insertions that are associated with gene expression changes in B-cells of the human immune system. This progressive and stringent screen yielded a list of six retrotransposon insertions as the strongest candidates for TE polymorphisms that lead to disease via enhancer-mediated changes in gene regulation. For example, we found an SVA insertion within a cell-type specific enhancer located in the second intron of the B4GALT1 gene. B4GALT1 encodes a glycosyltransferase that functions in the glycosylation of the Immunoglobulin G (IgG) antibody in such a way as to convert its activity from pro- to anti-inflammatory. The disruption of the B4GALT1 enhancer by the SVA insertion is associated with down-regulation of the gene in B-cells, which would serve to keep the IgG molecule in a pro-inflammatory state. Consistent with this idea, the B4GALT1 enhancer SVA insertion is linked to a genomic region implicated by GWAS in both inflammatory conditions and autoimmune diseases, such as systemic lupus erythematosus and Crohn’s disease. We explore this example and the other cases uncovered by our genome-wide screen in an effort to illuminate how retrotransposon insertion polymorphisms can impact human health and disease by causing changes in gene expression.
Collapse
Affiliation(s)
- Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, AtlantaGA, United States.,PanAmerican Bioinformatics InstituteCali, Colombia.,Applied Bioinformatics Laboratory, AtlantaGA, United States
| | - Emily T Norris
- School of Biological Sciences, Georgia Institute of Technology, AtlantaGA, United States.,PanAmerican Bioinformatics InstituteCali, Colombia.,Applied Bioinformatics Laboratory, AtlantaGA, United States
| | - I K Jordan
- School of Biological Sciences, Georgia Institute of Technology, AtlantaGA, United States.,PanAmerican Bioinformatics InstituteCali, Colombia.,Applied Bioinformatics Laboratory, AtlantaGA, United States
| |
Collapse
|
69
|
Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet 2017; 13:e1006883. [PMID: 28700586 PMCID: PMC5529029 DOI: 10.1371/journal.pgen.1006883] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/26/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Human endogenous retroviruses (HERVs) and other long terminal repeat (LTR)-type retrotransposons (HERV/LTRs) have regulatory elements that possibly influence the transcription of host genes. We systematically identified and characterized these regulatory elements based on publicly available datasets of ChIP-Seq of 97 transcription factors (TFs) provided by ENCODE and Roadmap Epigenomics projects. We determined transcription factor-binding sites (TFBSs) using the ChIP-Seq datasets and identified TFBSs observed on HERV/LTR sequences (HERV-TFBSs). Overall, 794,972 HERV-TFBSs were identified. Subsequently, we identified "HERV/LTR-shared regulatory element (HSRE)," defined as a TF-binding motif in HERV-TFBSs, shared within a substantial fraction of a HERV/LTR type. HSREs could be an indication that the regulatory elements of HERV/LTRs are present before their insertions. We identified 2,201 HSREs, comprising specific associations of 354 HERV/LTRs and 84 TFs. Clustering analysis showed that HERV/LTRs can be grouped according to the TF binding patterns; HERV/LTR groups bounded to pluripotent TFs (e.g., SOX2, POU5F1, and NANOG), embryonic endoderm/mesendoderm TFs (e.g., GATA4/6, SOX17, and FOXA1/2), hematopoietic TFs (e.g., SPI1 (PU1), GATA1/2, and TAL1), and CTCF were identified. Regulatory elements of HERV/LTRs tended to locate nearby and/or interact three-dimensionally with the genes involved in immune responses, indicating that the regulatory elements play an important role in controlling the immune regulatory network. Further, we demonstrated subgroup-specific TF binding within LTR7, LTR5B, and LTR5_Hs, indicating that gains or losses of the regulatory elements occurred during genomic invasions of the HERV/LTRs. Finally, we constructed dbHERV-REs, an interactive database of HERV/LTR regulatory elements (http://herv-tfbs.com/). This study provides fundamental information in understanding the impact of HERV/LTRs on host transcription, and offers insights into the transcriptional modulation systems of HERV/LTRs and ancestral HERVs.
Collapse
|
70
|
Carnevali D, Conti A, Pellegrini M, Dieci G. Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines. DNA Res 2017; 24:59-69. [PMID: 28028040 PMCID: PMC5381342 DOI: 10.1093/dnares/dsw048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/09/2016] [Indexed: 01/06/2023] Open
Abstract
With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioinformatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orientation that could influence the expression of the overlapping gene. We also identified novel Pol III-transcribed ncRNAs, deriving from transcription of annotated MIR fragments flanked by unique MIR-unrelated sequences, and confirmed the role of Pol III-specific internal promoter elements in MIR transcription. Besides demonstrating widespread transcription at these retrotranspositionally inactive elements in human cells, the ability to profile MIR expression at single-locus resolution will facilitate their study in different cell types and states including pathological alterations.
Collapse
Affiliation(s)
| | - Anastasia Conti
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 723, USA
| | - Giorgio Dieci
- Department of Life Sciences, University of Parma, Parma, Italy
| |
Collapse
|
71
|
Carnevali D, Dieci G. Identification of RNA Polymerase III-Transcribed SINEs at Single-Locus Resolution from RNA Sequencing Data. Noncoding RNA 2017; 3:ncrna3010015. [PMID: 29657287 PMCID: PMC5832001 DOI: 10.3390/ncrna3010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/27/2017] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Short Interspersed Element (SINE) retrotransposons are one of the most abundant DNA repeat elements in the human genome. They have been found to impact the expression of protein-coding genes, but the possible roles in cell physiology of their noncoding RNAs, generated by RNA polymerase (Pol) III, are just starting to be elucidated. For this reason, Short Interspersed Element (SINE) expression profiling is becoming mandatory to obtain a comprehensive picture of their regulatory roles. However, their repeated nature and frequent location within Pol II-transcribed genes represent a serious obstacle to the identification and quantification of genuine, Pol III-derived SINE transcripts at single-locus resolution on a genomic scale. Among the recent Next Generation Sequencing technologies, only RNA sequencing (RNA-Seq) holds the potential to solve these issues, even though both technical and biological matters need to be taken into account. A bioinformatic pipeline has been recently set up that, by exploiting RNA-seq features and knowledge of SINE transcription mechanisms, allows for easy identification and profiling of transcriptionally active genomic loci which are a source of genuine Pol III SINE transcripts.
Collapse
Affiliation(s)
- Davide Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
72
|
Wang L, Rishishwar L, Mariño-Ramírez L, Jordan IK. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements. Nucleic Acids Res 2017; 45:2318-2328. [PMID: 27998931 PMCID: PMC5389732 DOI: 10.1093/nar/gkw1286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lavanya Rishishwar
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Applied Bioinformatics Laboratory, Atlanta, GA 30332, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, 760043, Colombia
- BIOS Centro de Bioinformática y Biología Computacional, Manizales, Caldas, 170002, Colombia
| | - Leonardo Mariño-Ramírez
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, 760043, Colombia
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - I. King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Applied Bioinformatics Laboratory, Atlanta, GA 30332, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, 760043, Colombia
- BIOS Centro de Bioinformática y Biología Computacional, Manizales, Caldas, 170002, Colombia
| |
Collapse
|
73
|
Kapusta A, Suh A. Evolution of bird genomes-a transposon's-eye view. Ann N Y Acad Sci 2016; 1389:164-185. [DOI: 10.1111/nyas.13295] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics; University of Utah School of Medicine; Salt Lake City Utah
| | - Alexander Suh
- Department of Evolutionary Biology (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
74
|
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 2016; 18:71-86. [PMID: 27867194 DOI: 10.1038/nrg.2016.139] [Citation(s) in RCA: 818] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| |
Collapse
|
75
|
Thompson PJ, Macfarlan TS, Lorincz MC. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol Cell 2016; 62:766-76. [PMID: 27259207 PMCID: PMC4910160 DOI: 10.1016/j.molcel.2016.03.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young" proviruses competent for retrotransposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.
Collapse
Affiliation(s)
- Peter J Thompson
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
76
|
Xu C, Corces VG. Towards a predictive model of chromatin 3D organization. Semin Cell Dev Biol 2015; 57:24-30. [PMID: 26658098 DOI: 10.1016/j.semcdb.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 01/19/2023]
Abstract
Architectural proteins mediate interactions between distant regions in the genome to bring together different regulatory elements while establishing a specific three-dimensional organization of the genetic material. Depletion of specific architectural proteins leads to miss regulation of gene expression and alterations in nuclear organization. The specificity of interactions mediated by architectural proteins depends on the nature, number, and orientation of their binding site at individual genomic locations. Knowledge of the mechanisms and rules governing interactions among architectural proteins may provide a code to predict the 3D organization of the genome.
Collapse
Affiliation(s)
- Chenhuan Xu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|