51
|
Tenreiro S, Franssens V, Winderickx J, Outeiro TF. Yeast models of Parkinson's disease-associated molecular pathologies. Curr Opin Genet Dev 2018; 44:74-83. [PMID: 28232272 DOI: 10.1016/j.gde.2017.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The aging of the human population is resulting in an increase in the number of people afflicted by neurodegenerative disorders such as Parkinson's disease (PD), creating tremendous socio-economic challenges. This requires the urgent for the development of effective therapies, and of tools for early diagnosis of the disease. However, our understanding of the molecular mechanisms underlying PD pathogenesis is still incomplete, hampering progress in those areas. In recent years, the progression made in genetics has considerably contributed to our knowledge, by identifying several novel PD genes. Furthermore, many cellular and animal models have proven their value to decipher pathways involved in PD development. In this review we highlight the value of the yeast Saccharomyces cerevisiae as a model for PD. This unicellular eukaryote has contributed to our understanding of the cellular mechanisms targeted by most important PD genes and offers an excellent tool for discovering novel players via powerful and informative high throughput screens that accelerate further validation in more complex models.
Collapse
Affiliation(s)
- Sandra Tenreiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Tiago Fleming Outeiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
52
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
53
|
Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017; 4:185-213. [PMID: 32110706 PMCID: PMC7041537 DOI: 10.5194/pb-4-185-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| |
Collapse
|
54
|
Tiwari PC, Pal R. The potential role of neuroinflammation and transcription factors in Parkinson disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566949 PMCID: PMC5442366 DOI: 10.31887/dcns.2017.19.1/rpal] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons affected by inflammatory processes. Post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines, confirming an ongoing neuroinflammation in the affected brain regions. These inflammatory mediators may activate transcription factors—notably nuclear factor κB, Ying-Yang 1 (YY1), fibroblast growth factor 20 (FGF20), and mammalian target of rapamycin (mTOR)—which then regulate downstream signaling pathways that in turn promote death of dopaminergic neurons through death domain-containing receptors. Dopaminergic neurons are vulnerable to oxidative stress and inflammatory attack. An increased level of inducible nitric oxide synthase observed in the substantia nigra and striatum of PD patients suggests that both cytokine—and chemokine-induced toxicity and inflammation lead to oxidative stress that contributes to degeneration of dopaminergic neurons and to disease progression. Lipopolysaccharide activation of microglia in the proximity of dopaminergic neurons in the substantia nigra causes their degeneration, and this appears to be a selective vulnerability of dopaminergic neurons to inflammation. In this review, we will look at the role of various transcription factors and signaling pathways in the development of PD.
Collapse
Affiliation(s)
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Utter Pradesh Lucknow-226003, India
| |
Collapse
|
55
|
Islam F, Xu K, Beninger RJ. Inhibition of Wnt signalling dose-dependently impairs the acquisition and expression of amphetamine-induced conditioned place preference. Behav Brain Res 2017; 326:217-225. [DOI: 10.1016/j.bbr.2017.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
|
56
|
Potential Role for a β-Catenin Coactivator (High-Mobility Group AT-Hook 1 Protein) during the Latency-Reactivation Cycle of Bovine Herpesvirus 1. J Virol 2017; 91:JVI.02132-16. [PMID: 28003484 DOI: 10.1128/jvi.02132-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to mediate important steps during the latency-reactivation cycle because a mutant virus containing stop codons at the amino terminus of ORF2 does not reactivate from latency in calves. We recently found that the Wnt/β-catenin signaling pathway is regulated during the BoHV-1 latency-reactivation cycle (Y. Liu, M. Hancock, A. Workman, A. Doster, and C. Jones, J Virol 90:3148-3159, 2016). In the present study, a β-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was detected in significantly more neurons in the trigeminal ganglia of latently infected calves than in those of uninfected calves. Consequently, we hypothesized that HMGA1 cooperates with ORF2 and β-catenin to maintain latency. In support of this hypothesis, coimmunoprecipitation studies demonstrated that ORF2 stably interacts with a complex containing β-catenin and/or HMGA1 in transfected mouse neuroblastoma (Neuro-2A) cells. Confocal microscopy provided evidence that ORF2 was relocalized by HMGA1 and β-catenin in Neuro-2A cells. ORF2 consistently enhanced the ability of HMGA1 to stimulate β-catenin-dependent transcription, suggesting that interactions between ORF2 and a complex containing β-catenin and HMGA1 have functional significance. An ORF2 stop codon mutant, an ORF2 nuclear localization mutant, or a mutant lacking the 5 protein kinase A or C phosphorylation sites interfered with its ability to stimulate β-catenin-dependent transcription. Since the canonical Wnt/β-catenin signaling pathway promotes neurogenesis (synapse formation and remodeling) and inhibits neurodegeneration, interactions between ORF2, HMGA1, and β-catenin may be important for certain aspects of the latency-reactivation cycle.IMPORTANCE The lifelong latency of bovine herpesvirus 1 (BoHV-1) requires that significant numbers of infected sensory neurons survive infection and maintain normal functions. Consequently, we hypothesize that viral products expressed during latency cooperate with neuronal factors to maintain latency. Our studies revealed that a β-catenin coactivator, high-mobility group AT-hook 1 protein (HMGA1), was readily detected in a subset of trigeminal ganglion neurons in latently infected calves but not in uninfected calves. A viral protein (ORF2) expressed in latently infected neurons interacted with β-catenin and HMGA1 in transfected cells, which resulted in the nuclear localization of β-catenin. This interaction correlated with the ability of ORF2 to stimulate the coactivator functions of HMGA1. These findings are significant because the canonical Wnt/β-catenin signaling pathway promotes neurogenesis and inhibits neurodegeneration.
Collapse
|
57
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
58
|
Engel M, Do-Ha D, Muñoz SS, Ooi L. Common pitfalls of stem cell differentiation: a guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci 2016; 73:3693-709. [PMID: 27154043 PMCID: PMC5002043 DOI: 10.1007/s00018-016-2265-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells and embryonic stem cells have revolutionized cellular neuroscience, providing the opportunity to model neurological diseases and test potential therapeutics in a pre-clinical setting. The power of these models has been widely discussed, but the potential pitfalls of stem cell differentiation in this research are less well described. We have analyzed the literature that describes differentiation of human pluripotent stem cells into three neural cell types that are commonly used to study diseases, including forebrain cholinergic neurons for Alzheimer's disease, midbrain dopaminergic neurons for Parkinson's disease and cortical astrocytes for neurodegenerative and psychiatric disorders. Published protocols for differentiation vary widely in the reported efficiency of target cell generation. Additionally, characterization of the cells by expression profile and functionality differs between studies and is often insufficient, leading to highly variable protocol outcomes. We have synthesized this information into a simple methodology that can be followed when performing or assessing differentiation techniques. Finally we propose three considerations for future research, including the use of physiological O2 conditions, three-dimensional co-culture systems and microfluidics to control feeding cycles and growth factor gradients. Following these guidelines will help researchers to ensure that robust and meaningful data is generated, enabling the full potential of stem cell differentiation for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Dzung Do-Ha
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
59
|
Zhang Q, Chen W, Tan S, Lin T. Stem Cells for Modeling and Therapy of Parkinson's Disease. Hum Gene Ther 2016; 28:85-98. [PMID: 27762639 DOI: 10.1089/hum.2016.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by a low level of dopamine being expressing in the striatum and a deterioration of dopaminergic neurons (DAn) in the substantia nigra pars compacta. Generation of PD-derived DAn, including differentiation of human embryonic stem cells, human neural stem cells, human-induced pluripotent stem cells, and direct reprogramming, provides an ideal tool to model PD, creating the possibility of mimicking key essential pathological processes and charactering single-cell changes in vitro. Furthermore, thanks to the understanding of molecular neuropathogenesis of PD and new advances in stem-cell technology, it is anticipated that optimal functionally transplanted DAn with targeted correction and transgene-free insertion will be generated for use in cell transplantation. This review elucidates stem-cell technology for modeling PD and offering desired safe cell resources for cell transplantation therapy.
Collapse
Affiliation(s)
- Qingxi Zhang
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Wanling Chen
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Sheng Tan
- 2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Tongxiang Lin
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,3 Stem Cell Research Center, Fujian Agriculture and Forestry University , Fuzhou, China
| |
Collapse
|
60
|
Yu J, Li X, Yang J, Wu Y, Li B. Effects of Simazine Exposure on Neuronal Development-Related Factors in MN9D Cells. Med Sci Monit 2016; 22:2831-8. [PMID: 27513680 PMCID: PMC4987066 DOI: 10.12659/msm.896460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Simazine is a triazine herbicide used worldwide in both agricultural and non-agricultural fields that is frequently detected in surface water and groundwater. Due to its widespread use, an increasing amount of research has focused on the potentially serious environmental and health risks. Material/Methods We used Western blotting and real-time quantitative PCR to analyze the effects of simazine on dopamine neuronal development-related factors in MN9D dopaminergic cells. Results The expression of tyrosine hydroxylase (TH) mRNA was significantly increased after treatment with 300 and 600 μmol L−1 simazine after 24 and 48 h. Levels of nuclear-related receptor 1 (Nurr1) mRNA after 24- and 48-h exposure were decreased with 50 μmol L−1 simazine, but increased with 600 μmol L−1 simazine. Significant increases in TH and Nurr1 protein were observed in all simazine-treated groups at 24 and 48 h. The expression of neurogenin 2 and LIM homeobox transcription factor 1 beta (Lmx1b) mRNA were significantly increased after exposure to 600 μmol L−1 simazine for 48 h, while the expression of wingless-type MMTV integration site family member 1 (Wnt1) mRNA was increased by all doses of simazine. Conclusions Simazine may have an impact on TH in MN9D cells through 2 mechanisms; one mechanism is through the Lmx1a/Ngn2 pathway, and the other mechanism is through the Lmx1b-pitx3/Wnt1-Nurr1 pathway. These 2 pathways likely do not operate in isolation, but rather together, during the cellular response to simazine exposure.
Collapse
Affiliation(s)
- Jia Yu
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xueting Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Junwei Yang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yanping Wu
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
61
|
Zhang L, Deng J, Pan Q, Zhan Y, Fan JB, Zhang K, Zhang Z. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease. J Genet Genomics 2016; 43:587-592. [PMID: 27692691 DOI: 10.1016/j.jgg.2016.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human and animal models. Genetic studies of rare early onset familial PD cases resulted in identification of disease-linked mutations in multiple genes. Nevertheless, the potential interaction between environment and genetics in PD pathogenesis remains largely unknown. We hypothesized that environmental factors induce abnormal epigenetic regulation that is involved in the pathogenesis of both familial and sporadic PD. We determined the global methylation status of 80,000-110,000 CpG sites in each of the five sporadic PD patient brains and five age and postmodern interval matched control brains utilizing bisulfite padlock sequencing. Multiple genes involved in neurogenesis, particularly the ones in the Wnt signaling pathway, were hypermethylated in PD brains compared to their matched control brains. Consistent with the DNA methylation changes, marked reduction of protein expression was observed for four Wnt and neurogenesis related genes (FOXC1, NEURG2, SPRY1, and CTNNB1) in midbrain dopaminergic (DA) neurons of PD. The treatment of low concentration of 1-methyl-4-phenylpyridinium (MPP+) for cells resulted in downregulation of Wnt related genes. The study revealed an important link between the epigenetic disregulation of Wnt signaling and the pathogenesis and progression of PD.
Collapse
Affiliation(s)
- Lusi Zhang
- Institute of Precision Medicine, The Xiangya Hospital, State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China
| | - Jie Deng
- Department of Bioengineering, University of California at San Diego, California 92093, USA
| | - Qian Pan
- Institute of Precision Medicine, The Xiangya Hospital, State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China
| | - Yan Zhan
- Institute of Precision Medicine, The Xiangya Hospital, State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China
| | - Jian-Bing Fan
- Institute of Precision Medicine, The Xiangya Hospital, State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China; AnchorDx Corporation, International Bio-island, Guangzhou 510300, China
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, California 92093, USA.
| | - Zhuohua Zhang
- Institute of Precision Medicine, The Xiangya Hospital, State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| |
Collapse
|
62
|
Huang HY, Chiu TL, Chang HF, Hsu HR, Pang CY, Liew HK, Wang MJ. Epigenetic regulation contributes to urocortin-enhanced midbrain dopaminergic neuron differentiation. Stem Cells 2016; 33:1601-17. [PMID: 25641682 DOI: 10.1002/stem.1949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023]
Abstract
The production of midbrain dopaminergic (mDA) neurons requires precise extrinsic inductive signals and intrinsic transcriptional cascade at a specific time point in development. Urocortin (UCN) is a peptide of the corticotropin-releasing hormone family that mediates various responses to stress. UCN was first cloned from adult rat midbrain. However, the contribution of UCN to the development of mDA neurons is poorly understood. Here, we show that UCN is endogenously expressed in the developing ventral midbrain (VM) and its receptors are exhibited in Nurr1(+) postmitotic mDA precursors and TH(+) neurons, suggesting possible roles in regulating their terminal differentiation. UCN treatment increased DA cell numbers in rat VM precursor cultures by promoting the conversion of Nurr1(+) precursors into DA neurons. Furthermore, neutralization of secreted UCN with anti-UCN antibody resulted in a reduction in the number of DA neurons. UCN induced an abundance of acetylated histone H3 and enhanced late DA regulator Nurr1, Foxa2, and Pitx3 expressions. Using pharmacological and RNA interference approaches, we further demonstrated that histone deacetylase (HDAC) inhibition and late transcriptional factors upregulation contribute to UCN-mediated DA neuron differentiation. Chromatin immunoprecipitation analyses revealed that UCN promoted histone acetylation of chromatin surrounding the TH promoter by directly inhibiting HDAC and releasing of methyl CpG binding protein 2-CoREST-HDAC1 repressor complex from the promoter, ultimately leading to an increase in Nurr1/coactivators-mediated transcription of TH gene. Moreover, UCN treatment in vivo also resulted in increased DA neuron differentiation. These findings suggest that UCN might contribute to regulate late mDA neuron differentiation during VM development.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of Medical Research, Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
63
|
Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-Based Therapies for Parkinson's Disease. CNS Neurosci Ther 2016; 22:351-9. [PMID: 27012974 DOI: 10.1111/cns.12536] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have documented that orphan nuclear receptor Nurr1 (also known as NR4A2) plays important roles in the midbrain dopamine (DA) neuron development, differentiation, and survival. Furthermore, it has been reported that the defects in Nurr1 are associated with Parkinson's disease (PD). Thus, Nurr1 might be a potential therapeutic target for PD. Emerging evidence from in vitro and in vivo studies has recently demonstrated that Nurr1-activating compounds and Nurr1 gene therapy are able not only to enhance DA neurotransmission but also to protect DA neurons from cell injury induced by environmental toxin or microglia-mediated neuroinflammation. Moreover, modulators that interact with Nurr1 or regulate its function, such as retinoid X receptor, cyclic AMP-responsive element-binding protein, glial cell line-derived neurotrophic factor, and Wnt/β-catenin pathway, have the potential to enhance the effects of Nurr1-based therapies in PD. This review highlights the recent progress in preclinical studies of Nurr1-based therapies and discusses the outlook of this emerging therapy as a promising new generation of PD medication.
Collapse
Affiliation(s)
- Jie Dong
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing-Lin Mo
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huai-Bin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Wei-Dong Le
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
64
|
Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. Neuropharmacology 2016; 101:480-9. [DOI: 10.1016/j.neuropharm.2015.10.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 01/13/2023]
|
65
|
Ilexonin A Promotes Neuronal Proliferation and Regeneration via Activation of the Canonical Wnt Signaling Pathway after Cerebral Ischemia Reperfusion in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9753189. [PMID: 27057202 PMCID: PMC4739464 DOI: 10.1155/2016/9753189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
Aims. Ilexonin A (IA), a component of the Chinese medicine Ilex pubescens, has been shown to be neuroprotective during ischemic injury. However, the specific mechanism underlying this neuroprotective effect remains unclear. Methods. In this study, we employed a combination of immunofluorescence staining, western blotting, RT-PCR, and behavioral tests, to investigate the molecular mechanisms involved in IA regulation of neuronal proliferation and regeneration after cerebral ischemia and reperfusion in rodents. Results. Increases in β-catenin protein and LEF1 mRNA and decreases in GSK3β protein and Axin mRNA observed in IA-treated compared to control rodents implicated the canonical Wnt pathway as a key signaling mechanism activated by IA treatment. Furthermore, rodents in the IA treatment group showed less neurologic impairment and a corresponding increase in the number of Brdu/nestin and Brdu/NeuN double positive neurons in the parenchymal ischemia tissue following middle cerebral artery occlusion compared to matched controls. Conclusion. Altogether, our data indicate that IA can significantly diminish neurological deficits associated with cerebral ischemia reperfusion in rats as a result of increased neuronal survival via modulation of the canonical Wnt pathway.
Collapse
|
66
|
Luo SX, Huang EJ. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:478-88. [PMID: 26724386 DOI: 10.1016/j.ajpath.2015.09.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
Abstract
Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah X Luo
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Pathology, University of California San Francisco, San Francisco, California
| | - Eric J Huang
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Pathology, University of California San Francisco, San Francisco, California; Pathology Service 113B, San Francisco Veterans Affairs Medical Center, San Francisco, California.
| |
Collapse
|
67
|
Duncan RN, Xie Y, McPherson AD, Taibi AV, Bonkowsky JL, Douglass AD, Dorsky RI. Hypothalamic radial glia function as self-renewing neural progenitors in the absence of Wnt/β-catenin signaling. Development 2015; 143:45-53. [PMID: 26603385 DOI: 10.1242/dev.126813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022]
Abstract
The vertebrate hypothalamus contains persistent radial glia that have been proposed to function as neural progenitors. In zebrafish, a high level of postembryonic hypothalamic neurogenesis has been observed, but the role of radial glia in generating these new neurons is unclear. We have used inducible Cre-mediated lineage labeling to show that a population of hypothalamic radial glia undergoes self-renewal and generates multiple neuronal subtypes at larval stages. Whereas Wnt/β-catenin signaling has been demonstrated to promote the expansion of other stem and progenitor cell populations, we find that Wnt/β-catenin pathway activity inhibits this process in hypothalamic radial glia and is not required for their self-renewal. By contrast, Wnt/β-catenin signaling is required for the differentiation of a specific subset of radial glial neuronal progeny residing along the ventricular surface. We also show that partial genetic ablation of hypothalamic radial glia or their progeny causes a net increase in their proliferation, which is also independent of Wnt/β-catenin signaling. Hypothalamic radial glia in the zebrafish larva thus exhibit several key characteristics of a neural stem cell population, and our data support the idea that Wnt pathway function may not be homogeneous in all stem or progenitor cells.
Collapse
Affiliation(s)
- Robert N Duncan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuanyuan Xie
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrew V Taibi
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Adam D Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
68
|
Bissonette GB, Roesch MR. Development and function of the midbrain dopamine system: what we know and what we need to. GENES BRAIN AND BEHAVIOR 2015; 15:62-73. [PMID: 26548362 DOI: 10.1111/gbb.12257] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 10/01/2015] [Indexed: 01/29/2023]
Abstract
The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study.
Collapse
Affiliation(s)
- G B Bissonette
- Department of Psychology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - M R Roesch
- Department of Psychology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
69
|
Rhim JH, Luo X, Xu X, Gao D, Zhou T, Li F, Qin L, Wang P, Xia X, Wong STC. A High-content screen identifies compounds promoting the neuronal differentiation and the midbrain dopamine neuron specification of human neural progenitor cells. Sci Rep 2015; 5:16237. [PMID: 26542303 PMCID: PMC4635364 DOI: 10.1038/srep16237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
Small molecule compounds promoting the neuronal differentiation of stem/progenitor cells are of pivotal importance to regenerative medicine. We carried out a high-content screen to systematically characterize known bioactive compounds, on their effects on the neuronal differentiation and the midbrain dopamine (mDA) neuron specification of neural progenitor cells (NPCs) derived from the ventral mesencephalon of human fetal brain. Among the promoting compounds three major pharmacological classes were identified including the statins, TGF-βRI inhibitors, and GSK-3 inhibitors. The function of each class was also shown to be distinct, either to promote both the neuronal differentiation and mDA neuron specification, or selectively the latter, or promote the former but suppress the latter. We then carried out initial investigation on the possible mechanisms underlying, and demonstrated their applications on NPCs derived from human pluripotent stem cells (PSCs). Our study revealed the potential of several small molecule compounds for use in the directed differentiation of human NPCs. The screening result also provided insight into the signaling network regulating the differentiation of human NPCs.
Collapse
Affiliation(s)
- Ji Heon Rhim
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Xiangjian Luo
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Xiaoyun Xu
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Dongbing Gao
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Tieling Zhou
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Fuhai Li
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Ping Wang
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Xiaofeng Xia
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Stephen T C Wong
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
70
|
Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. J Neurosci 2015; 35:10911-26. [PMID: 26245956 DOI: 10.1523/jneurosci.0601-15.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neocortical development requires tightly controlled spatiotemporal gene expression. However, the mechanisms regulating ribosomal complexes and the timed specificity of neocortical mRNA translation are poorly understood. We show that active mRNA translation complexes (polysomes) contain ribosomal protein subsets that undergo dynamic spatiotemporal rearrangements during mouse neocortical development. Ribosomal protein specificity within polysome complexes is regulated by the arrival of in-growing thalamic axons, which secrete the morphogen Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3). Thalamic WNT3 release during midneurogenesis promotes a change in the levels of Ribosomal protein L7 in polysomes, thereby regulating neocortical translation machinery specificity. Furthermore, we present an RNA sequencing dataset analyzing mRNAs that dynamically associate with polysome complexes as neocortical development progresses, and thus may be regulated spatiotemporally at the level of translation. Thalamic WNT3 regulates neocortical translation of two such mRNAs, Foxp2 and Apc, to promote FOXP2 expression while inhibiting APC expression, thereby driving neocortical neuronal differentiation and suppressing oligodendrocyte maturation, respectively. This mechanism may enable targeted and rapid spatiotemporal control of ribosome composition and selective mRNA translation in complex developing systems like the neocortex. SIGNIFICANCE STATEMENT The neocortex is a highly complex circuit generating the most evolutionarily advanced complex cognitive and sensorimotor functions. An intricate progression of molecular and cellular steps during neocortical development determines its structure and function. Our goal is to study the steps regulating spatiotemporal specificity of mRNA translation that govern neocortical development. In this work, we show that the timed secretion of Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3) by ingrowing axons from the thalamus regulates the combinatorial composition of ribosomal proteins in developing neocortex, which we term the "neocortical ribosome signature." Thalamic WNT3 further regulates the specificity of mRNA translation and development of neurons and oligodendrocytes in the neocortex. This study advances our overall understanding of WNT signaling and the spatiotemporal regulation of mRNA translation in highly complex developing systems.
Collapse
|
71
|
Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 2015; 72:4157-72. [PMID: 26306936 PMCID: PMC11113751 DOI: 10.1007/s00018-015-2028-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
The first mammalian Wnt to be discovered, Wnt-1, was found to be essential for the development of a large part of the mouse brain over 25 years ago. We have since learned that Wnt family secreted glycolipoproteins, of which there are nineteen, which activate a diverse network of signals that are particularly important during embryonic development and tissue regeneration. Wnt signals in the developing and adult brain can drive neural stem cell self-renewal, expansion, asymmetric cell division, maturation and differentiation. The molecular events taking place after a Wnt binds to its cell-surface receptors are complex and, at times, controversial. A deeper understanding of these events is anticipated to lead to improvements in the treatment of neurodegenerative diseases and stem cell-based replacement therapies. Here, we review the roles played by Wnts in neural stem cells in the developing mouse brain, at neurogenic sites of the adult mouse and in neural stem cell culture models.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
| | - Robert M Kypta
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
72
|
Dijksterhuis JP, Arthofer E, Marinescu VD, Nelander S, Uhlén M, Pontén F, Mulder J, Schulte G. High levels of WNT-5A in human glioma correlate with increased presence of tumor-associated microglia/monocytes. Exp Cell Res 2015; 339:280-8. [PMID: 26511503 DOI: 10.1016/j.yexcr.2015.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022]
Abstract
Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.
Collapse
Affiliation(s)
- Jacomijn P Dijksterhuis
- Section of Receptor Biology & Signaling, Deptartment Physiology & Pharmacology, Karolinska Institutet, S17177, Stockholm, Sweden
| | - Elisa Arthofer
- Section of Receptor Biology & Signaling, Deptartment Physiology & Pharmacology, Karolinska Institutet, S17177, Stockholm, Sweden
| | - Voichita D Marinescu
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Frederik Pontén
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Deptartment Physiology & Pharmacology, Karolinska Institutet, S17177, Stockholm, Sweden; Faculty of Science, Institute of Experimental Biology, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|
73
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
74
|
Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen K, Xu P. Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Transl Neurodegener 2015; 4:11. [PMID: 26085927 PMCID: PMC4470059 DOI: 10.1186/s40035-015-0033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/09/2015] [Indexed: 01/07/2023] Open
Abstract
Background Wnt/β-catenin signal has been reported to exert cytoprotective effects in cellular models of several diseases, including Parkinson’s disease (PD). This study aimed to investigate the neuroprotective effects of actived Wnt/β-catenin signal by Wnt3a on SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA). Methods Wnt3a-conditioned medium (Wnt3a-CM) was used to intervene dopaminegic SH-SY5Y cells treated with 6-OHDA. Cell toxicity was determined by cell viability and lactate dehydrogenase leakage (LDH) assay. The mitochondria function was measured by the mitochondrial membrane potential, while oxidative stress was monitored with intracellular reactive oxygen species (ROS). Western blot analysis was used to detect the expression of GSK3β, β-catenin as well as Akt. Results Our results showed that 100 μM 6-OHDA treated for 24 h significantly decreased cell viability and mitochondrial transmembrane potential, reduced the level of β-catenin and p-Akt, increased LDH leakage, ROS production and the ratio of p-GSK3β (Tyr216) to p-GSK3β (Ser9). However, Wnt3a-conditioned medium reversing SH-SY5Y cells against 6-OHDA-induced neurotoxicity by reversing these changes. Conclusions Activating of Wnt/β-catenin pathway by Wnt3a-CM attenuated 6-OHDA-induced neurotoxicity significantly, which related to the inhibition of oxidative stress and maintenance of normal mitochondrial function.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China ; Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Li Ding
- Department of pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ming-Shu Mo
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ming Lei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Kang Chen
- Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, 528403 China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China ; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| |
Collapse
|
75
|
Abstract
BACKGROUND Parkinson's disease (PD) was previously described as the prototypical sporadic disease; however, rapid advances in population and molecular genetics have revealed the existence of a significant number genetic risk factors, prompting its redefinition as a primarily genetic disorder. SOURCES OF DATA Data for this review have been gathered from the published literature. AREAS OF AGREEMENT Multiple haplotypes conveying variable but quantifiable genetic risk, acting concurrently and possibly interacting with one another, provide the basis for a new model of PD. The beginning of this revolution in our understanding came from the clinical observation of parkinsonism with a Mendelian pattern of inheritance in a number of families. The functional work that followed elucidated multiple disease pathways leading to the degeneration of the substantia nigra that characterizes PD. It is however only in recent years, with the emergence of large cohort genome-wide association studies (GWAS), that the relevance of these pathways to so-called sporadic PD has become apparent. AREAS OF CONTROVERSY A substantial portion of the presumed genetic inheritance of PD remains at present undefined. Although it is likely that so-called intermediate risk genetic risk factors are the principal component of this 'missing heritability', this is yet to be proved. GROWING POINTS Although the picture is by now means complete, the beginnings of rational basis for genetic screening of PD risk have begun to emerge. Equally, this enhanced understanding of the various genetic and in turn biochemical pathways shows promising signs of producing fruitful therapeutic strategies. Technological advances promise to reduce the costs associated with and further increase our capability to understand the complex influence of genetics on the pathogenesis of PD. AREAS TIMELY FOR DEVELOPING RESEARCH The coming years will require the enhancement of current techniques and the development of new ones to define PD's missing heritability. It will also require functional work to define better and in turn potentially reverse the mechanisms that contribute with large effect sizes to the risk of sporadic PD.
Collapse
Affiliation(s)
- Stephen Mullin
- Leonard Wolfson Clinical Research Fellow, UCL, Institute of Neurology, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| | - Anthony Schapira
- Department of Clinical Neurosciences, UCL, Institute of Neurology, Hampstead, London, UK
| |
Collapse
|
76
|
Abstract
ABSTRACT
Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.
Collapse
Affiliation(s)
- Ernest Arenas
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Mark Denham
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
| | - J. Carlos Villaescusa
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| |
Collapse
|
77
|
Anderegg A, Awatramani R. Making a mes: A transcription factor-microRNA pair governs the size of the midbrain and the dopaminergic progenitor pool. NEUROGENESIS 2015; 2:e998101. [PMID: 27502145 PMCID: PMC4973584 DOI: 10.1080/23262133.2014.998101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 02/03/2023]
Abstract
Canonical Wnt signaling is critical for midbrain dopaminergic progenitor specification, proliferation, and neurogenesis. Yet mechanisms that control Wnt signaling remain to be fully elucidated. Wnt1 is a key ligand in the embryonic midbrain, and directs proliferation, survival, specification and neurogenesis. In a recent study, we reveal that the transcription factor Lmx1b promotes Wnt1/Wnt signaling, and dopaminergic progenitor expansion, consistent with earlier studies. Additionally, Lmx1b drives expression of a non-coding RNA called Rmst, which harbors miR135a2 in its last intron. miR135a2 in turn targets Lmx1b as well as several Wnt pathway targets. Conditional overexpression of miR135a2 in the midbrain, particularly during an early time, results in a decreased dopaminergic progenitor pool, and less dopaminergic neurons, consistent with decreased Wnt signaling. We propose a model in which Lmx1b and miR135a2 influence levels of Wnt1 and Wnt signaling, and expansion of the dopaminergic progenitor pool. Further loss of function experiments and biochemical validation of targets will be critical to verify this model. Wnt agonists have recently been utilized for programming stem cells toward a dopaminergic fate in vitro, highlighting the importance of agents that modulate the Wnt pathway.
Collapse
Affiliation(s)
- Angela Anderegg
- Department of Neurology; Northwestern University ; Chicago, IL USA
| | | |
Collapse
|
78
|
Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan YL, Postlethwait JH, Chen W, Wang H. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 2015; 35:2572-87. [PMID: 25673850 PMCID: PMC4323534 DOI: 10.1523/jneurosci.2551-14.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder.
Collapse
Affiliation(s)
- Jian Huang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Zhaomin Zhong
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Mingyong Wang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Xifeng Chen
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Yicheng Tan
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Shuqing Zhang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Wei He
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Xiong He
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Guodong Huang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Haiping Lu
- Department of Pediatrics and Child Health, Affiliated Children's Hospital, Soochow University, Suzhou 215003, Jiangsu, China
| | - Ping Wu
- School of Biology & Basic Medical Sciences, Medical College
| | - Yi Che
- School of Biology & Basic Medical Sciences, Medical College
| | - Yi-Lin Yan
- Center for Circadian Clocks, Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, and
| | | | - Wenbiao Chen
- Center for Circadian Clocks, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Han Wang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College,
| |
Collapse
|
79
|
Zhang S, Li J, Lea R, Vleminckx K, Amaya E. Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development. Development 2015; 141:4794-805. [PMID: 25468942 PMCID: PMC4299278 DOI: 10.1242/dev.115691] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain regionalisation, neuronal subtype diversification and circuit connectivity are crucial events in the establishment of higher cognitive functions. Here we report the requirement for the transcriptional repressor Fezf2 for proper differentiation of neural progenitor cells during the development of the Xenopus forebrain. Depletion of Fezf2 induces apoptosis in postmitotic neural progenitors, with concomitant reduction in forebrain size and neuronal differentiation. Mechanistically, we found that Fezf2 stimulates neuronal differentiation by promoting Wnt/β-catenin signalling in the developing forebrain. In addition, we show that Fezf2 promotes activation of Wnt/β-catenin signalling by repressing the expression of two negative regulators of Wnt signalling, namely lhx2 and lhx9. Our findings suggest that Fezf2 plays an essential role in controlling when and where neuronal differentiation occurs within the developing forebrain and that it does so by promoting local Wnt/β-catenin signalling via a double-repressor model.
Collapse
Affiliation(s)
- Siwei Zhang
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jingjing Li
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kris Vleminckx
- Department for Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Enrique Amaya
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
80
|
Lee CT, Bendriem RM, Kindberg AA, Worden LT, Williams MP, Drgon T, Mallon BS, Harvey BK, Richie CT, Hamilton RS, Chen J, Errico SL, Tsai SYA, Uhl GR, Freed WJ. Functional consequences of 17q21.31/WNT3-WNT9B amplification in hPSCs with respect to neural differentiation. Cell Rep 2015; 10:616-32. [PMID: 25640183 DOI: 10.1016/j.celrep.2014.12.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022] Open
Abstract
Human pluripotent stem cell (hPSC) lines exhibit repeated patterns of genetic variation, which can alter in vitro properties as well as suitability for clinical use. We examined associations between copy-number variations (CNVs) on chromosome 17 and hPSC mesodiencephalic dopaminergic (mDA) differentiation. Among 24 hPSC lines, two karyotypically normal lines, BG03 and CT3, and BG01V2, with trisomy 17, exhibited amplification of the WNT3/WNT9B region and rapid mDA differentiation. In hPSC lines with amplified WNT3/WNT9B, basic fibroblast growth factor (bFGF) signaling through mitogen-activated protein kinase (MAPK)/ERK amplifies canonical WNT signaling by phosphorylating LRP6, resulting in enhanced undifferentiated proliferation. When bFGF is absent, noncanonical WNT signaling becomes dominant due to upregulation of SIAH2, enhancing JNK signaling and promoting loss of pluripotency. When bFGF is present during mDA differentiation, stabilization of canonical WNT signaling causes upregulation of LMX1A and mDA induction. Therefore, CNVs in 17q21.31, a "hot spot" for genetic variation, have multiple and complex effects on hPSC cellular phenotype.
Collapse
Affiliation(s)
- Chun-Ting Lee
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA.
| | - Raphael M Bendriem
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Abigail A Kindberg
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Lila T Worden
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Melanie P Williams
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Tomas Drgon
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Barbara S Mallon
- NIH Stem Cell Unit, Intramural Research Program, National Institute of Neurological Disorders and Stroke, Department of Health and Human Services, NIH, Bethesda, MD 20892, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Rebecca S Hamilton
- NIH Stem Cell Unit, Intramural Research Program, National Institute of Neurological Disorders and Stroke, Department of Health and Human Services, NIH, Bethesda, MD 20892, USA
| | - Jia Chen
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Stacie L Errico
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - Shang-Yi A Tsai
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - George R Uhl
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| | - William J Freed
- Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
81
|
Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem Cell Rev Rep 2014; 10:316-26. [PMID: 24399192 PMCID: PMC3969515 DOI: 10.1007/s12015-013-9493-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we provide a protocol for the directed differentiation of hEPI-NCSC into midbrain dopaminergic neurons, which degenerate in Parkinson's disease. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. The experimental design is distinctly different from conventional protocols for embryonic stem cells and induced pluripotent stem (iPS) cells. It includes pre-differentiation of the multipotent hEPI-NCSC into neural stem cell-like cells, followed by ventralizing, patterning, continued exposure to the TGFβ receptor inhibitor, SB431542, and at later stages of differentiation the presence of the WNT inhibitor, IWP-4. All cells expressed A9 midbrain dopaminergic neuron progenitor markers with gene expression levels comparable to those in normal human substantia nigra. The current study shows for the first time that virtually homogeneous populations of dopaminergic neurons can be derived ex vivo from somatic stem cells without the need for purification, with useful timeliness and high efficacy. This novel development is an important first step towards the establishment of fully functional dopaminergic neurons from an ontologically relevant stem cell type, hEPI-NCSC.
Collapse
|
82
|
Veenvliet JV, Smidt MP. Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cell Mol Life Sci 2014; 71:4703-27. [PMID: 25064061 PMCID: PMC11113784 DOI: 10.1007/s00018-014-1681-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Dopaminergic (DA) neurons in the ventral mesodiencephalon control locomotion and emotion and are affected in psychiatric and neurodegenerative diseases, such as Parkinson's disease (PD). A clinical hallmark of PD is the specific degeneration of DA neurons located within the substantia nigra (SNc), whereas neurons in the ventral tegmental area remain unaffected. Recent advances have highlighted that the selective vulnerability of the SNc may originate in subset-specific molecular programming during DA neuron development, and significantly increased our understanding of the molecular code that drives specific SNc development. We here present an up-to-date overview of molecular mechanisms that direct DA subset specification, integrating our current knowledge about subset-specific roles of transcription factors, signaling pathways and morphogenes. We discuss strategies to further unravel subset-specific gene-regulatory networks, and the clinical promise of fundamental knowledge about subset specification of DA neurons, with regards to cell replacement therapy and cell-type-specific vulnerability in PD.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
83
|
Dijksterhuis JP, Petersen J, Schulte G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br J Pharmacol 2014; 171:1195-209. [PMID: 24032637 DOI: 10.1111/bph.12364] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 12/14/2022] Open
Abstract
The wingless/int1 (WNT)/Frizzled (FZD) signalling pathway controls numerous cellular processes such as proliferation, differentiation, cell-fate decisions, migration and plays a crucial role during embryonic development. Nineteen mammalian WNTs can bind to 10 FZDs thereby activating different downstream pathways such as WNT/β-catenin, WNT/planar cell polarity and WNT/Ca(2+) . However, the mechanisms of signalling specification and the involvement of heterotrimeric G proteins are still unclear. Disturbances in the pathways can lead to various diseases ranging from cancer, inflammatory diseases to metabolic and neurological disorders. Due to the presence of seven-transmembrane segments, evidence for coupling between FZDs and G proteins and substantial structural differences in class A, B or C GPCRs, FZDs were grouped separately in the IUPHAR GPCR database as the class FZD within the superfamily of GPCRs. Recently, important progress has been made pointing to a direct activation of G proteins after WNT stimulation. WNT/FZD and G protein coupling remain to be fully explored, although the basic observation supporting the nature of FZDs as GPCRs is compelling. Because the involvement of different (i) WNTs; (ii) FZDs; and (iii) intracellular binding partners could selectively affect signalling specification, in this review we present the current understanding of receptor/ligand selectivity of FZDs and WNTs. We pinpoint what is known about signalling specification and the physiological relevance of these interactions with special emphasis on FZD-G protein interactions.
Collapse
Affiliation(s)
- J P Dijksterhuis
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
84
|
Panman L, Papathanou M, Laguna A, Oosterveen T, Volakakis N, Acampora D, Kurtsdotter I, Yoshitake T, Kehr J, Joodmardi E, Muhr J, Simeone A, Ericson J, Perlmann T. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep 2014; 8:1018-25. [PMID: 25127144 DOI: 10.1016/j.celrep.2014.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022] Open
Abstract
Distinct midbrain dopamine (mDA) neuron subtypes are found in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), but it is mainly SNc neurons that degenerate in Parkinson's disease. Interest in how mDA neurons develop has been stimulated by the potential use of stem cells in therapy or disease modeling. However, very little is known about how specific dopaminergic subtypes are generated. Here, we show that the expression profiles of the transcription factors Sox6, Otx2, and Nolz1 define subpopulations of mDA neurons already at the neural progenitor cell stage. After cell-cycle exit, Sox6 selectively localizes to SNc neurons, while Otx2 and Nolz1 are expressed in a subset of VTA neurons. Importantly, Sox6 ablation leads to decreased expression of SNc markers and a corresponding increase in VTA markers, while Otx2 ablation has the opposite effect. Moreover, deletion of Sox6 affects striatal innervation and dopamine levels. We also find reduced Sox6 levels in Parkinson's disease patients. These findings identify Sox6 as a determinant of SNc neuron development and should facilitate the engineering of relevant mDA neurons for cell therapy and disease modeling.
Collapse
Affiliation(s)
- Lia Panman
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; MRC Toxicology Unit, Leicester LE1 9HN, UK.
| | | | - Ariadna Laguna
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | - Dario Acampora
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, 80131 Naples, Italy; IRCCS Neuromed, Pozzilli IS 86077, Italy
| | - Idha Kurtsdotter
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eliza Joodmardi
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Antonio Simeone
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, 80131 Naples, Italy; IRCCS Neuromed, Pozzilli IS 86077, Italy
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
85
|
Wakeman DR, Weiss S, Sladek JR, Elsworth JD, Bauereis B, Leranth C, Hurley PJ, Roth RH, Redmond DE. Survival and Integration of Neurons Derived from Human Embryonic Stem Cells in MPTP-Lesioned Primates. Cell Transplant 2014; 23:981-94. [DOI: 10.3727/096368913x664865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A human embryonic stem cell (HESC) line, H1, was studied after differentiation to a dopaminergic phenotype in vitro in order to carry out in vivo studies in Parkinsonian monkeys. To identify morphological characteristics of transplanted donor cells, HESCs were transfected with a GFP lentiviral vector. Gene expression studies were performed at each step of a neural rosette-based dopaminergic differentiation protocol by RT-PCR. In vitro immunofluorescence revealed that >90% of the differentiated cells exhibited a neuronal phenotype by β-III-tubulin immunocytochemistry, with 17% of the cells coexpressing tyrosine hydroxylase prior to implantation. Biochemical analyses demonstrated dopamine release in culture in response to potassium chloride-induced membrane depolarization, suggesting that the cells synthesized and released dopamine. These characterized, HESC-derived neurons were then implanted into the striatum and midbrain of MPTP (1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine)-exposed monkeys that were triple immunosuppressed. Here we demonstrate robust survival of transplanted HESC-derived neurons after 6 weeks, as well as morphological features consistent with polarization, organization, and extension of processes that integrated into the host striatum. Expression of the dopaminergic marker tyrosine hydroxylase was not maintained in HESC-derived neural grafts in either the striatum or substantia nigra, despite a neuronal morphology and expression of β-III-tubulin. These results suggest that dopamine neuronal cells derived from neuroectoderm in vitro will not maintain the correct midbrain phenotype in vivo in nonhuman primates, contrasted with recent studies showing dopamine neuronal survival using an alternative floorplate method.
Collapse
Affiliation(s)
- Dustin R. Wakeman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie Weiss
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John R. Sladek
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO, USA
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO, USA
| | - John D. Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Bauereis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick J. Hurley
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert H. Roth
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - D. Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- St. Kitts Biomedical Research Foundation, St. Kitts-Nevis, West Indies
| |
Collapse
|
86
|
Zozulinsky P, Greenbaum L, Brande-Eilat N, Braun Y, Shalev I, Tomer R. Dopamine system genes are associated with orienting bias among healthy individuals. Neuropsychologia 2014; 62:48-54. [PMID: 25038551 DOI: 10.1016/j.neuropsychologia.2014.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
Abstract
Healthy individuals display subtle orienting bias, manifested as a tendency to direct greater attention toward one hemispace, and evidence suggests that this bias reflects an individual trait, which may be modulated by asymmetric dopamine signaling in striatal and frontal regions. The current study examined the hypothesis that functional genetic variants within dopaminergic genes (DAT1 3' VNTR, dopamine D2 receptor Taq1A (rs1800497) and COMT Val158Met (rs4680)) contribute to individual differences in orienting bias, as measured by the greyscales paradigm, in a sample of 197 young healthy Israeli Jewish participants. For the Taq1A variant, homozygous carriers of the A2 allele displayed significantly increased leftward orienting bias compared to the carriers of the A1 allele. Additionally, and as previously reported by others, we found that bias towards leftward orienting of attention was significantly greater among carriers of the 9-repeat allele of the DAT1 3' VNTR as compared to the individuals who were homozygous for the 10-repeat allele. No significant effect of the COMT Val158Met on orienting bias was found. Taken together, our findings support the potential influence of genetic variants on inter-individual differences in orienting bias, a phenotype relevant to both normal and impaired cognitive processes.
Collapse
Affiliation(s)
- Polina Zozulinsky
- Department of Psychology, University of Haifa, 199 Abba Khoushy Ave., Mount Carmel Haifa 3498838, Israel
| | - Lior Greenbaum
- Department of Neurology, Chaim Sheba Medical Center, Tel Hashomer, Hashomer, Israel; The Josheph Sagol Neuroscience center (JSNC), Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Noa Brande-Eilat
- Department of Psychology, University of Haifa, 199 Abba Khoushy Ave., Mount Carmel Haifa 3498838, Israel
| | - Yair Braun
- Department of Psychology, University of Haifa, 199 Abba Khoushy Ave., Mount Carmel Haifa 3498838, Israel
| | - Idan Shalev
- Department of Biobehavioral Health, Pennsylvania State University, United States
| | - Rachel Tomer
- Department of Psychology, University of Haifa, 199 Abba Khoushy Ave., Mount Carmel Haifa 3498838, Israel.
| |
Collapse
|
87
|
Fernando CV, Kele J, Bye CR, Niclis JC, Alsanie W, Blakely BD, Stenman J, Turner BJ, Parish CL. Diverse roles for Wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis. Stem Cells Dev 2014; 23:1991-2003. [PMID: 24803261 DOI: 10.1089/scd.2014.0166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During development of the central nervous system, trophic, together with genetic, cues dictate the balance between cellular proliferation and differentiation. Subsequent to the birth of new neurons, additional intrinsic and extrinsic signals regulate the connectivity of these cells. While a number of regulators of ventral midbrain (VM) neurogenesis and dopaminergic (DA) axon guidance are known, we identify a number of novel roles for the secreted glycoprotein, Wnt7a, in this context. We demonstrate a temporal and spatial expression of Wnt7a in the VM, indicative of roles in neurogenesis, differentiation, and axonal growth and guidance. In primary VM cultures, and validated in Wnt7a-deficient mice, we show that the early expression within the VM is important for regulating VM progenitor proliferation, cell cycle progression, and cell survival, thereby dictating the number of midbrain Nurr1 precursors and DA neurons. During early development of the midbrain DA pathways, Wnt7a promotes axonal elongation and repels DA neurites out of the midbrain. Later, Wnt7a expression in the VM midline suggests a role in preventing axonal crossing while expression in regions flanking the medial forebrain bundle (thalamus and hypothalamus) ensured appropriate trajectory of DA axons en route to their forebrain targets. We show that the effects of Wnt7a in VM development are mediated, at least in part, by the β-catenin/canonical pathways. Together, these findings identify Wnt7a as a new regulator of VM neurogenesis and DA axon growth and guidance.
Collapse
Affiliation(s)
- Chathurini V Fernando
- 1 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Chen F, Wang H, Xiang X, Yuan J, Chu W, Xue X, Zhu H, Ge H, Zou M, Feng H, Lin J. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study. J Surg Res 2014; 192:298-304. [PMID: 25033705 DOI: 10.1016/j.jss.2014.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/28/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The objective of the present study was to clarify the relationship between the neuroprotective effects of curcumin and the classical wnt signaling pathway. METHOD Using Sprague-Dawley rats at a gestational age of 14.5 d, we isolated neural stem cells from the anterior two-thirds of the fetal rat brain. The neural stem cells were passaged three times using the half media replacement method and identified using cellular immunofluorescence. After passaging for three generations, we cultured cells in media without basic fibroblast growth factor and epidermal growth factor. Then we treated cells in five different ways, including a blank control group, a group treated with IWR1 (10 μmol/L), a group treated with curcumin (500 nmol/L), a group treated with IWR1 + curcumin, and a group treated with dimethyl sulfoxide (10 μmol/L). We then measured the protein and RNA expression levels for wnt3a and β-catenin using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Western-blotting: after the third generation of cells had been treated for 72 h, we observed that wnt3a and β-catenin expression was significantly increased in the group receiving 500 nmol/L curcumin but not in the other groups. Furthermore, cells in the IWR1-treated group showed decreased wnt3a and β-catenin expression, and wnt3a and β-catenin was also decreased in the IWR1 + 500 nmol/L curcumin group. No obvious change was observed in the dimethyl sulfoxide group. RT-PCR RT-PCR showed similar changes to those observed with the Western blotting experiments. CONCLUSIONS Our study suggests that curcumin can activate the wnt signaling pathway, which provides evidence that curcumin exhibits a neuroprotective effect through the classical wnt signaling pathway.
Collapse
Affiliation(s)
- Fei Chen
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haoxiang Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Xiang
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jichao Yuan
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weihua Chu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xingsen Xue
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haitao Zhu
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mingming Zou
- Affiliated Bayi Brain Hospital, General Hospital of Beijing Military Region, Beijing, China
| | - Hua Feng
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiangkai Lin
- Department of Neurosurgery, Institute of Neurosurgery, Key Laboratory of Neurotrauma Prevention and Treatment, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
89
|
Dai TL, Zhang C, Peng F, Niu XY, Hu L, Zhang Q, Huang Y, Chen L, Zhang L, Zhu W, Ding YQ, Song NN, Liao M. Depletion of canonical Wnt signaling components has a neuroprotective effect on midbrain dopaminergic neurons in an MPTP-induced mouse model of Parkinson's disease. Exp Ther Med 2014; 8:384-390. [PMID: 25009587 PMCID: PMC4079420 DOI: 10.3892/etm.2014.1745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/09/2014] [Indexed: 11/21/2022] Open
Abstract
The canonical Wnt signaling pathway is critical for the development of midbrain dopaminergic (DA) neurons, and recent studies have suggested that disruption of this signaling cascade may underlie the pathogenesis of Parkinson’s disease (PD). However, the exact role of the canonical Wnt signaling pathway, including low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6) and β-catenin components, in a mouse model of PD remains unclear. In the present study, the tyrosine hydroxylase (TH)-Cre transgenic mouse line was used to generate mice with the specific knockout of LRP5, LRP6 or β-catenin in DA neurons. Following inactivation of LRP5, LRP6 or β-catenin, TH-immunohistochemical staining was performed. The results indicated that β-catenin is required for the development or maintenance of these neurons; however, LRP5 and LRP6 were found to be dispensable. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, the depletion of LRP5, LRP6 or β-catenin was found to be protective for the midbrain DA neurons to a certain extent. These in vivo results provide a novel perspective for the function of the canonical Wnt signaling pathway in a mouse model of PD.
Collapse
Affiliation(s)
- Ting-Li Dai
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Chan Zhang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Fang Peng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xue-Yuan Niu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ling Hu
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ling Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Weidong Zhu
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yu-Qiang Ding
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China ; Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ning-Ning Song
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China ; Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Min Liao
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
90
|
Allodi I, Hedlund E. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Front Neurosci 2014; 8:109. [PMID: 24904255 PMCID: PMC4033221 DOI: 10.3389/fnins.2014.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022] Open
Abstract
Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
91
|
Urvalek AM, Gudas LJ. Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem 2014; 289:19519-30. [PMID: 24821725 DOI: 10.1074/jbc.m114.556555] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
All-trans-retinoic acid (RA) is a vitamin A metabolite that plays major roles in regulating stem cell differentiation and development. RA is the ligand of the retinoic acid receptor (RAR) family of transcription factors, which interact with retinoic acid response elements (RAREs) within target gene proximal promoters and enhancers. Although RA-mediated gene activation is well understood, less is known about the mechanisms for repression at RA-regulated genes. Using chromatin immunoprecipitation experiments, we show that in embryonic stem cells in the absence of RA, histone deacetylases (HDACs) differentially bind to various RAREs in proximal promoters or enhancer regions of RA-regulated genes; HDAC1, HDAC2, and HDAC3 bind at RAREs in the Hoxa1 and Cyp26a1 gene regulatory regions, whereas only HDAC1 binds at the RARβ2 RARE. shRNA knockdown of HDAC1, HDAC2, or HDAC3 differentially increases the deposition of the histone 3 lysine 27 acetylation (H3K27ac) epigenetic mark associated with increases in these three transcripts. Importantly, RA treatment differentially mediates the removal of HDACs from the Hoxa1, Cyp26a1, and RARβ2 genes and promotes the deposition of the H3K27ac mark at these genes. Overall, we show that HDACs differentially bind to RA-regulated genes to control key epigenetic marks involved in stem cell differentiation.
Collapse
Affiliation(s)
- Alison M Urvalek
- From the Department of Pharmacology and the Meyer Cancer Center, Weill Cornell Medical College of Cornell University, New York, New York 10065
| | - Lorraine J Gudas
- From the Department of Pharmacology and the Meyer Cancer Center, Weill Cornell Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
92
|
Bielen H, Houart C. The Wnt cries many: Wnt regulation of neurogenesis through tissue patterning, proliferation, and asymmetric cell division. Dev Neurobiol 2014; 74:772-80. [DOI: 10.1002/dneu.22168] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/23/2013] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Holger Bielen
- MRC Centre for Developmental Neurobiology; King's College London, Guy's Campus; London SE1 1UL United Kingdom
| | - Corinne Houart
- MRC Centre for Developmental Neurobiology; King's College London, Guy's Campus; London SE1 1UL United Kingdom
| |
Collapse
|
93
|
Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons. Mol Neurobiol 2014; 50:559-73. [PMID: 24504901 DOI: 10.1007/s12035-014-8639-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022]
Abstract
The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.
Collapse
|
94
|
Arenas E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease. J Mol Cell Biol 2014; 6:42-53. [DOI: 10.1093/jmcb/mju001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
95
|
Abstract
Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Daniel C. Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
96
|
Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LKS, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS NANO 2014; 8:76-103. [PMID: 24467380 DOI: 10.1021/nn405077y] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimer's disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kwon YW, Chung YJ, Kim J, Lee HJ, Park J, Roh TY, Cho HJ, Yoon CH, Koo BK, Kim HS. Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell. PLoS One 2014; 9:e85736. [PMID: 24465672 PMCID: PMC3899054 DOI: 10.1371/journal.pone.0085736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/01/2013] [Indexed: 11/29/2022] Open
Abstract
In patients with Parkinson's disease (PD), stem cells can serve as therapeutic agents to restore or regenerate injured nervous system. Here, we differentiated two types of stem cells; mouse embryonic stem cells (mESCs) and protein-based iPS cells (P-iPSCs) generated by non-viral methods, into midbrain dopaminergic (mDA) neurons, and then compared the efficiency of DA neuron differentiation from these two cell types. In the undifferentiated stage, P-iPSCs expressed pluripotency markers as ES cells did, indicating that protein-based reprogramming was stable and authentic. While both stem cell types were differentiated to the terminally-matured mDA neurons, P-iPSCs showed higher DA neuron-specific markers' expression than ES cells. To investigate the mechanism of the superior induction capacity of DA neurons observed in P-iPSCs compared to ES cells, we analyzed histone modifications by genome-wide ChIP sequencing analysis and their corresponding microarray results between two cell types. We found that Wnt signaling was up-regulated, while SFRP1, a counter-acting molecule of Wnt, was more suppressed in P-iPSCs than in mESCs. In PD rat model, transplantation of neural precursor cells derived from both cell types showed improved function. The present study demonstrates that P-iPSCs could be a suitable cell source to provide patient-specific therapy for PD without ethical problems or rejection issues.
Collapse
Affiliation(s)
- Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Ju Chung
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Ho-Jae Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jihwan Park
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Tae-Young Roh
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Hyun-Jai Cho
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Chang-Hwan Yoon
- Cardiovascular center, Seoul National University Bundang Hospital, Seoul National University, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
98
|
Polanski W, Reichmann H, Gille G. Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-β-carboline: a new anti-Parkinson drug? Expert Rev Neurother 2014; 11:845-60. [DOI: 10.1586/ern.11.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
99
|
Parish CL, Thompson LH. Modulating Wnt signaling to improve cell replacement therapy for Parkinson's disease. J Mol Cell Biol 2013; 6:54-63. [DOI: 10.1093/jmcb/mjt045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
100
|
Anderegg A, Lin HP, Chen JA, Caronia-Brown G, Cherepanova N, Yun B, Joksimovic M, Rock J, Harfe BD, Johnson R, Awatramani R. An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool. PLoS Genet 2013; 9:e1003973. [PMID: 24348261 PMCID: PMC3861205 DOI: 10.1371/journal.pgen.1003973] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs) results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key ingredient for programming ESCs towards a dopaminergic fate in vitro, these studies could impact the rational design of such protocols.
Collapse
Affiliation(s)
- Angela Anderegg
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
| | - Hsin-Pin Lin
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Giuliana Caronia-Brown
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
| | - Natalya Cherepanova
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
| | - Beth Yun
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
| | - Milan Joksimovic
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
| | - Jason Rock
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Randy Johnson
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Rajeshwar Awatramani
- Northwestern University Feinberg School of Medicine, Department of Neurology and Center for Genetic Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|