51
|
de Kouchkovsky I, Zhang L, Philip EJ, Wright F, Kim DM, Natesan D, Kwon D, Ho H, Ho S, Chan E, Porten SP, Wong AC, Desai A, Huang FW, Chou J, Oh DY, Pruthi RS, Fong L, Small EJ, Friedlander TW, Koshkin VS. TERT promoter mutations and other prognostic factors in patients with advanced urothelial carcinoma treated with an immune checkpoint inhibitor. J Immunother Cancer 2021; 9:e002127. [PMID: 33980590 PMCID: PMC8118032 DOI: 10.1136/jitc-2020-002127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) can achieve durable responses in a subset of patients with locally advanced or metastatic urothelial carcinoma (aUC). The use of tumor genomic profiling in clinical practice may help suggest biomarkers to identify patients most likely to benefit from ICI. METHODS We undertook a retrospective analysis of patients treated with an ICI for aUC at a large academic medical center. Patient clinical and histopathological variables were collected. Responses to treatment were assessed for all patients with at least one post-baseline scan or clear evidence of clinical progression following treatment start. Genomic profiling information was also collected for patients when available. Associations between patient clinical/genomic characteristics and objective response were assessed by logistic regression; associations between the characteristics and progression-free survival (PFS) and overall survival (OS) were examined by Cox regression. Multivariable analyses were performed to identify independent prognostic factors. RESULTS We identified 119 aUC patients treated with an ICI from December 2014 to January 2020. Genomic profiling was available for 78 patients. Overall response rate to ICI was 29%, and median OS (mOS) was 13.4 months. Favorable performance status at the start of therapy was associated with improved OS (HR 0.46, p=0.025) after accounting for other covariates. Similarly, the presence of a TERT promoter mutation was an independent predictor of improved PFS (HR 0.38, p=0.012) and OS (HR 0.32, p=0.037) among patients who had genomic profiling available. Patients with both a favorable performance status and a TERT promoter mutation had a particularly good prognosis with mOS of 21.1 months as compared with 7.5 months in all other patients (p=0.03). CONCLUSIONS The presence of a TERT promoter mutation was an independent predictor of improved OS in a cohort of aUC patients treated with an ICI who had genomic data available. Most of the clinical and laboratory variables previously shown to be prognostic in aUC patients treated with chemotherapy did not have prognostic value among patients treated with an ICI. Genomic profiling may provide important prognostic information and affect clinical decision making in this patient population. Validation of these findings in prospective patient cohorts is needed.
Collapse
Affiliation(s)
- Ivan de Kouchkovsky
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Li Zhang
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Errol J Philip
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Francis Wright
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Daniel M Kim
- University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Divya Natesan
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Daniel Kwon
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Hansen Ho
- University of California San Francisco School of Pharmacy, San Francisco, California, USA
| | - Son Ho
- University of California San Francisco School of Pharmacy, San Francisco, California, USA
| | - Emily Chan
- Pathology, University of California San Francisco, San Francisco, California, USA
| | - Sima P Porten
- Urology, University of California San Francisco, San Francisco, California, USA
| | - Anthony C Wong
- Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Arpita Desai
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Franklin W Huang
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jonathan Chou
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - David Y Oh
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Raj S Pruthi
- Urology, University of California San Francisco, San Francisco, California, USA
| | - Lawrence Fong
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Eric J Small
- Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Vadim S Koshkin
- Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
52
|
Viswanath P, Batsios G, Ayyappan V, Taglang C, Gillespie AM, Larson PEZ, Luchman HA, Costello JF, Pieper RO, Ronen SM. Metabolic imaging detects elevated glucose flux through the pentose phosphate pathway associated with TERT expression in low-grade gliomas. Neuro Oncol 2021; 23:1509-1522. [PMID: 33864084 DOI: 10.1093/neuonc/noab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) is essential for tumor proliferation, including in low-grade oligodendrogliomas (LGOGs). Since TERT is silenced in normal cells, it is also a therapeutic target. Therefore, non-invasive methods of imaging TERT are needed. Here, we examined the link between TERT expression and metabolism in LGOGs, with the goal of leveraging this information for non-invasive magnetic resonance spectroscopy (MRS)-based metabolic imaging of LGOGs. METHODS Immortalized normal human astrocytes with doxycycline-inducible TERT silencing, patient-derived LGOG cells, orthotopic tumors and LGOG patient biopsies were studied to determine the mechanistic link between TERT expression and glucose metabolism. The ability of hyperpolarized [U- 13C, U- 2H]-glucose to non-invasively assess TERT expression was tested in live cells and orthotopic tumors. RESULTS TERT expression was associated with elevated glucose flux through the pentose phosphate pathway (PPP), elevated NADPH, which is a major product of the PPP, and elevated GSH, which is maintained in a reduced state by NADPH. Importantly, hyperpolarized [U- 13C, U- 2H]-glucose metabolism via the PPP non-invasively reported on TERT expression and response to TERT inhibition in patient-derived LGOG cells and orthotopic tumors. Mechanistically, TERT acted via the sirtuin SIRT2 to upregulate the glucose transporter GLUT1 and the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase. CONCLUSIONS We have, for the first time, leveraged a mechanistic understanding of TERT-associated metabolic reprogramming for non-invasive imaging of LGOGs using hyperpolarized [U- 13C, U- 2H]-glucose. Our findings provide a novel way of imaging a hallmark of tumor immortality and have the potential to improve diagnosis and treatment response assessment for LGOG patients.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Vinay Ayyappan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Celiné Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
53
|
Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, Lokanathan Y. Is There an Interconnection between Epithelial-Mesenchymal Transition (EMT) and Telomere Shortening in Aging? Int J Mol Sci 2021; 22:ijms22083888. [PMID: 33918710 PMCID: PMC8070110 DOI: 10.3390/ijms22083888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Abid Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Correspondence: ; Tel.: +60-391457704
| |
Collapse
|
54
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
55
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 771] [Impact Index Per Article: 192.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
56
|
Domogauer JD, de Toledo SM, Howell RW, Azzam EI. Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity. Cell Commun Signal 2021; 19:30. [PMID: 33637118 PMCID: PMC7912493 DOI: 10.1186/s12964-021-00711-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are a major component of the cancer stroma, and their response to therapeutic treatments likely impacts the outcome. We tested the hypothesis that CAFs develop unique characteristics that enhance their resistance to ionizing radiation. Methods CAFs were generated through intimate coculture of normal human fibroblasts of skin or lung origin with various human cancer cell types using permeable microporous membrane inserts. Fibroblasts and cancer cells are grown intimately, yet separately, on either side of the insert’s membrane for extended times to generate activated fibroblast populations highly enriched in CAFs. Results The generated CAFs exhibited a decrease in Caveolin-1 protein expression levels, a CAF biomarker, which was further enhanced when the coculture was maintained under in-vivo-like oxygen tension conditions. The level of p21Waf1 was also attenuated, a characteristic also associated with accelerated tumor growth. Furthermore, the generated CAFs experienced perturbations in their redox environment as demonstrated by increases in protein carbonylation, mitochondrial superoxide anion levels, and modulation of the activity of the antioxidants, manganese superoxide dismutase and catalase. Propagation of the isolated CAFs for 25 population doublings was associated with enhanced genomic instability and a decrease in expression of the senescence markers β-galactosidase and p16INK4a. With relevance to radiotherapeutic treatments, CAFs in coculture with cancer cells of diverse origins (breast, brain, lung, and prostate) were resistant to the clastogenic effects of 137Cs γ rays compared to naïve fibroblasts. Addition of repair inhibitors of single- or double-stranded DNA breaks attenuated the resistance of CAFs to the clastogenic effects of γ rays, supporting a role for increased ability to repair DNA damage in CAF radioresistance. Conclusions This study reveals that CAFs are radioresistant and experience significant changes in indices of oxidative metabolism. The CAFs that survive radiation treatment likely modulate the fate of the associated cancer cells. Identifying them together with their mode of communication with cancer cells, and eradicating them, particularly when they may exist at the margin of the radiotherapy planning target volume, may improve the efficacy of cancer treatments.![]() Video Abstract
Collapse
Affiliation(s)
- Jason D Domogauer
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Sonia M de Toledo
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Roger W Howell
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA
| | - Edouard I Azzam
- Division of Radiation Research and Center for Cell Signaling, Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, 205 South Orange Avenue, Room - F1212, Newark, NJ, USA.
| |
Collapse
|
57
|
Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, Roberts T, Koh ES, Scott KF, Sajinovic M, Vessey JY, de Souza P, Becker TM. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol 2021; 147:1007-1017. [PMID: 33547950 PMCID: PMC7954705 DOI: 10.1007/s00432-021-03536-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022]
Abstract
The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management. In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.
Collapse
Affiliation(s)
- Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.
| | - Sarah A Jeffreys
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Adam Cooper
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Daniel Brungs
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joseph Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Tara Roberts
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Eng-Siew Koh
- Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Kieran F Scott
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Mila Sajinovic
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Joey Y Vessey
- Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Paul de Souza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| |
Collapse
|
58
|
Duy C, Li M, Teater M, Meydan C, Garrett-Bakelman FE, Lee TC, Chin CR, Durmaz C, Kawabata KC, Dhimolea E, Mitsiades CS, Doehner H, D'Andrea RJ, Becker MW, Paietta EM, Mason CE, Carroll M, Melnick AM. Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov 2021; 11:1542-1561. [PMID: 33500244 DOI: 10.1158/2159-8290.cd-20-1375] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Meng Li
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Matt Teater
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Francine E Garrett-Bakelman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York.,Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Tak C Lee
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Ceyda Durmaz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Kimihito C Kawabata
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | | | - Ari M Melnick
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
59
|
The Jekyll and Hyde of Cellular Senescence in Cancer. Cells 2021; 10:cells10020208. [PMID: 33494247 PMCID: PMC7909764 DOI: 10.3390/cells10020208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of stable cell cycle arrest that can be triggered in response to various insults and is characterized by distinct morphological hallmarks, gene expression profiles, and the senescence-associated secretory phenotype (SASP). Importantly, cellular senescence is a key component of normal physiology with tumor suppressive functions. In the last few decades, novel cancer treatment strategies exploiting pro-senescence therapies have attracted considerable interest. Recent insight, however, suggests that therapy-induced senescence (TIS) elicits cell-autonomous and non-cell-autonomous implications that potentially entail detrimental consequences, reflecting the Jekyll and Hyde nature of cancer cell senescence. In essence, the undesirable manifestations that generally culminate in inflammation, cancer stemness, senescence reversal, therapy resistance, and disease recurrence are dictated by the persistent accumulation of senescent cells and the SASP. Thus, mitigating these pro-tumorigenic effects by eliminating these cells or inhibiting their SASP production holds great promise for developing innovative therapeutic strategies. In this review, we describe the fundamental aspects and dynamics of cancer cell senescence and summarize the comprehensive research on the adverse outcomes of TIS. Furthermore, we underline the rationale and motivation of emerging senotherapeutic modalities surrounding the removal of senescent cells and the SASP to help maximize the overall efficacy of cancer therapies.
Collapse
|
60
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
61
|
Viswanath P, Batsios G, Mukherjee J, Gillespie AM, Larson PEZ, Luchman HA, Phillips JJ, Costello JF, Pieper RO, Ronen SM. Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nat Commun 2021; 12:92. [PMID: 33397920 PMCID: PMC7782549 DOI: 10.1038/s41467-020-20312-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Joydeep Mukherjee
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Joanna J Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
62
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
63
|
Abstract
The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study.
Collapse
Affiliation(s)
- Margaret A. Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
64
|
Georgakopoulou EA, Valsamidi C, Veroutis D, Havaki S. The bright and dark side of skin senescence. Could skin rejuvenation anti-senescence interventions become a "bright" new strategy for the prevention of age-related skin pathologies? Mech Ageing Dev 2020; 193:111409. [PMID: 33249190 DOI: 10.1016/j.mad.2020.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.
Collapse
Affiliation(s)
- Eleni A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Christina Valsamidi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Dimitrios Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece.
| |
Collapse
|
65
|
Saleh T, Carpenter VJ, Tyutyunyk‐Massey L, Murray G, Leverson JD, Souers AJ, Alotaibi MR, Faber AC, Reed J, Harada H, Gewirtz DA. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X L -BAX interaction. Mol Oncol 2020; 14:2504-2519. [PMID: 32652830 PMCID: PMC7530780 DOI: 10.1002/1878-0261.12761] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 01/14/2023] Open
Abstract
Tumor cells undergo senescence in response to both conventional and targeted cancer therapies. The induction of senescence in response to cancer therapy can contribute to unfavorable patient outcomes, potentially including disease relapse. This possibiliy is supported by our findings that tumor cells induced into senescence by doxorubicin or etoposide can give rise to viable tumors in vivo. We further demonstrate sensitivity of these senescent tumor cells to the senolytic ABT-263 (navitoclax), therefore providing a "two-hit" approach to eliminate senescent tumor cells that persist after exposure to chemotherapy or radiation. The sequential combination of therapy-induced senescence and ABT-263 could shift the response to therapy toward apoptosis by interfering with the interaction between BCL-XL and BAX. The administration of ABT-263 after either etoposide or doxorubicin also resulted in marked, prolonged tumor suppression in tumor-bearing animals. These findings support the premise that senolytic therapy following conventional cancer therapy may improve therapeutic outcomes and delay disease recurrence.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical SciencesFaculty of MedicineThe Hashemite UniversityZarqaJordan
- Departments of Pharmacology & ToxicologySchool of MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Valerie J. Carpenter
- Departments of Pharmacology & ToxicologySchool of MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Liliya Tyutyunyk‐Massey
- Departments of Pharmacology & ToxicologySchool of MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Graeme Murray
- Department of PhysicsVirginia Commonwealth UniversityRichmondVAUSA
| | | | | | - Moureq R. Alotaibi
- Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Anthony C. Faber
- Philips Institute for Oral Health ResearchSchool of DentistryMassey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Jason Reed
- Department of PhysicsVirginia Commonwealth UniversityRichmondVAUSA
| | - Hisashi Harada
- Philips Institute for Oral Health ResearchSchool of DentistryMassey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - David A. Gewirtz
- Departments of Pharmacology & ToxicologySchool of MedicineMassey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
66
|
Carpenter VJ, Patel BB, Autorino R, Smith SC, Gewirtz DA, Saleh T. Senescence and castration resistance in prostate cancer: A review of experimental evidence and clinical implications. Biochim Biophys Acta Rev Cancer 2020; 1874:188424. [PMID: 32956765 DOI: 10.1016/j.bbcan.2020.188424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023]
Abstract
The development of Castration-Resistant Prostate Cancer (CRPC) remains a major challenge in the treatment of this disease. While Androgen Deprivation Therapy (ADT) can result in tumor shrinkage, a primary response of Prostate Cancer (PCa) cells to ADT is a senescent growth arrest. As a response to cancer therapies, senescence has often been considered as a beneficial outcome due to its association with stable growth abrogation, as well as the potential for immune system activation via the Senescence-Associated Secretory Phenotype (SASP). However, there is increasing evidence that not only can senescent cells regain proliferative capacity, but that senescence contributes to deleterious effects of cancer chemotherapy, including disease recurrence. Notably, the preponderance of work investigating the consequences of therapy-induced senescence on tumor progression has been performed in non-PCa models. Here, we summarize the evidence that ADT promotes a senescent response in PCa and postulate mechanisms by which senescence may contribute to the development of castration-resistance. Primarily, we suggest that ADT-induced senescence may support CRPC development via escape from senescence, by cell autonomous-reprogramming, and by the formation of a pro-tumorigenic SASP. However, due to the scarcity of direct evidence from PCa models, the consequences of ADT-induced senescence outlined here remain speculative until the relationship between senescence and CRPC can be experimentally defined.
Collapse
Affiliation(s)
- Valerie J Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Bhaumik B Patel
- Department of Internal Medicine, Division of Hematology, Oncology & Palliative Care, VCU Health, Richmond, VA, USA
| | - Riccardo Autorino
- Department of Surgery, Division of Urology, VCU Health, Richmond, VA, USA
| | | | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- The Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
67
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
68
|
Misawa T, Tanaka Y, Okada R, Takahashi A. Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr Gerontol Int 2020; 20:539-546. [PMID: 32358923 DOI: 10.1111/ggi.13928] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
The increase of the morbidity rate in age-related diseases, such as cancer, Alzheimer's disease, arteriosclerosis and pulmonary fibrosis, has become a profound social problem. Recent reports have pointed out that senescent cells accumulated in the body with aging might cause these aged-related pathologies. Cellular senescence is known as an irreversible cell cycle arrest induced by various stresses, and can function as an important tumor suppression mechanism to exclude the premalignant cells. In contrast, senescent cells provoke the phenomenon, termed the senescence-associated secretory phenotype, which causes the secretion of various inflammatory proteins, and it is at risk of facilitating chronic inflammation and oncogenic transformation to surrounding cells. We have previously reported that senescent cells secrete not only inflammatory proteins, but also extracellular vesicles (EV). EV include various cellular components, such as proteins, lipids and nucleic acids, which are proven to be important factors for cell-to-cell communication. Recent evidence suggests that EV secreted from senescent cells might contribute to tumorigenesis and age-associated pathologies as new senescence-associated secretory phenotype factors. In addition, we also showed that the EV secretion pathway is one of the essential defense mechanisms to maintain cellular homeostasis by excretion of intercellular toxic substances into extracellular space. Herein, this review shows the biological functions of EV secreted from senescent cells. Geriatr Gerontol Int 2020; ••: ••-••.
Collapse
Affiliation(s)
- Tomoka Misawa
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Tanaka
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Okada
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Takahashi
- Project for Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan.,Advanced Research & Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
69
|
Abstract
Life expectancy has increased substantially over the last few decades, leading to a worldwide increase in the prevalence and burden of aging-associated diseases. Recent evidence has proven that cellular senescence contributes substantially to the development of these disorders. Cellular senescence is a state of cell cycle arrest with suppressed apoptosis and concomitant secretion of multiple bioactive factors (the senescence-associated secretory phenotype-SASP) that plays a physiological role in embryonic development and healing processes. However, DNA damage and oxidative stress that occur during aging cause the accumulation of senescent cells, which through their SASP bring about deleterious effects on multiple organ and systemic functions. Ablation of senescent cells through genetic or pharmacological means leads to improved life span and health span in animal models, and preliminary evidence suggests it may also have a positive impact on human health. Thus, strategies to reduce or eliminate the burden of senescent cells or their products have the potential to impact multiple clinical outcomes with a single intervention. In this review, we touch upon the basics of cell senescence and summarize the current state of development of therapies against cell senescence for human use.
Collapse
|
70
|
Doubleday PF, Fornelli L, Kelleher NL. Elucidating Proteoform Dynamics Underlying the Senescence Associated Secretory Phenotype. J Proteome Res 2020; 19:938-948. [PMID: 31940439 DOI: 10.1021/acs.jproteome.9b00739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary diploid cells exit the cell cycle in response to exogenous stress or oncogene activation through a process known as cellular senescence. This cell-autonomous tumor-suppressive mechanism is also a major mechanism operative in organismal aging. To date, temporal aspects of senescence remain understudied. Therefore, we use quantitative proteomics to investigate changes following forced HRASG12V expression and induction of senescence across 1 week in normal diploid fibroblasts. We demonstrate that global intracellular proteomic changes correlate with the emergence of the senescence-associated secretory phenotype and the switch to robust cell cycle exit. The senescence secretome reinforces cell cycle exit, yet is largely detrimental to tissue homeostasis. Previous studies of secretomes rely on ELISA, bottom-up proteomics or RNA-seq. To date, no study to date has examined the proteoform complexity of secretomes to elucidate isoform-specific, post-translational modifications or regulated cleavage of signal peptides. Therefore, we use a quantitative top-down proteomics approach to define the molecular complexity of secreted proteins <30 kDa. We identify multiple forms of immune regulators with known activities and affinities such as distinct forms of interleukin-8, as well as GROα and HMGA1, and temporally resolve secreted proteoform dynamics. Together, our work demonstrates the complexity of the secretome past individual protein accessions and provides motivation for further proteoform-resolved measurements of the secretome.
Collapse
Affiliation(s)
- Peter F Doubleday
- Department of Molecular Biosciences, Proteomics Center of Excellence , Northwestern University , Evanston , Illinois 60208 , United States
| | - Luca Fornelli
- Department of Biology , University of Oklahoma , 730 Van Vleet Oval , Norman , Oklahoma 73019 , United States
| | - Neil L Kelleher
- Department of Molecular Biosciences, Proteomics Center of Excellence , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
71
|
Targeting normal and cancer senescent cells as a strategy of senotherapy. Ageing Res Rev 2019; 55:100941. [PMID: 31408714 DOI: 10.1016/j.arr.2019.100941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Senotherapy is an antiageing strategy. It refers to selective killing of senescent cells by senolytic agents, strengthening the activity of immune cells that eliminate senescent cells or alleviating the secretory phenotype (SASP) of senescent cells. As senescent cells accumulate with age and are considered to be at the root of age-related disorders, senotherapy seems to be very promising in improving healthspan. Genetic approaches, which allowed to selectively induce death of senescent cells in transgenic mice, provided proof-of-concept evidence that elimination of senescent cells can be a therapeutic approach for treating many age-related diseases. Translating these results into humans is based on searching for synthetic and natural compounds, which are able to exert such beneficial effects. The major challenge in the field is to show efficacy, safety and tolerability of senotherapy in humans. The question is how these therapeutics can influence senescence of non-dividing post-mitotic cells. Another issue concerns senescence of cancer cells induced during therapy as there is a risk of resumption of senescent cell division that could terminate in cancer renewal. Thus, development of an effective senotherapeutic strategy is also an urgent issue in cancer treatment. Different aspects, both beneficial and potentially detrimental, will be discussed in this review.
Collapse
|
72
|
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M. Cellular Senescence: Defining a Path Forward. Cell 2019; 179:813-827. [PMID: 31675495 DOI: 10.1016/j.cell.2019.10.005] [Citation(s) in RCA: 1732] [Impact Index Per Article: 288.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.
Collapse
Affiliation(s)
- Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK; CRUK Beatson Institute, Glasgow G61 1BD, UK; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, Lugano, Switzerland; Department of Medicine, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Dorothy C Bennett
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Oliver Bischof
- Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Inserm U993, Institute Pasteur, Paris, France
| | - Cleo Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK
| | | | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), Santiago de Compostela, Spain
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerardo Ferbeyre
- Faculty of Medicine, Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Andrea B Maier
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands; Department of Medicine and Aged Care, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, MN, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, MN, USA
| | - Clemens A Schmitt
- Charité - University Medical Center, Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Kepler University Hospital, Department of Hematology and Oncology, Johannes Kepler University, Linz, Austria
| | - John Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, and Center for the Biology of Aging, Brown University, Providence, RI, USA
| | | | - Thomas von Zglinicki
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biology, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Manuel Serrano
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Marco Demaria
- University of Groningen (RUG), European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
73
|
Rahman MM, Brane AC, Tollefsbol TO. MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer. Cells 2019; 8:cells8101214. [PMID: 31597272 PMCID: PMC6829616 DOI: 10.3390/cells8101214] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a sporadic disease with genetic and epigenetic components. Genomic instability in breast cancer leads to mutations, copy number variations, and genetic rearrangements, while epigenetic remodeling involves alteration by DNA methylation, histone modification and microRNAs (miRNAs) of gene expression profiles. The accrued scientific findings strongly suggest epigenetic dysregulation in breast cancer pathogenesis though genomic instability is central to breast cancer hallmarks. Being reversible and plastic, epigenetic processes appear more amenable toward therapeutic intervention than the more unidirectional genetic alterations. In this review, we discuss the epigenetic reprogramming associated with breast cancer such as shuffling of DNA methylation, histone acetylation, histone methylation, and miRNAs expression profiles. As part of this, we illustrate how epigenetic instability orchestrates the attainment of cancer hallmarks which stimulate the neoplastic transformation-tumorigenesis-malignancy cascades. As reversibility of epigenetic controls is a promising feature to optimize for devising novel therapeutic approaches, we also focus on the strategies for restoring the epistate that favor improved disease outcome and therapeutic intervention.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Andrew C Brane
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
74
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
75
|
Günes C, Wezel F, Southgate J, Bolenz C. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat Rev Urol 2019; 15:386-393. [PMID: 29599449 DOI: 10.1038/s41585-018-0001-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomerase activity imparts eukaryotic cells with unlimited proliferation capacity, one of the cancer hallmarks. Over 90% of human urothelial carcinoma of the bladder (UCB) tumours are positive for telomerase activity. Telomerase activation can occur through several mechanisms. Mutations in the core promoter region of the human telomerase reverse transcriptase gene (TERT) cause telomerase reactivation in 60-80% of UCBs, whereas the prevalence of these mutations is lower in urothelial cancers of other origins. TERT promoter mutations are the most frequent genetic alteration across all stages of UCB, indicating a strong selection pressure during neoplastic transformation. TERT promoter mutations could arise during regeneration of normal urothelium and, owing to consequential telomerase reactivation, might be the basis of UCB initiation, which represents a new model of urothelial cancer origination. In the future, TERT promoter mutations and telomerase activity might have diagnostic and therapeutic applications in UCB.
Collapse
Affiliation(s)
- Cagatay Günes
- Department of Urology, University of Ulm, Ulm, Germany.
| | - Felix Wezel
- Department of Urology, University of Ulm, Ulm, Germany
| | - Jennifer Southgate
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | |
Collapse
|
76
|
Gabler L, Lötsch D, Kirchhofer D, van Schoonhoven S, Schmidt HM, Mayr L, Pirker C, Neumayer K, Dinhof C, Kastler L, Azizi AA, Dorfer C, Czech T, Haberler C, Peyrl A, Kumar R, Slavc I, Spiegl-Kreinecker S, Gojo J, Berger W. TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAF V600E/TERT promoter double-mutated glioma. Acta Neuropathol Commun 2019; 7:128. [PMID: 31391125 PMCID: PMC6685154 DOI: 10.1186/s40478-019-0775-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
The BRAF gene and the TERT promoter are among the most frequently altered genomic loci in low-grade (LGG) and high-grade-glioma (HGG), respectively. The coexistence of BRAF and TERT promoter aberrations characterizes a subset of aggressive glioma. Therefore, we investigated interactions between those alterations in malignant glioma. We analyzed co-occurrence of BRAFV600E and TERT promoter mutations in our clinical data (n = 8) in addition to published datasets (n = 103) and established a BRAFV600E-positive glioma cell panel (n = 9) for in vitro analyses. We investigated altered gene expression, signaling events and TERT promoter activity upon BRAF- and E-twenty-six (ETS)-factor inhibition by qRT-PCR, chromatin immunoprecipitation (ChIP), Western blots and luciferase reporter assays. TERT promoter mutations were significantly enriched in BRAFV600E-mutated HGG as compared to BRAFV600E-mutated LGG. In vitro, BRAFV600E/TERT promoter double-mutant glioma cells showed exceptional sensitivity towards BRAF-targeting agents. Remarkably, BRAF-inhibition attenuated TERT expression and TERT promoter activity exclusively in double-mutant models, while TERT expression was undetectable in BRAFV600E-only cells. Various ETS-factors were broadly expressed, however, only ETS1 expression and phosphorylation were consistently downregulated following BRAF-inhibition. Knock-down experiments and ChIP corroborated the notion of a functional role for ETS1 and, accordingly, all double-mutant tumor cells were highly sensitive towards the ETS-factor inhibitor YK-4-279. In conclusion, our data suggest that concomitant BRAFV600E and TERT promoter mutations synergistically support cancer cell proliferation and immortalization. ETS1 links these two driver alterations functionally and may represent a promising therapeutic target in this aggressive glioma subgroup.
Collapse
Affiliation(s)
- Lisa Gabler
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Daniela Lötsch
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominik Kirchhofer
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sushilla van Schoonhoven
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Hannah M. Schmidt
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lisa Mayr
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Katharina Neumayer
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Carina Dinhof
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Lucia Kastler
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Amedeo A. Azizi
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Dorfer
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Czech
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christine Haberler
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Peyrl
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Irene Slavc
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Johannes Gojo
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Berger
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| |
Collapse
|
77
|
Liu T, Gonzalez De Los Santos F, Zhao Y, Wu Z, Rinke AE, Kim KK, Phan SH. Telomerase reverse transcriptase ameliorates lung fibrosis by protecting alveolar epithelial cells against senescence. J Biol Chem 2019; 294:8861-8871. [PMID: 31000627 DOI: 10.1074/jbc.ra118.006615] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes encoding telomerase reverse transcriptase (TERT) and telomerase's RNA components as well as shortened telomeres are risk factors for idiopathic pulmonary fibrosis, where repetitive injury to the alveolar epithelium is considered a key factor in pathogenesis. Given the importance of TERT in stem cells, we hypothesized that TERT plays an important role in epithelial repair and that its deficiency results in exacerbation of fibrosis by impairing this repair/regenerative process. To evaluate the role of TERT in epithelial cells, we generated type II alveolar epithelial cell (AECII)-specific TERT conditional knockout (SPC-Tert cKO) mice by crossing floxed Tert mice with inducible SPC-driven Cre mice. SPC-Tert cKO mice did not develop pulmonary fibrosis spontaneously up to 9 months of TERT deficiency. However, upon bleomycin treatment, they exhibited enhanced lung injury, inflammation, and fibrosis compared with control mice, accompanied by increased pro-fibrogenic cytokine expression but without a significant effect on AECII telomere length. Moreover, selective TERT deficiency in AECII diminished their proliferation and induced cellular senescence. These findings suggest that AECII-specific TERT deficiency enhances pulmonary fibrosis by heightening susceptibility to bleomycin-induced epithelial injury and diminishing epithelial regenerative capacity because of increased cellular senescence. We confirmed evidence for increased AECII senescence in idiopathic pulmonary fibrosis lungs, suggesting potential clinical relevance of the findings from our animal model. Our results suggest that TERT has a protective role in AECII, unlike its pro-fibrotic activity, observed previously in fibroblasts, indicating that TERT's role in pulmonary fibrosis is cell type-specific.
Collapse
Affiliation(s)
| | | | | | - Zhe Wu
- From the Departments of Pathology and
| | | | - Kevin K Kim
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | |
Collapse
|
78
|
Ackermann S, Cartolano M, Hero B, Welte A, Kahlert Y, Roderwieser A, Bartenhagen C, Walter E, Gecht J, Kerschke L, Volland R, Menon R, Heuckmann JM, Gartlgruber M, Hartlieb S, Henrich KO, Okonechnikov K, Altmüller J, Nürnberg P, Lefever S, de Wilde B, Sand F, Ikram F, Rosswog C, Fischer J, Theissen J, Hertwig F, Singhi AD, Simon T, Vogel W, Perner S, Krug B, Schmidt M, Rahmann S, Achter V, Lang U, Vokuhl C, Ortmann M, Büttner R, Eggert A, Speleman F, O'Sullivan RJ, Thomas RK, Berthold F, Vandesompele J, Schramm A, Westermann F, Schulte JH, Peifer M, Fischer M. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2019; 362:1165-1170. [PMID: 30523111 DOI: 10.1126/science.aat6768] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is a pediatric tumor of the sympathetic nervous system. Its clinical course ranges from spontaneous tumor regression to fatal progression. To investigate the molecular features of the divergent tumor subtypes, we performed genome sequencing on 416 pretreatment neuroblastomas and assessed telomere maintenance mechanisms in 208 of these tumors. We found that patients whose tumors lacked telomere maintenance mechanisms had an excellent prognosis, whereas the prognosis of patients whose tumors harbored telomere maintenance mechanisms was substantially worse. Survival rates were lowest for neuroblastoma patients whose tumors harbored telomere maintenance mechanisms in combination with RAS and/or p53 pathway mutations. Spontaneous tumor regression occurred both in the presence and absence of these mutations in patients with telomere maintenance-negative tumors. On the basis of these data, we propose a mechanistic classification of neuroblastoma that may benefit the clinical management of patients.
Collapse
Affiliation(s)
- Sandra Ackermann
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Maria Cartolano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Anne Welte
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yvonne Kahlert
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andrea Roderwieser
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Esther Walter
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Judith Gecht
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Laura Kerschke
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Ruth Volland
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | | | | | - Moritz Gartlgruber
- Division of Neuroblastoma Genomics (B087), German Cancer Research Center, and Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Sabine Hartlieb
- Division of Neuroblastoma Genomics (B087), German Cancer Research Center, and Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of Neuroblastoma Genomics (B087), German Cancer Research Center, and Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Division of Pediatric Neurooncology, German Cancer Research Center, and Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Bram de Wilde
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Frederik Sand
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fakhera Ikram
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Carolina Rosswog
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Janina Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jessica Theissen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Falk Hertwig
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Wenzel Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Barbara Krug
- Department of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Matthias Schmidt
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Computer Science, TU Dortmund, Dortmund, Germany
| | - Viktor Achter
- Computing Center, University of Cologne, Cologne, Germany
| | - Ulrich Lang
- Computing Center, University of Cologne, Cologne, Germany.,Department of Informatics, University of Cologne, Cologne, Germany
| | - Christian Vokuhl
- Kiel Pediatric Tumor Registry, Department of Pediatric Pathology, University of Kiel, Kiel, Germany
| | - Monika Ortmann
- Department of Pathology, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Department of Pathology, University of Cologne, Cologne, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute (UPCI), Hillman Cancer Center, Pittsburgh, PA, USA
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pathology, University of Cologne, Cologne, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Berthold
- Department of Pediatric Oncology and Hematology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics (B087), German Cancer Research Center, and Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Berlin Institute of Health, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
79
|
Bianco JN, Bergoglio V, Lin YL, Pillaire MJ, Schmitz AL, Gilhodes J, Lusque A, Mazières J, Lacroix-Triki M, Roumeliotis TI, Choudhary J, Moreaux J, Hoffmann JS, Tourrière H, Pasero P. Overexpression of Claspin and Timeless protects cancer cells from replication stress in a checkpoint-independent manner. Nat Commun 2019; 10:910. [PMID: 30796221 PMCID: PMC6385232 DOI: 10.1038/s41467-019-08886-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
Oncogene-induced replication stress (RS) promotes cancer development but also impedes tumor growth by activating anti-cancer barriers. To determine how cancer cells adapt to RS, we have monitored the expression of different components of the ATR-CHK1 pathway in primary tumor samples. We show that unlike upstream components of the pathway, the checkpoint mediators Claspin and Timeless are overexpressed in a coordinated manner. Remarkably, reducing the levels of Claspin and Timeless in HCT116 cells to pretumoral levels impeded fork progression without affecting checkpoint signaling. These data indicate that high level of Claspin and Timeless increase RS tolerance by protecting replication forks in cancer cells. Moreover, we report that primary fibroblasts adapt to oncogene-induced RS by spontaneously overexpressing Claspin and Timeless, independently of ATR signaling. Altogether, these data indicate that enhanced levels of Claspin and Timeless represent a gain of function that protects cancer cells from of oncogene-induced RS in a checkpoint-independent manner.
Collapse
Affiliation(s)
- Julien N Bianco
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Valérie Bergoglio
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037, Toulouse, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037, Toulouse, France
| | - Anne-Lyne Schmitz
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France
| | - Julia Gilhodes
- Clinical trials Office - Biostatistics Unit, Institute Claudius Regaud, Institute Universitaire du Cancer Toulouse-Oncopole (IUCT-O), 31100, Toulouse, France
| | - Amelie Lusque
- Clinical trials Office - Biostatistics Unit, Institute Claudius Regaud, Institute Universitaire du Cancer Toulouse-Oncopole (IUCT-O), 31100, Toulouse, France
| | - Julien Mazières
- Thoracic Oncology Department, Toulouse University Hospital, University Paul Sabatier, 31062, Toulouse, France
| | | | | | | | - Jérôme Moreaux
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France
| | - Jean-Sébastien Hoffmann
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037, Toulouse, France
| | - Hélène Tourrière
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, 34396, Montpellier, France.
| |
Collapse
|
80
|
Sotgia F, Fiorillo M, Lisanti MP. Hallmarks of the cancer cell of origin: Comparisons with "energetic" cancer stem cells (e-CSCs). Aging (Albany NY) 2019; 11:1065-1068. [PMID: 30760648 PMCID: PMC6382415 DOI: 10.18632/aging.101822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 04/08/2023]
Abstract
Here, we discuss the expected hallmark(s) of the cancer cell of origin and how this may be related to a new tumor cell phenotype, namely "energetic" cancer stem cells (e-CSCs). e-CSCs show many features that would be characteristic of the cancer cell of origin, including the over-expression of p21-WAF (CDKN1A), a key marker of senescence. It is tempting to speculate that the cancer cell of origin and e-CSCs are closely related entities. e-CSCs possess a hybrid phenotype, sharing key hallmarks of senescence, "stemness" and cancer. e-CSCs are hyper-proliferative and have elevated mitochondrial metabolism, with an NRF2-mediated anti-oxidant response signature, including glutaredoxin (GLRX) and ALDH3A1 over-expression, possibly related to their escape from senescence. Finally, in e-CSCs, BCAS1 (Breast carcinoma-amplified sequence-1) protein expression was up-regulated by >100-fold. BCAS1 is a candidate oncogene associated with "stemness" and aggressive oncogenic behavior, such as Tamoxifen resistance.
Collapse
Affiliation(s)
- Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, United Kingdom
| | - Marco Fiorillo
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, United Kingdom
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Michael P. Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, United Kingdom
| |
Collapse
|
81
|
Fiorillo M, Sotgia F, Lisanti MP. "Energetic" Cancer Stem Cells (e-CSCs): A New Hyper-Metabolic and Proliferative Tumor Cell Phenotype, Driven by Mitochondrial Energy. Front Oncol 2019; 8:677. [PMID: 30805301 PMCID: PMC6370664 DOI: 10.3389/fonc.2018.00677] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Here, we provide the necessary evidence that mitochondrial metabolism drives the anchorage-independent proliferation of CSCs. Two human breast cancer cell lines, MCF7 [ER(+)] and MDA-MB-468 (triple-negative), were used as model systems. To directly address the issue of metabolic heterogeneity in cancer, we purified a new distinct sub-population of CSCs, based solely on their energetic profile. We propose the term “energetic” cancer stem cells (e-CSCs), to better describe this novel cellular phenotype. In a single step, we first isolated an auto-fluorescent cell sub-population, based on their high flavin-content, using flow-cytometry. Then, these cells were further subjected to a detailed phenotypic characterization. More specifically, e-CSCs were more glycolytic, with higher mitochondrial mass and showed significantly elevated oxidative metabolism. e-CSCs also demonstrated an increased capacity to undergo cell cycle progression, as well as enhanced anchorage-independent growth and ALDH-positivity. Most importantly, these e-CSCs could be effectively targeted by treatments with either (i) OXPHOS inhibitors (DPI) or (ii) a CDK4/6 inhibitor (Ribociclib). Finally, we were able to distinguish two distinct phenotypic sub-types of e-CSCs, depending on whether they were grown as 2D-monolayers or as 3D-spheroids. Remarkably, under 3D anchorage-independent growth conditions, e-CSCs were strictly dependent on oxidative mitochondrial metabolism. Unbiased proteomics analysis demonstrated the up-regulation of gene products specifically related to the anti-oxidant response, mitochondrial energy production, and mitochondrial biogenesis. Therefore, mitochondrial inhibitors should be further developed as promising anti-cancer agents, to directly target and eliminate the “fittest” e-CSCs. Our results have important implications for using e-CSCs, especially those derived from 3D-spheroids, (i) in tumor tissue bio-banking and (ii) as a new cellular platform for drug development.
Collapse
Affiliation(s)
- Marco Fiorillo
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Federica Sotgia
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Michael P Lisanti
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| |
Collapse
|
82
|
Lu Y, Qu H, Qi D, Xu W, Liu S, Jin X, Song P, Guo Y, Jia Y, Wang X, Li H, Li Y, Quan C. OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Res Ther 2019; 10:28. [PMID: 30646941 PMCID: PMC6334457 DOI: 10.1186/s13287-018-1120-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Self-renewal is dependent on an intrinsic gene regulatory network centered on OCT4 and on an atypical cell cycle G1/S transition, which is also regulated by OCT4. p21, a gene negatively associated with self-renewal and a senescence marker, is a member of the universal cyclin-dependent kinase inhibitors (CDKIs) and plays critical roles in the regulation of the G1/S transition. The expression of p21 can be regulated by OCT4-targeted DNA methyltransferases (DNMTs), which play distinct roles in gene regulation and maintaining pluripotency properties. The aim of this study was to determine the role of OCT4 in the regulation of self-renewal and senescence in human hair follicle mesenchymal stem cells (hHFMSCs) and to characterize the molecular mechanisms involved. METHODS A lentiviral vector was used to ectopically express OCT4. The influences of OCT4 on the self-renewal and senescence of hHFMSCs were investigated. Next-generation sequencing (NGS) was performed to identify the downstream genes of OCT4 in this process. Methylation-specific PCR (MSP) analysis was performed to measure the methylation level of the p21 promoter region. p21 was overexpressed in hHFMSCsOCT4 to test its downstream effect on OCT4. The regulatory effect of OCT4 on DNMTs was examined by ChIP assay. 5-aza-dC/zebularine was used to inhibit the expression of DNMTs, and then self-renewal properties and senescence in hHFMSCs were detected. RESULTS The overexpression of OCT4 promoted proliferation, cell cycle progression, and osteogenic differentiation capacity of hHFMSCs. The cell senescence of hHFMSCs was markedly suppressed due to the ectopic expression of OCT4. Through NGS, we identified 2466 differentially expressed genes (DEGs) between hHFMSCsOCT4 and hHFMSCsEGFP, including p21, which was downregulated. The overexpression of p21 abrogated the proliferation and osteogenic differentiation capacity of hHFMSCsOCT4 and promoted cell senescence. OCT4 enhanced the transcription of DNMT genes, leading to an elevation in the methylation of the p21 promoter. The inhibition of DNMTs reversed the OCT4-induced p21 reduction, depleted the self-renewal of hHFMSCsOCT4, and triggered cell senescence. CONCLUSIONS OCT4 maintains the self-renewal ability of hHFMSCs and reverses senescence by suppressing the expression of p21 through the upregulation of DNMTs.
Collapse
Affiliation(s)
- Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Shutong Liu
- Cell Processing Section, Department of Transfusion, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiangshu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Peiye Song
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Yantong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Yiyang Jia
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093-0651, USA
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China.
| |
Collapse
|
83
|
Amisaki M, Tsuchiya H, Sakabe T, Fujiwara Y, Shiota G. Identification of genes involved in the regulation of TERT in hepatocellular carcinoma. Cancer Sci 2019; 110:550-560. [PMID: 30447097 PMCID: PMC6361581 DOI: 10.1111/cas.13884] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promotes immortalization by protecting telomeres in cancer cells. Mutation of the TERT promoter is one of the most common genetic alterations in hepatocellular carcinoma (HCC), indicating that TERT upregulation is a critical event in hepatocarcinogenesis. Regulators of TERT transcription are, therefore, predicted to be plausible targets for HCC treatment. We undertook a genome‐wide shRNA library screen and identified C15orf55 and C7orf43 as regulators of TERT expression in HepG2 cells. Promoter assays showed that C15orf55‐ and C7orf43‐responsive sites exist between base pairs −58 and +36 and −169 and −59 in the TERT promoter, respectively. C15orf55 upregulates TERT expression by binding to two GC motifs in the SP1 binding site of the TERT promoter. C7orf43 upregulates TERT expression through Yes‐associated protein 1. The expression levels of C15orf55 and C7orf43 also correlated with that of TERT, and were significantly increased in both HCC tissues and their adjacent non‐tumor tissues, compared to normal liver tissues from non‐HCC patients. Analysis of 377 HCC patients in The Cancer Genome Atlas dataset showed that overall survival of patients with low levels of C15orf55 and C7orf43 expression in tumor tissues was better compared with patients with high levels of C15orf55 and/or high C7orf43 expression. These results indicate that C15orf55 and C7orf43 are involved in the incidence and progression of HCC by upregulating TERT. In conclusion, we identified C15orf55 and C7orf43 as positive regulators of TERT expression in HCC tissues. These genes are promising targets for HCC treatment.
Collapse
Affiliation(s)
- Masataka Amisaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan.,Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Division of Organ Pathology, Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
84
|
Saleh T, Tyutyunyk-Massey L, Murray GF, Alotaibi MR, Kawale AS, Elsayed Z, Henderson SC, Yakovlev V, Elmore LW, Toor A, Harada H, Reed J, Landry JW, Gewirtz DA. Tumor cell escape from therapy-induced senescence. Biochem Pharmacol 2018; 162:202-212. [PMID: 30576620 DOI: 10.1016/j.bcp.2018.12.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023]
Abstract
H460 non-small cell lung, HCT116 colon and 4T1 breast tumor cell lines induced into senescence by exposure to either etoposide or doxorubicin were able to recover proliferative capacity both in mass culture and when enriched for the senescence-like phenotype by flow cytometry (based on β-galactosidase staining and cell size, and a senescence-associated reporter, BTG1-RFP). Recovery was further established using both real-time microscopy and High-Speed Live-Cell Interferometry (HSLCI) and was shown to be accompanied by the attenuation of the Senescence-Associated Secretory Phenotype (SASP). Cells enriched for the senescence-like phenotype were also capable of forming tumors when implanted in both immunodeficient and immunocompetent mice. As chemotherapy-induced senescence has been identified in patient tumors, our results suggest that certain senescence-like phenotypes may not reflect a terminal state of growth arrest, as cells that recover with self-renewal capacity may ultimately contribute to disease recurrence.
Collapse
Affiliation(s)
- Tareq Saleh
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutyunyk-Massey
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Graeme F Murray
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Ajinkya S Kawale
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Zeinab Elsayed
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Lynne W Elmore
- Department of Extramural Research, American Cancer Society, Atlanta, GA, United States
| | - Amir Toor
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - David A Gewirtz
- Departments of Pharmacology & Toxicology and Medicine, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
85
|
Razdan N, Vasilopoulos T, Herbig U. Telomere dysfunction promotes transdifferentiation of human fibroblasts into myofibroblasts. Aging Cell 2018; 17:e12838. [PMID: 30244523 PMCID: PMC6260909 DOI: 10.1111/acel.12838] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/25/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cells that had undergone telomere dysfunction-induced senescence secrete numerous cytokines and other molecules, collectively called the senescence-associated secretory phenotype (SASP). Although certain SASP factors have been demonstrated to promote cellular senescence in neighboring cells in a paracrine manner, the mechanisms leading to bystander senescence and the functional significance of these effects are currently unclear. Here, we demonstrate that TGF-β1, a component of the SASP, causes telomere dysfunction in normal somatic human fibroblasts in a Smad3/NOX4/ROS-dependent manner. Surprisingly, instead of activating cellular senescence, TGF-β1-induced telomere dysfunction caused fibroblasts to transdifferentiate into α-SMA-expressing myofibroblasts, a mesenchymal and contractile cell type that is critical for wound healing and tissue repair. Despite the presence of dysfunctional telomeres, transdifferentiated cells acquired the ability to contract collagen lattices and displayed a gene expression signature characteristic of functional myofibroblasts. Significantly, the formation of dysfunctional telomeres and downstream p53 signaling was necessary for myofibroblast transdifferentiation, as suppressing telomere dysfunction by expression of hTERT, inhibiting the signaling pathways that lead to stochastic telomere dysfunction, and suppressing p53 function prevented the generation of myofibroblasts in response to TGF-β1 signaling. Furthermore, inducing telomere dysfunction using shRNA against TRF2 also caused cells to develop features that are characteristic of myofibroblasts, even in the absence of exogenous TGF-β1. Overall, our data demonstrate that telomere dysfunction is not only compatible with cell functionality, but they also demonstrate that the generation of dysfunctional telomeres is an essential step for transdifferentiation of human fibroblasts into myofibroblasts.
Collapse
Affiliation(s)
- Neetu Razdan
- New Jersey Medical School, Cancer Institute of New Jersey-Newark; Rutgers Biomedical and Health Sciences; Newark New Jersey
- Department of Microbiology, Biochemistry and Molecular Genetics; Rutgers Biomedical and Health Sciences; Newark New Jersey
| | - Themistoklis Vasilopoulos
- New Jersey Medical School, Cancer Institute of New Jersey-Newark; Rutgers Biomedical and Health Sciences; Newark New Jersey
| | - Utz Herbig
- New Jersey Medical School, Cancer Institute of New Jersey-Newark; Rutgers Biomedical and Health Sciences; Newark New Jersey
- Department of Microbiology, Biochemistry and Molecular Genetics; Rutgers Biomedical and Health Sciences; Newark New Jersey
| |
Collapse
|
86
|
Zhao X, Zheng F, Li Y, Hao J, Tang Z, Tian C, Yang Q, Zhu T, Diao C, Zhang C, Chen M, Hu S, Guo P, Zhang L, Liao Y, Yu W, Chen M, Zou L, Guo W, Deng W. BPTF promotes hepatocellular carcinoma growth by modulating hTERT signaling and cancer stem cell traits. Redox Biol 2018; 20:427-441. [PMID: 30419422 PMCID: PMC6230923 DOI: 10.1016/j.redox.2018.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Bromodomain PHD finger transcription factor (BPTF), a core subunit of nucleosome-remodeling factor (NURF) complex, plays an important role in chromatin remodeling. However, its precise function and molecular mechanism involved in hepatocellular carcinoma (HCC) growth are still poorly defined. Here, we demonstrated the tumor-promoting role of BPTF in HCC progression. BPTF was highly expressed in HCC cells and tumor tissues of HCC patients compared with normal liver cells and tissues. Knockdown of BPTF inhibited cell proliferation, colony formation and stem cell-like traits in HCC cells. In addition, BPTF knockdown effectively sensitized the anti-tumor effect of chemotherapeutic drugs and induced more apoptosis in HCC cells. Consistently, knockdown of BPTF in a xenograft mouse model also suppressed tumor growth and metastasis accompanied by the suppression of cancer stem cells (CSC)-related protein markers. Moreover, the mechanism study showed that the tumor-promoting role of BPTF in HCC was realized by transcriptionally regulating the expression of human telomerase reverse transcriptase (hTERT). Furthermore, we found that HCC patients with high BPTF expression displayed high hTERT expression, and high BPTF or hTERT expression level was positively correlated with advanced malignancy and poor prognosis in HCC patients. Collectively, our results demonstrate that BPTF promotes HCC growth by targeting hTERT and suggest that the BPTF-hTERT axis maybe a novel and potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Xinrui Zhao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhipeng Tang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Manyu Chen
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lizhi Zhang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yina Liao
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
87
|
Understanding the evolving phenotype of vascular complications in telomere biology disorders. Angiogenesis 2018; 22:95-102. [DOI: 10.1007/s10456-018-9640-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
|
88
|
Chien MN, Yang PS, Hsu YC, Liu TP, Lee JJ, Cheng SP. Transcriptome analysis of papillary thyroid cancer harboring telomerase reverse transcriptase promoter mutation. Head Neck 2018; 40:2528-2537. [PMID: 30102829 DOI: 10.1002/hed.25385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/13/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) promoter mutations have recently been identified as an important prognostic factor in thyroid cancer. Studies suggest that TERT may have noncanonical functions beyond telomere maintenance. METHODS Clinicopathological information and transcriptome data for papillary thyroid carcinoma (PTC) samples were obtained from The Cancer Genome Atlas (TCGA). Propensity score matching was performed to adjust for potential confounding variables between the TERT promoter wild-type group and the mutant group. Gene expression data of 36 patients in the mutant group were systemically compared to those of 72 patients in the wild-type group. RESULTS Tumors with TERT promoter mutations had a higher TERT expression. Pathways central to DNA damage responses and cell cycle regulation were significantly enriched among 888 upregulated genes. Transporter and metabolic activities were overrepresented among 799 downregulated genes. There was no difference in the expression of most of the thyroid differentiation genes. CONCLUSION The TERT promoter mutations were associated with proliferative and metabolic alterations in PTC.
Collapse
Affiliation(s)
- Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Tsang-Pai Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
89
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
90
|
Chen C, Yue D, Lei L, Wang H, Lu J, Zhou Y, Liu S, Ding T, Guo M, Xu L. Promoter-Operating Targeted Expression of Gene Therapy in Cancer: Current Stage and Prospect. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:508-514. [PMID: 29858085 PMCID: PMC5992480 DOI: 10.1016/j.omtn.2018.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The technique of targeted expression of interesting genes, including distinct delivery systems and specific gene promoter-operating expression, is an important strategy for gene therapy against cancers. Up to now, extensive literature documented the efficacy of distinct delivery systems, such as the liposome system, nano-particle system, polyetherimide (PEI) system, and so on, in cancer gene therapy. However, a related document on the potential value of using a specific gene promoter, such as a tumor suppressor, in cancer gene therapy was still scary. The main obstacle might be that the selection of an ideal gene promoter to operate interesting gene expression in cancer gene therapy is still not fully understood. Therefore, many efforts need to be done in order to make it a real power tool for the human clinical treatment of cancer patients. The purpose of this review is to clarify the current state and some problematics in development of promoter-operating targeted expression of interesting genes and highlight its potential in cancer gene therapy.
Collapse
Affiliation(s)
- Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Dongxu Yue
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Liangyu Lei
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hairong Wang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jia Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| |
Collapse
|
91
|
Zhang G, Wu LW, Mender I, Barzily-Rokni M, Hammond MR, Ope O, Cheng C, Vasilopoulos T, Randell S, Sadek N, Beroard A, Xiao M, Tian T, Tan J, Saeed U, Sugarman E, Krepler C, Brafford P, Sproesser K, Murugan S, Somasundaram R, Garman B, Wubbenhorst B, Woo J, Yin X, Liu Q, Frederick DT, Miao B, Xu W, Karakousis GC, Xu X, Schuchter LM, Mitchell TC, Kwong LN, Amaravadi RK, Lu Y, Boland GM, Wei Z, Nathanson K, Herbig U, Mills GB, Flaherty KT, Herlyn M, Shay JW. Induction of Telomere Dysfunction Prolongs Disease Control of Therapy-Resistant Melanoma. Clin Cancer Res 2018; 24:4771-4784. [PMID: 29563139 DOI: 10.1158/1078-0432.ccr-17-2773] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/10/2018] [Accepted: 03/15/2018] [Indexed: 02/04/2023]
Abstract
Purpose: Telomerase promoter mutations are highly prevalent in human tumors including melanoma. A subset of patients with metastatic melanoma often fail multiple therapies, and there is an unmet and urgent need to prolong disease control for those patients.Experimental Design: Numerous preclinical therapy-resistant models of human and mouse melanoma were used to test the efficacy of a telomerase-directed nucleoside, 6-thio-2'-deoxyguanosine (6-thio-dG). Integrated transcriptomics and proteomics approaches were used to identify genes and proteins that were significantly downregulated by 6-thio-dG.Results: We demonstrated the superior efficacy of 6-thio-dG both in vitro and in vivo that results in telomere dysfunction, leading to apoptosis and cell death in various preclinical models of therapy-resistant melanoma cells. 6-thio-dG concomitantly induces telomere dysfunction and inhibits the expression level of AXL.Conclusions: In summary, this study shows that indirectly targeting aberrant telomerase in melanoma cells with 6-thio-dG is a viable therapeutic approach in prolonging disease control and overcoming therapy resistance. Clin Cancer Res; 24(19); 4771-84. ©2018 AACR See related commentary by Teh and Aplin, p. 4629.
Collapse
Affiliation(s)
- Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lawrence W Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ilgen Mender
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Michal Barzily-Rokni
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc R Hammond
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Omotayo Ope
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Themistoklis Vasilopoulos
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey
| | - Sergio Randell
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Norah Sadek
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Aurelie Beroard
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tian Tian
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Jiufeng Tan
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Umar Saeed
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Eric Sugarman
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia Brafford
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sengottuvelan Murugan
- Abramson Cancer Center and Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Bradley Garman
- Division of Translational Medicine and Human Genetics and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Woo
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Wei Xu
- Abramson Cancer Center and Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M Schuchter
- Abramson Cancer Center and Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C Mitchell
- Abramson Cancer Center and Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Genevieve M Boland
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Katherine Nathanson
- Division of Translational Medicine and Human Genetics and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Utz Herbig
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, New Jersey
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas. .,Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
92
|
Garcia A, Mathur S, Kalaw MC, McAvoy E, Anderson J, Luedke A, Itorralba J, Mai S. Quantitative 3D Telomeric Imaging of Buccal Cells Reveals Alzheimer's Disease-Specific Signatures. J Alzheimers Dis 2018; 58:139-145. [PMID: 28387668 PMCID: PMC5438476 DOI: 10.3233/jad-161169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study validates and expands on our previous work that assessed three-dimensional (3D) nuclear telomere profiling in buccal cells of Alzheimer’s disease (AD) patients and non-AD controls (Mathur et al., J Alzheimers Dis 39, 35–48, 2014). While the previous study used age- and gender-matched caregiver controls, the current study consented a new cohort of 44 age- and gender-matched healthy non-caregiver controls and 44 AD study participants. 3D telomeric profiles of buccal cells of AD patients and their non-AD controls were examined with participant information blinded to the analysis. In agreement with our previous study, we demonstrate that 3D telomeric profiles allow for the distinction between AD and non-AD individuals. This validation cohort provides an indication that the total number of 3D telomeric signals and their telomere lengths may be a suitable biomarker to differentiate between AD and non-AD and between mild, moderate, and severe AD. Further studies with larger sample sizes are required to move this technology further toward the clinic.
Collapse
Affiliation(s)
- Angeles Garcia
- Department of Medicine (Geriatrics) and Neuroscience Centre, Queen's University, Kingston, ON, Canada
| | - Shubha Mathur
- Manitoba Institute of Cell Biology, The University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Maria Carmela Kalaw
- Manitoba Institute of Cell Biology, The University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Elizabeth McAvoy
- Department of Medicine (Geriatrics) and Neuroscience Centre, Queen's University, Kingston, ON, Canada
| | - James Anderson
- Department of Medicine (Geriatrics) and Neuroscience Centre, Queen's University, Kingston, ON, Canada
| | - Angela Luedke
- Department of Medicine (Geriatrics) and Neuroscience Centre, Queen's University, Kingston, ON, Canada
| | - Justine Itorralba
- Department of Medicine (Geriatrics) and Neuroscience Centre, Queen's University, Kingston, ON, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology, The University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
93
|
Gunes C, Avila AI, Rudolph KL. Telomeres in cancer. Differentiation 2017; 99:41-50. [PMID: 29291448 DOI: 10.1016/j.diff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Telomere shortening as a consequence of cell divisions during aging and chronic diseases associates with an increased cancer risk. Experimental data revealed that telomere shortening results in telomere dysfunction, which in turn affects tumorigenesis in two ways. First, telomere dysfunction suppresses tumor progression by the activation of DNA damage checkpoints, which induce cell cycle arrest (senescence) or apoptosis, as well as by inducing metabolic compromise and activation of immune responses directed against senescent cells. Second, telomere dysfunction promotes tumorigenesis by inducing chromosomal instability in tumor initiating cells, by inhibiting proliferative competition of non-transformed cells, and possibly, also by influencing tumor cell plasticity. The tumor promoting effects of telomere dysfunction are context dependent and require the loss of p53-dependent DNA damage checkpoints or other genetic modifiers that attenuate DNA damage responses possibly involving complex interactions of different genes. The activation of telomere stabilizing mechanisms appears as a subsequent step, which is required to enable immortal grotwh of emerging cancer cells. Here, we conceptually discuss our current knowledge and new, unpublished experimental data on telomere dependent influences on tumor initiation and progression.
Collapse
Affiliation(s)
| | - Alush Irene Avila
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - K Lenhard Rudolph
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
94
|
Lunyak VV, Amaro-Ortiz A, Gaur M. Mesenchymal Stem Cells Secretory Responses: Senescence Messaging Secretome and Immunomodulation Perspective. Front Genet 2017; 8:220. [PMID: 29312442 PMCID: PMC5742268 DOI: 10.3389/fgene.2017.00220] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) have been tested in a significant number of clinical trials, where they exhibit regenerative and repair properties directly through their differentiation into the cells of the mesenchymal origin or by modulation of the tissue/organ microenvironment. Despite various clinical effects upon transplantation, the functional properties of these cells in natural settings and their role in tissue regeneration in vivo is not yet fully understood. The omnipresence of MSC throughout vascularized organs equates to a reservoir of potentially therapeutic regenerative depots throughout the body. However, these reservoirs could be subjected to cellular senescence. In this review, we will discuss current progress and challenges in the understanding of different biological pathways leading to senescence. We set out to highlight the seemingly paradoxical property of cellular senescence: its beneficial role in the development and tissue repair and detrimental impact of this process on tissue homeostasis in aging and disease. Taking into account the lessons from the different cell systems, this review elucidates how autocrine and paracrine properties of senescent MSC might impose an additional layer of complexity on the regulation of the immune system in development and disease. New findings that have emerged in the last few years could shed light on sometimes seemingly controversial results obtained from MSC therapeutic applications.
Collapse
Affiliation(s)
| | | | - Meenakshi Gaur
- Aelan Cell Technologies, San Francisco, CA, United States
| |
Collapse
|
95
|
Hafez AY, Luftig MA. Characterization of the EBV-Induced Persistent DNA Damage Response. Viruses 2017; 9:E366. [PMID: 29194355 PMCID: PMC5744141 DOI: 10.3390/v9120366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus that is ubiquitous in the human population. Early after EBV infection in vitro, primary human B cells undergo a transient period of hyper-proliferation, which results in replicative stress and DNA damage, activation of the DNA damage response (DDR) pathway and, ultimately, senescence. In this study, we investigated DDR-mediated senescence in early arrested EBV-infected B cells and characterized the establishment of persistent DNA damage foci. We found that arrested EBV-infected B cells exhibited an increase in promyelocytic leukemia nuclear bodies (PML NBs), which predominantly localized to markers of DNA damage, as well as telomeric DNA. Furthermore, arrested EBV-infected B cells exhibited an increase in the presence of telomere dysfunction-induced foci. Importantly, we found that increasing human telomerase reverse transcriptase (hTERT) expression with danazol, a drug used to treat telomere diseases, permitted early EBV-infected B cells to overcome cellular senescence and enhanced transformation. Finally, we report that EBV-infected B cells undergoing hyper-proliferation are more sensitive than lymphoblastoid cell lines (LCLs) to inhibition of Bloom syndrome-associated helicase, which facilitates telomere replication. Together, our results describe the composition of persistent DNA damage foci in the early stages of EBV infection and define key regulators of this barrier to long-term outgrowth.
Collapse
Affiliation(s)
- Amy Y Hafez
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
96
|
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) derive from cutaneous and uveal melanocytes that share the same embryonic origin and display the same cellular function. However, the etiopathogenesis and biological behaviors of these melanomas are very different. CM and UM display distinct landscapes of genetic alterations and show different metastatic routes and tropisms. Hence, therapeutic improvements achieved in the last few years for the treatment of CM have failed to ameliorate the clinical outcomes of patients with UM. The scope of this review is to discuss the differences in tumorigenic processes (etiologic factors and genetic alterations) and tumor biology (gene expression and signaling pathways) between CM and UM. We develop hypotheses to explain these differences, which might provide important clues for research avenues and the identification of actionable vulnerabilities suitable for the development of new therapeutic strategies for metastatic UM.
Collapse
Affiliation(s)
- Charlotte Pandiani
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Guillaume E Béranger
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Justine Leclerc
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| |
Collapse
|
97
|
Wang J, Ye H, Zhang D, Cheng K, Hu Y, Yu X, Lu L, Hu J, Zuo C, Qian B, Yu Y, Liu S, Liu G, Mao C, Liu S. Cancer-derived Circulating MicroRNAs Promote Tumor Angiogenesis by Entering Dendritic Cells to Degrade Highly Complementary MicroRNAs. Theranostics 2017; 7:1407-1421. [PMID: 28529626 PMCID: PMC5436502 DOI: 10.7150/thno.18262] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022] Open
Abstract
Understanding the interaction between cancer cells and immunocytes will inspire new cancer therapy strategies. However, how cancer-derived circulating miRNAs modulate such interaction remains unclear. Here we discovered that circulating miR-410-5p, secreted by prostate cancer cells, entered dendritic cells (DCs), with the aid of argonaute-2 protein. The cancer cell antigens stimulated the DCs to produce miR-410-3p, a highly complementary counterpart of miR-410-5p derived from pre-miR-410. The DC-internalized miR-410-5p degraded the miR-410-3p by base pairing and thus inhibited its function in suppressing tumor angiogenesis, promoting tumor growth. Furthermore, blockade of the miR-410-5p upregulated the miR-410-3p to inhibit tumor growth. Our work suggests a new miRNA-mediated role of immunocytes in cancer progression and a new strategy of cancer therapy through suppressing circulating miRNAs.
Collapse
Affiliation(s)
- Jiaqi Wang
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huamao Ye
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Dandan Zhang
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Kai Cheng
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yijun Hu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiya Yu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Lei Lu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingjing Hu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Changjing Zuo
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Baohua Qian
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yongwei Yu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shupeng Liu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Geng Liu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5300, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shanrong Liu
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
98
|
Telomeres and Cell Senescence - Size Matters Not. EBioMedicine 2017; 21:14-20. [PMID: 28347656 PMCID: PMC5514392 DOI: 10.1016/j.ebiom.2017.03.027] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
Telomeres are protective structures present at the ends of linear chromosomes that are important in preventing genome instability. Telomeres shorten as a result of cellular replication, leading to a permanent cell cycle arrest, also known as replicative senescence. Senescent cells have been shown to accumulate in mammalian tissue with age and in a number of age-related diseases, suggesting that they might contribute to the loss of tissue function observed with age. In this review, we will first describe evidence suggesting a key role for senescence in the ageing process and elaborate on some of the mechanisms by which telomeres can induce cellular senescence. Furthermore, we will present multiple lines of evidence suggesting that telomeres can act as sensors of both intrinsic and extrinsic stress as well as recent data indicating that telomere–induced senescence may occur irrespectively of the length of telomeres. Telomere shortening occurs with cell division and limits replicative capacity of cells, also known as replicative senescence. Senescent cells accumulate with age and in age-related diseases, and are associated with loss of tissue function with aging. Telomere damage can occur independently of length, and this has been shown to contribute to the senescent phenotype.
Collapse
|
99
|
Differential decrease in soluble and DNA-bound telomerase in senescent human fibroblasts. Biogerontology 2017; 18:525-533. [DOI: 10.1007/s10522-017-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
|
100
|
Criscione SW, Teo YV, Neretti N. The Chromatin Landscape of Cellular Senescence. Trends Genet 2016; 32:751-761. [PMID: 27692431 DOI: 10.1016/j.tig.2016.09.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible growth arrest triggered by a variety of stressors, plays important roles in normal physiology and tumor suppression, but accumulation of senescent cells with age contributes to the functional decline of tissues. Senescent cells undergo dramatic alterations to their chromatin landscape that affect genome accessibility and their transcriptional program. These include the loss of DNA-nuclear lamina interactions, the distension of centromeres, and changes in chromatin composition that can lead to the activation of retrotransposons. Here we discuss these findings, as well as recent advances in microscopy and genomics that have revealed the importance of the higher-order spatial organization of the genome in defining and maintaining the senescent state.
Collapse
Affiliation(s)
- Steven W Criscione
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|