51
|
Christensen KA, Le Luyer J, Chan MTT, Rondeau EB, Koop BF, Bernatchez L, Devlin RH. Assessing the effects of genotype-by-environment interaction on epigenetic, transcriptomic, and phenotypic response in a Pacific salmon. G3 (BETHESDA, MD.) 2021; 11:jkab021. [PMID: 33712817 PMCID: PMC8022943 DOI: 10.1093/g3journal/jkab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022]
Abstract
Genotype-by-environment (GxE) interactions are non-parallel reaction norms among individuals with different genotypes in response to different environmental conditions. GxE interactions are an extension of phenotypic plasticity and consequently studying such interactions improves our ability to predict effects of different environments on phenotype as well as the fitness of genetically distinct organisms and their capacity to interact with ecosystems. Growth hormone transgenic coho salmon grow much faster than non-transgenics when raised in tank environments, but show little difference in growth when reared in nature-like streams. We used this model system to evaluate potential mechanisms underlying this growth rate GxE interaction, performing RNA-seq to measure gene transcription and whole-genome bisulfite sequencing to measure gene methylation in liver tissue. Gene ontology (GO) term analysis revealed stress as an important biological process potentially influencing growth rate GxE interactions. While few genes with transcription differences also had methylation differences, in promoter or gene regions, many genes were differentially methylated between tank and stream environments. A GO term analysis of differentially methylated genes between tank and stream environments revealed increased methylation in the stream environment of more than 95% of the differentially methylated genes, many with biological processes unrelated to liver function. The lower nutritional condition of the stream environment may cause increased negative regulation of genes less vital for liver tissue function than when fish are reared in tanks with unlimited food availability. These data show a large effect of rearing environment both on gene expression and methylation, but it is less clear that the detected epigenetic marks are responsible for the observed altered growth and physiological responses.
Collapse
Affiliation(s)
- Kris A Christensen
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jérémy Le Luyer
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V OA6, Canada
| | - Michelle T T Chan
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eric B Rondeau
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V OA6, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
52
|
Tanaka T, Ueda R, Sato T. Captive-bred populations of a partially migratory salmonid fish are unlikely to maintain migratory polymorphism in natural habitats. Biol Lett 2021; 17:20200324. [PMID: 33435849 DOI: 10.1098/rsbl.2020.0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Variation in life history is fundamental to the long-term persistence of populations and species. Partial migration, in which both migratory and resident individuals are maintained in a population, is commonly found across animal taxa. However, human-induced habitat fragmentation continues to cause a rapid decline in the migratory phenotype in many natural populations. Using field and hatchery experiments, we demonstrated that despite both migrants and residents being maintained in captive environments, few individuals of the red-spotted masu salmon, Oncorhynchus masou ishikawae, became migrants in natural streams when released prior to the migration decision. Released fish rarely reached the threshold body size necessary to become migrants in natural streams, presumably owing to lower growth rates in natural than in captive environments. The decision to migrate is often considered a threshold trait in salmonids and other animal taxa. Our findings highlight the need for management programmes that acknowledge the effects of the environment on the determination of the migratory phenotypes of partially migratory species when releasing captive-bred individuals prior to their migratory decisions.
Collapse
Affiliation(s)
- Tatsuya Tanaka
- Department of Biology, Graduate School of Sciences, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Rui Ueda
- Department of Biology, Graduate School of Sciences, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takuya Sato
- Department of Biology, Graduate School of Sciences, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
53
|
Venney CJ, Wellband KW, Heath DD. Rearing environment affects the genetic architecture and plasticity of DNA methylation in Chinook salmon. Heredity (Edinb) 2021; 126:38-49. [PMID: 32699390 PMCID: PMC7852867 DOI: 10.1038/s41437-020-0346-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic architecture and phenotypic plasticity are important considerations when studying trait variation within and among populations. Since environmental change can induce shifts in the genetic architecture and plasticity of traits, it is important to consider both genetic and environmental sources of phenotypic variation. While there is overwhelming evidence for environmental effects on phenotype, the underlying mechanisms are less clear. Variation in DNA methylation is a potential mechanism mediating environmental effects on phenotype due to its sensitivity to environmental stimuli, transgenerational inheritance, and influences on transcription. To characterize the effect of environment on methylation, we created two 6 × 6 (North Carolina II) Chinook salmon breeding crosses and reared the offspring in two environments: uniform hatchery tanks and seminatural stream channels. We sampled the fish twice during development, at the alevin (larval) and fry (juvenile) stages. We measured DNA methylation at 13 genes using a PCR-based bisulfite sequencing protocol. The genetic architecture of DNA methylation differed between rearing environments, with greater additive and nonadditive genetic variance in hatchery fish and greater maternal effects in seminatural channel fish, though gene-specific variation was evident. We observed plasticity in methylation across all assayed genes, as well as gene-specific effects at two genes in alevin and six genes in fry, indicating developmental stage-specific effects of rearing environment on methylation. Characterizing genetic and environmental influences on methylation is critical for future studies on DNA methylation as a potential mechanism for acclimation and adaptation.
Collapse
Affiliation(s)
- Clare J Venney
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Kyle W Wellband
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Québec City, QC, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
54
|
Nilsson E, Sadler-Riggleman I, Beck D, Skinner MK. Differential DNA methylation in somatic and sperm cells of hatchery vs wild (natural-origin) steelhead trout populations. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab002. [PMID: 34040807 PMCID: PMC8132314 DOI: 10.1093/eep/dvab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Environmental factors such as nutrition, stress, and toxicants can influence epigenetic programming and phenotypes of a wide variety of species from plants to humans. The current study was designed to investigate the impacts of hatchery spawning and rearing on steelhead trout (Oncorhynchus mykiss) vs the wild fish on a molecular level. Additionally, epigenetic differences between feeding practices that allow slow growth (2 years) and fast growth (1 year) hatchery trout were investigated. The sperm and red blood cells (RBC) from adult male slow growth/maturation hatchery steelhead, fast growth/maturation hatchery steelhead, and wild (natural-origin) steelhead were collected for DNA preparation to investigate potential alterations in differential DNA methylation regions (DMRs) and genetic mutations, involving copy number variations (CNVs). The sperm and RBC DNA both had a large number of DMRs when comparing the hatchery vs wild steelhead trout populations. The DMRs were cell type specific with negligible overlap. Slow growth/maturation compared to fast growth/maturation steelhead also had a larger number of DMRs in the RBC samples. A number of the DMRs had associated genes that were correlated to various biological processes and pathologies. Observations demonstrate a major epigenetic programming difference between the hatchery and wild natural-origin fish populations, but negligible genetic differences. Therefore, hatchery conditions and growth/maturation rate can alter the epigenetic developmental programming of the steelhead trout. Interestingly, epigenetic alterations in the sperm allow for potential epigenetic transgenerational inheritance of phenotypic variation to future generations. The impacts of hatchery exposures are not only important to consider on the fish exposed, but also on future generations and evolutionary trajectory of fish in the river populations.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; E-mail:
| |
Collapse
|
55
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
56
|
Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Bascuñan N, Vidal R. Temporal genome-wide DNA methylation signature of post-smolt Pacific salmon challenged with Piscirickettsia salmonis. Epigenetics 2020; 16:1335-1346. [PMID: 33319647 DOI: 10.1080/15592294.2020.1864166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Piscirickettsiosis is the most important bacterial disease in the Chilean salmon industry, which has sorted several efforts to its control, generating enormous economic losses. Epigenetic alterations, such as DNA methylation, can play a relevant role in the modulation of the metazoans response to pathogens. Bacterial disease may activate global and local immune responses generating intricate responses with significant biological impact in the host. However, it is scarcely understood how bacterial infections influence fish epigenetic alterations. In the present study, we utilized Pacific salmon and Piscirickettsiosis as model, to gain understanding into the dynamics of DNA methylation among fish-bacterial infection interactions. A genome-wide analysis of DNA methylation patterns in female spleen tissue of Pacific salmon was achieved by reduced representation bisulphite sequencing from a time course design. We determined 2,251, 1,918, and 2,516 differentially methylated regions DMRs among infected and control Pacific salmon in 1 dpi, 5 dpi, and 15 dpi, respectively. The mean methylation difference per DMR among control and infected groups was of ~35%, with an oscillatory pattern of hypo, hyper, and hypomethylation across the disease. DMCs, among the control and infected group, showed that they were statistically enriched in intergenic regions and depleted in exons. Functional annotation of the DMR genes demonstrated three KEGG principal categories, associated directly with the host response to pathogens infections. Our results provide the first evidence of epigenetic variation in fish provoked by bacterial infection and demonstrate that this variation can be modulated across the disease.
Collapse
Affiliation(s)
- Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Scarlet Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Killen Ko Garcia
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Nicolás Bascuñan
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
57
|
O'Sullivan RJ, Aykanat T, Johnston SE, Rogan G, Poole R, Prodöhl PA, de Eyto E, Primmer CR, McGinnity P, Reed TE. Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proc Biol Sci 2020; 287:20201671. [PMID: 33081620 PMCID: PMC7661298 DOI: 10.1098/rspb.2020.1671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The release of captive-bred animals into the wild is commonly practised to restore or supplement wild populations but comes with a suite of ecological and genetic consequences. Vast numbers of hatchery-reared fish are released annually, ostensibly to restore/enhance wild populations or provide greater angling returns. While previous studies have shown that captive-bred fish perform poorly in the wild relative to wild-bred conspecifics, few have measured individual lifetime reproductive success (LRS) and how this affects population productivity. Here, we analyse data on Atlantic salmon from an intensely studied catchment into which varying numbers of captive-bred fish have escaped/been released and potentially bred over several decades. Using a molecular pedigree, we demonstrate that, on average, the LRS of captive-bred individuals was only 36% that of wild-bred individuals. A significant LRS difference remained after excluding individuals that left no surviving offspring, some of which might have simply failed to spawn, consistent with transgenerational effects on offspring survival. The annual productivity of the mixed population (wild-bred plus captive-bred) was lower in years where captive-bred fish comprised a greater fraction of potential spawners. These results bolster previous empirical and theoretical findings that intentional stocking, or non-intentional escapees, threaten, rather than enhance, recipient natural populations.
Collapse
Affiliation(s)
- Ronan James O'Sullivan
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | | | - Ger Rogan
- Marine Institute, Furnace, Newport, Mayo, Ireland
| | | | - Paulo A Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | | | - Craig R Primmer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland.,Marine Institute, Furnace, Newport, Mayo, Ireland
| | - Thomas Eric Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
58
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
59
|
Venney CJ, Love OP, Drown EJ, Heath DD. DNA Methylation Profiles Suggest Intergenerational Transfer of Maternal Effects. Mol Biol Evol 2020; 37:540-548. [PMID: 31651942 DOI: 10.1093/molbev/msz244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The view of maternal effects (nongenetic maternal environmental influence on offspring phenotype) has changed from one of distracting complications in evolutionary genetics to an important evolutionary mechanism for improving offspring fitness. Recent studies have shown that maternal effects act as an adaptive mechanism to prepare offspring for stressful environments. Although research into the magnitude of maternal effects is abundant, the molecular mechanisms of maternal influences on offspring phenotypic variation are not fully understood. Despite recent work identifying DNA methylation as a potential mechanism of nongenetic inheritance, currently proposed links between DNA methylation and parental effects are indirect and primarily involve genomic imprinting. We combined a factorial breeding design and gene-targeted sequencing methods to assess inheritance of methylation during early life stages at 14 genes involved in growth, development, metabolism, stress response, and immune function of Chinook salmon (Oncorhynchus tshawytscha). We found little evidence for additive or nonadditive genetic effects acting on methylation levels during early development; however, we detected significant maternal effects. Consistent with conventional maternal effect data, maternal effects on methylation declined through development and were replaced with nonadditive effects when offspring began exogenous feeding. We mapped methylation at individual CpG sites across the selected candidate genes to test for variation in site-specific methylation profiles and found significant maternal effects at selected CpG sites that also declined with development stage. While intergenerational inheritance of methylated DNA is controversial, we show that CpG-specific methylation may function as an underlying molecular mechanism for maternal effects, with important implications for offspring fitness.
Collapse
Affiliation(s)
- Clare J Venney
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Ellen Jane Drown
- Yellow Island Aquaculture Ltd., Campbell River, British Columbia, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.,Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
60
|
Grueber CE, Peel E, Wright B, Hogg CJ, Belov K. A Tasmanian devil breeding program to support wild recovery. Reprod Fertil Dev 2020; 31:1296-1304. [PMID: 32172782 DOI: 10.1071/rd18152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an 'insurance population' to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.
Collapse
Affiliation(s)
- C E Grueber
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - E Peel
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - B Wright
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - C J Hogg
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| | - K Belov
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia
| |
Collapse
|
61
|
Konstantinidis I, Sætrom P, Mjelle R, Nedoluzhko AV, Robledo D, Fernandes JMO. Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics 2020; 15:1052-1067. [PMID: 32264748 PMCID: PMC7116051 DOI: 10.1080/15592294.2020.1748914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
The historically recent domestication of fishes has been essential to meet the protein demands of a growing human population. Selection for traits of interest during domestication is a complex process whose epigenetic basis is poorly understood. Cytosine hydroxymethylation is increasingly recognized as an important DNA modification involved in epigenetic regulation. In the present study, we investigated if hydroxymethylation plays a role in fish domestication and demonstrated for the first time at a genome-wide level and single nucleotide resolution that the muscle hydroxymethylome changes after a single generation of Nile tilapia (Oreochromis niloticus, Linnaeus) domestication. The overall decrease in hydroxymethylcytosine levels was accompanied by the downregulation of 2015 genes in fish reared in captivity compared to their wild progenitors. In contrast, several myogenic and metabolic genes that can affect growth potential were upregulated. There were 126 differentially hydroxymethylated cytosines between groups, which were not due to genetic variation; they were associated with genes involved in immune-, growth- and neuronal-related pathways. Taken together, our data unveil a new role for DNA hydroxymethylation in epigenetic regulation of fish domestication with impact in aquaculture and implications in artificial selection, environmental adaptation and genome evolution.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | | |
Collapse
|
62
|
Kelly T, Johnsen H, Burgerhout E, Tveiten H, Thesslund T, Andersen Ø, Robinson N. Low Oxygen Stress During Early Development Influences Regulation of Hypoxia-Response Genes in Farmed Atlantic Salmon ( Salmo salar). G3 (BETHESDA, MD.) 2020; 10:3179-3188. [PMID: 32636218 PMCID: PMC7466997 DOI: 10.1534/g3.120.401459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Survival and growth of developing salmonids are negatively affected by low oxygen levels within gravel nests in natural streams, and hypoxic stress is often experienced by farmed Atlantic salmon (Salmo salar) within hatcheries. Exposure to hypoxia during early development may have long-lasting effects by altering epigenetic marks and gene expression in oxygen regulatory pathways. Here, we examine the transcriptomic response to low dissolved oxygen (DO) in post-hatch salmon reared continuously in 30%, 60% or 100% DO from fertilization until start of feeding. RNA sequencing revealed multiple differentially expressed genes, including oxygen transporting hemoglobin embryonic α subunit (hbae) and EGLN3 family hypoxia-inducible factor 3 (egln3) which regulates the stability of hypoxia inducible factor 1α (HIF-1α). Both hbae and egln3 displayed expression levels inversely correlated to oxygen concentration, and DNA methylation patterns within the egln3 promoter were negatively associated with the transcript levels. These results suggest that epigenetic processes are influenced by low oxygen levels during early development in Atlantic salmon to upregulate hypoxia-response genes.
Collapse
Affiliation(s)
- Tara Kelly
- Sustainable Aquaculture Laboratory- Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | - Øivind Andersen
- Nofima, N-9291 Tromsø, Norway
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), N-1433, Ås, Norway
| | - Nicholas Robinson
- Nofima, N-9291 Tromsø, Norway
- Sustainable Aquaculture Laboratory- Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
63
|
Abstract
Migration is a complex trait that often has genetic underpinnings. However, it is unclear if migratory behaviour itself is inherited (direct genetic control), or if the decision to migrate is instead the outcome of a set of physiological traits (indirect genetic control). For steelhead/rainbow trout (Oncorhynchus mykiss), migration is strongly linked to a large genomic region across their range. Here, we demonstrate a shared allelic basis between early life growth rate and migratory behaviour. Next, we demonstrate that early life growth differs among resident/migratory genotypes in wild juveniles several months prior to migration, with resident genotypes achieving a larger size in their first few months of life than migratory genotypes. We suggest that the genetic basis of migration is likely indirect and mediated by physiological traits such as growth rate. Evolutionary benefits of this indirect genetic mechanism likely include flexibility among individuals and persistence of life-history diversity within and among populations.
Collapse
Affiliation(s)
- Suzanne J Kelson
- Global Water Center, Biology Department, University of Nevada, Reno, NV, USA
| | - Stephanie M Carlson
- Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Michael R Miller
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
64
|
Ferchaud AL, Leitwein M, Laporte M, Boivin-Delisle D, Bougas B, Hernandez C, Normandeau É, Thibault I, Bernatchez L. Adaptive and maladaptive genetic diversity in small populations: Insights from the Brook Charr (Salvelinus fontinalis) case study. Mol Ecol 2020; 29:3429-3445. [PMID: 33463857 DOI: 10.1111/mec.15566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Investigating the relative importance of neutral versus selective processes governing the accumulation of genetic variants is a key goal in both evolutionary and conservation biology. This is particularly true in the context of small populations, where genetic drift can counteract the effect of selection. Using Brook Charr (Salvelinus fontinalis) from Québec, Canada, as a case study, we investigated the importance of demographic versus selective processes governing the accumulation of both adaptive and maladaptive mutations in closed versus open and connected populations to assess gene flow effect. This was achieved by using 14,779 high-quality filtered SNPs genotyped among 1,416 fish representing 50 populations from three life history types: lacustrine (closed populations), riverine and anadromous (connected populations). Using the PROVEAN algorithm, we observed a considerable accumulation of putative deleterious mutations across populations. The absence of correlation between the occurrence of putatively beneficial or deleterious mutations and local recombination rate supports the hypothesis that genetic drift might be the main driver of the accumulation of such variants. However, despite a lower genetic diversity observed in lacustrine than in riverine or anadromous populations, lacustrine populations do not exhibit more deleterious mutations than the two other history types, suggesting that the negative effect of genetic drift in lacustrine populations may be mitigated by that of relaxed purifying selection. Moreover, we also identified genomic regions associated with anadromy, as well as an overrepresentation of transposable elements associated with variation in environmental variables, thus supporting the importance of transposable elements in adaptation.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Maeva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Damien Boivin-Delisle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Bérénice Bougas
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Cécilia Hernandez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Isabel Thibault
- Direction de l'expertise Sur la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
65
|
Ferchaud AL, Laporte M, Wellenreuther M. From the woods to the halls of science: Louis Bernatchez's contributions to science, wildlife conservation and people. Evol Appl 2020; 13:1105-1116. [PMID: 32684949 PMCID: PMC7359837 DOI: 10.1111/eva.13043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Maren Wellenreuther
- School of Biological Sciences The University of Auckland Auckland New Zealand
- The New Zealand Institute for Plant and Food Research Ltd Nelson New Zealand
| |
Collapse
|
66
|
Noguera JC, Velando A. Gull chicks grow faster but lose telomeres when prenatal cues mismatch the real presence of sibling competitors. Proc Biol Sci 2020; 287:20200242. [PMID: 32429809 DOI: 10.1098/rspb.2020.0242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During embryonic life, individuals should adjust their phenotype to the conditions that they will encounter after birth, including the social environment, if they have access to (social) cues that allow them to forecast future conditions. In birds, evidence indicates that embryos are sensitive to cues from clutch mates, but whether embryos adjust their development to cope with the expected level of sibling competition has not hitherto been investigated. To tackle this question, we performed a 'match versus mismatch' experimental design where we manipulated the presence of clutch mates (i.e. clutch size manipulation) and the real (postnatal) level of sibling competition (i.e. brood size manipulation) in the yellow-legged gull (Larus michahellis). We provide evidence that the prenatal cues of sibling presence induced developmental changes (such as epigenetic profiles) that had programming effects on chick begging behaviour and growth trajectories after hatching. While receiving mismatching information favoured chick begging and growth, this came at the cost of reduced antioxidant defences and a premature loss of telomeres. Our findings highlight the role of the prenatal social environment in developmental plasticity and suggest that telomere attrition may be an important physiological cost of phenotype-environment mismatch.
Collapse
Affiliation(s)
- Jose C Noguera
- Grupo de Ecología Animal (GEA), Dpto. de Ecología y Biología Animal, Universidad de Vigo, Vigo 36310, Spain
| | - Alberto Velando
- Grupo de Ecología Animal (GEA), Dpto. de Ecología y Biología Animal, Universidad de Vigo, Vigo 36310, Spain
| |
Collapse
|
67
|
Bourret V, Albert V, April J, Côté G, Morissette O. Past, present and future contributions of evolutionary biology to wildlife forensics, management and conservation. Evol Appl 2020; 13:1420-1434. [PMID: 32684967 PMCID: PMC7359848 DOI: 10.1111/eva.12977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Successfully implementing fundamental concepts into concrete applications is challenging in any given field. It requires communication, collaboration and shared will between researchers and practitioners. We argue that evolutionary biology, through research work linked to conservation, management and forensics, had a significant impact on wildlife agencies and department practices, where new frameworks and applications have been implemented over the last decades. The Quebec government's Wildlife Department (MFFP: Ministère des Forêts, de la Faune et des Parcs) has been proactive in reducing the “research–implementation” gap, thanks to prolific collaborations with many academic researchers. Among these associations, our department's outstanding partnership with Dr. Louis Bernatchez yielded significant contributions to harvest management, stocking programmes, definition of conservation units, recovery of threatened species, management of invasive species and forensic applications. We discuss key evolutionary biology concepts and resulting concrete examples of their successful implementation that derives directly or indirectly from this successful partnership. While old and new threats to wildlife are bringing new challenges, we expect recent developments in eDNA and genomics to provide innovative solutions as long as the research–implementation bridge remains open.
Collapse
Affiliation(s)
- Vincent Bourret
- Direction générale de la protection de la faune Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Vicky Albert
- Direction générale de la protection de la faune Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Julien April
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Guillaume Côté
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Olivier Morissette
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| |
Collapse
|
68
|
Lehnert SJ, Baillie SM, MacMillan J, Paterson IG, Buhariwalla CF, Bradbury IR, Bentzen P. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout ( Salvelinus fontinalis) populations of Nova Scotia. Evol Appl 2020; 13:1069-1089. [PMID: 32431753 PMCID: PMC7232767 DOI: 10.1111/eva.12923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this study, the genetic structure of brook trout populations in the province was unknown; however, given the potential negative consequences associated with hatchery stocking, it is possible that hatchery programs have adversely affected the genetic integrity of wild populations. To assess the influence of hatchery supplementation on wild populations, we genotyped wild brook trout from 12 river systems and hatchery brook trout from two major hatcheries using 100 microsatellite loci. Genetic analyses of wild trout revealed extensive population genetic structure among and within river systems and significant isolation-by-distance. Hatchery stocks were genetically distinct from wild populations, and most populations showed limited to no evidence of hatchery introgression (<5% hatchery ancestry). Only a single location had a substantial number of hatchery-derived trout and was located in the only river where a local strain is used for supplementation. The amount of hatchery stocking within a watershed did not influence the level of hatchery introgression. Neutral genetic structure of wild populations was influenced by geography with some influence of climate and stocking indices. Overall, our study suggests that long-term stocking has not significantly affected the genetic integrity of wild trout populations, highlighting the variable outcomes of stocking and the need to evaluate the consequences on a case-by-case basis.
Collapse
Affiliation(s)
- Sarah J. Lehnert
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Shauna M. Baillie
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - John MacMillan
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian G. Paterson
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Colin F. Buhariwalla
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian R. Bradbury
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Paul Bentzen
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
69
|
Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SAM, Stevens JR, Santos EM, Davie A, Robledo D. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 2020; 21:389-409. [PMID: 32300217 DOI: 10.1038/s41576-020-0227-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.
Collapse
Affiliation(s)
- Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK.
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Tom L Jenkins
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Jamie R Stevens
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Eduarda M Santos
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrew Davie
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| |
Collapse
|
70
|
Rodriguez Barreto D, Garcia de Leaniz C, Verspoor E, Sobolewska H, Coulson M, Consuegra S. DNA Methylation Changes in the Sperm of Captive-Reared Fish: A Route to Epigenetic Introgression in Wild Populations. Mol Biol Evol 2020; 36:2205-2211. [PMID: 31180510 PMCID: PMC6759066 DOI: 10.1093/molbev/msz135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interbreeding between hatchery-reared and wild fish, through deliberate stocking or escapes from fish farms, can result in rapid phenotypic and gene expression changes in hybrids, but the underlying mechanisms are unknown. We assessed if one generation of captive breeding was sufficient to generate inter- and/or transgenerational epigenetic modifications in Atlantic salmon. We found that the sperm of wild and captive-reared males differed in methylated regions consistent with early epigenetic signatures of domestication. Some of the epigenetic marks that differed between hatchery and wild males affected genes related to transcription, neural development, olfaction, and aggression, and were maintained in the offspring beyond developmental reprogramming. Our findings suggest that rearing in captivity may trigger epigenetic modifications in the sperm of hatchery fish that could explain the rapid phenotypic and genetic changes observed among hybrid fish. Epigenetic introgression via fish sperm represents a previously unappreciated mechanism that could compromise locally adapted fish populations.
Collapse
Affiliation(s)
| | | | - Eric Verspoor
- Rivers and Lochs Institute, University of the Highlands and Islands, Inverness College, Inverness, United Kingdom
| | - Halina Sobolewska
- Noahgene Ltd, The e-Centre, Cooperage Way Business Village, Alloa, United Kingdom
| | - Mark Coulson
- Rivers and Lochs Institute, University of the Highlands and Islands, Inverness College, Inverness, United Kingdom
| | - Sofia Consuegra
- Biosciences Department, College of Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
71
|
Hu J, Askary AM, Thurman TJ, Spiller DA, Palmer TM, Pringle RM, Barrett RDH. The Epigenetic Signature of Colonizing New Environments in Anolis Lizards. Mol Biol Evol 2020; 36:2165-2170. [PMID: 31147693 DOI: 10.1093/molbev/msz133] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Founder populations often show rapid divergence from source populations after colonizing new environments. Epigenetic modifications can mediate phenotypic responses to environmental change and may be an important mechanism promoting rapid differentiation in founder populations. Whereas many long-term studies have explored the extent to which divergence between source and founder populations is genetically heritable versus plastic, the role of epigenetic processes during colonization remains unclear. To investigate epigenetic modifications in founding populations, we experimentally colonized eight small Caribbean islands with brown anole lizards (Anolis sagrei) from a common source population. We then quantitatively measured genome-wide DNA methylation in liver tissue using reduced representation bisulfite sequencing of individuals transplanted onto islands with high- versus low-habitat quality. We found that lizard sex and habitat quality explained a significant proportion of epigenetic variation. Differentially methylated cytosines mapped to genes that encode proteins with functions likely to be relevant to habitat change (e.g., signal transduction, immune response, circadian rhythm). This study provides experimental evidence of a relationship between epigenetic responses and the earliest stages of colonization of novel environments in nature and suggests that habitat quality influences the nature of these epigenetic modifications.
Collapse
Affiliation(s)
- Juntao Hu
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Arash M Askary
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Timothy J Thurman
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada.,Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Dave A Spiller
- Section of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA
| | - Todd M Palmer
- Mpala Research Centre, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL
| | - Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
72
|
Anastasiadi D, Piferrer F. Epimutations in Developmental Genes Underlie the Onset of Domestication in Farmed European Sea Bass. Mol Biol Evol 2020; 36:2252-2264. [PMID: 31289822 PMCID: PMC6759067 DOI: 10.1093/molbev/msz153] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Domestication of wild animals induces a set of phenotypic characteristics collectively known as the domestication syndrome. However, how this syndrome emerges is still not clear. Recently, the neural crest cell deficit hypothesis proposed that it is generated by a mildly disrupted neural crest cell developmental program, but clear support is lacking due to the difficulties of distinguishing pure domestication effects from preexisting genetic differences between farmed and wild mammals and birds. Here, we use a farmed fish as model to investigate the role of persistent changes in DNA methylation (epimutations) in the process of domestication. We show that early domesticates of sea bass, with no genetic differences with wild counterparts, contain epimutations in tissues with different embryonic origins. About one fifth of epimutations that persist into adulthood are established by the time of gastrulation and affect genes involved in developmental processes that are expressed in embryonic structures, including the neural crest. Some of these genes are differentially expressed in sea bass with lower jaw malformations, a key feature of domestication syndrome. Interestingly, these epimutations significantly overlap with cytosine-to-thymine polymorphisms after 25 years of selective breeding. Furthermore, epimutated genes coincide with genes under positive selection in other domesticates. We argue that the initial stages of domestication include dynamic alterations in DNA methylation of developmental genes that affect the neural crest. Our results indicate a role for epimutations during the beginning of domestication that could be fixed as genetic variants and suggest a conserved molecular process to explain Darwin’s domestication syndrome across vertebrates.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant & Food Research, Nelson, New Zealand
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
73
|
Rocha de Almeida T, Alix M, Le Cam A, Klopp C, Montfort J, Toomey L, Ledoré Y, Bobe J, Chardard D, Schaerlinger B, Fontaine P. Domestication may affect the maternal mRNA profile in unfertilized eggs, potentially impacting the embryonic development of Eurasian perch (Perca fluviatilis). PLoS One 2019; 14:e0226878. [PMID: 31891603 PMCID: PMC6938363 DOI: 10.1371/journal.pone.0226878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
Domestication is an evolutionary process during which we expect populations to progressively adapt to an environment controlled by humans. It is accompanied by genetic and presumably epigenetic changes potentially leading to modifications in the transcriptomic profile in various tissues. Reproduction is a key function often affected by this process in numerous species, regardless of the mechanism. The maternal mRNA in fish eggs is crucial for the proper embryogenesis. Our working hypothesis is that modifications of maternal mRNAs may reflect potential genetic and/or epigenetic modifications occurring during domestication and could have consequences during embryogenesis. Consequently, we investigated the trancriptomic profile of unfertilized eggs from two populations of Eurasian perch. These two populations differed by their domestication histories (F1 vs. F7+-at least seven generations of reproduction in captivity) and were genetically differentiated (FST = 0.1055, p<0.05). A broad follow up of the oogenesis progression failed to show significant differences during oogenesis between populations. However, the F1 population spawned earlier with embryos presenting an overall higher survivorship than those from the F7+ population. The transcriptomic profile of unfertilized eggs showed 358 differentially expressed genes between populations. In conclusion, our data suggests that the domestication process may influence the regulation of the maternal transcripts in fish eggs, which could in turn explain differences of developmental success.
Collapse
Affiliation(s)
| | - Maud Alix
- UR AFPA, University of Lorraine, INRA, Nancy, France
| | - Aurélie Le Cam
- LPGP, UR1037 Fish Physiology and Genomics, INRA, Rennes, France
| | | | - Jérôme Montfort
- LPGP, UR1037 Fish Physiology and Genomics, INRA, Rennes, France
| | - Lola Toomey
- UR AFPA, University of Lorraine, INRA, Nancy, France
| | | | - Julien Bobe
- LPGP, UR1037 Fish Physiology and Genomics, INRA, Rennes, France
| | | | | | | |
Collapse
|
74
|
Harder AM, Willoughby JR, Ardren WR, Christie MR. Among-family variation in survival and gene expression uncovers adaptive genetic variation in a threatened fish. Mol Ecol 2019; 29:1035-1049. [PMID: 31837181 DOI: 10.1111/mec.15334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Abstract
Variation in among-family transcriptional responses to different environmental conditions can help to identify adaptive genetic variation, even prior to a selective event. Coupling differential gene expression with formal survival analyses allows for the disentanglement of treatment effects, required for understanding how individuals plastically respond to environmental stressors, from the adaptive genetic variation responsible for differential survival. We combined these two approaches to investigate responses to an emerging conservation issue, thiamine (vitamin B1 ) deficiency, in a threatened population of Atlantic salmon (Salmo salar). Thiamine is an essential vitamin that is increasingly limited in many ecosystems. In Lake Champlain, Atlantic salmon cannot acquire thiamine in sufficient quantities to support natural reproduction; fertilized eggs must be reared in hatcheries and treated with supplemental thiamine. We evaluated transcriptional responses (via RNA sequencing) to thiamine treatment across families and found 3,616 genes differentially expressed between control (no supplemental thiamine) and treatment individuals. Fewer genes changed expression equally across families (i.e., additively) than exhibited genotype × environment interactions in response to thiamine. Differentially expressed genes were related to known physiological effects of thiamine deficiency, including oxidative stress, cardiovascular irregularities and neurological abnormalities. We also identified 1,446 putatively adaptive genes that were strongly associated with among-family survival in the absence of thiamine treatment, many of which related to neurogenesis and visual perception. Our results highlight the utility of coupling RNA sequencing with formal survival analyses to identify candidate genes that underlie the among-family variation in survival required for an adaptive response to natural selection.
Collapse
Affiliation(s)
- Avril M Harder
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Janna R Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.,School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | | | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
75
|
Clucas GV, Lou RN, Therkildsen NO, Kovach AI. Novel signals of adaptive genetic variation in northwestern Atlantic cod revealed by whole-genome sequencing. Evol Appl 2019; 12:1971-1987. [PMID: 31700539 PMCID: PMC6824067 DOI: 10.1111/eva.12861] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/14/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Selection can create complex patterns of adaptive differentiation among populations in the wild that may be relevant to management. Atlantic cod in the Northwest Atlantic are at a fraction of their historical abundance and a lack of recovery within the Gulf of Maine has created concern regarding the misalignment of fisheries management structures with biological population structure. To address this and investigate genome-wide patterns of variation, we used low-coverage sequencing to perform a region-wide, whole-genome analysis of fine-scale population structure. We sequenced 306 individuals from 20 sampling locations in U.S. and Canadian waters, including the major spawning aggregations in the Gulf of Maine in addition to spawning aggregations from Georges Bank, southern New England, the eastern Scotian Shelf, and St. Pierre Bank. With genotype likelihoods estimated at almost 11 million loci, we found large differences in haplotype frequencies of previously described chromosomal inversions between Canadian and U.S. sampling locations and also among U.S. sampling locations. Our whole-genome resolution also revealed novel outlier peaks, some of which showed significant genetic differentiation among sampling locations. Comparisons between allochronic winter- and spring-spawning populations revealed highly elevated relative (FST ) and absolute (dxy ) genetic differentiation near genes involved in reproduction, particularly genes associated with the brain-pituitary-gonadal axis, which likely control timing of spawning, contributing to prezygotic isolation. We also found genetic differentiation associated with heat shock proteins and other genes of functional relevance, with complex patterns that may point to multifaceted selection pressures and local adaptation among spawning populations. We provide a high-resolution picture of U.S. Atlantic cod population structure, revealing greater complexity than is currently recognized in management. Our genome-scan approach likely underestimates the full suite of adaptive differentiation among sampling locations. Nevertheless, it should inform the revision of stock boundaries to preserve adaptive genetic diversity and evolutionary potential of cod populations.
Collapse
Affiliation(s)
- Gemma V. Clucas
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - R. Nicolas Lou
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | | | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
76
|
Laporte M, Le Luyer J, Rougeux C, Dion-Côté AM, Krick M, Bernatchez L. DNA methylation reprogramming, TE derepression, and postzygotic isolation of nascent animal species. SCIENCE ADVANCES 2019; 5:eaaw1644. [PMID: 31663013 PMCID: PMC6795504 DOI: 10.1126/sciadv.aaw1644] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/19/2019] [Indexed: 05/05/2023]
Abstract
The genomic shock hypothesis stipulates that the stress associated with divergent genome admixture can cause transposable element (TE) derepression, which could act as a postzygotic isolation mechanism. TEs affect gene structure, expression patterns, and chromosome organization and may have deleterious consequences when released. For these reasons, they are silenced by heterochromatin formation, which includes DNA methylation. Here, we show that a significant proportion of TEs are differentially methylated between the "dwarf" (limnetic) and the "normal" (benthic) whitefish, two nascent species that diverged some 15,000 generations ago within the Coregonus clupeaformis species complex. Moreover, TEs are overrepresented among loci that were demethylated in hybrids, indicative of their transcriptional derepression. These results are consistent with earlier studies in this system that revealed TE transcriptional derepression causes abnormal embryonic development and death of hybrids. Hence, this supports a role of DNA methylation reprogramming and TE derepression in postzygotic isolation of nascent animal species.
Collapse
|
77
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
78
|
Finger AJ, Mahardja B, Fisch KM, Benjamin A, Lindberg J, Ellison L, Ghebremariam T, Hung TC, May B. A Conservation Hatchery Population of Delta Smelt Shows Evidence of Genetic Adaptation to Captivity After 9 Generations. J Hered 2019; 109:689-699. [PMID: 30016452 DOI: 10.1093/jhered/esy035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Genetic adaptation to captivity is a concern for threatened and endangered species held in conservation hatcheries. Here, we present evidence of genetic adaptation to captivity in a conservation hatchery for the endangered delta smelt (Fish Conservation and Culture Laboratory, University of California Davis; FCCL). The FCCL population is genetically managed with parentage analysis and the addition of wild fish each year. Molecular monitoring indicates little loss of genetic variation and low differentiation between the wild and conservation populations. Yet, we found an increase in offspring survival to reproductive maturity during the subsequent spawning season (recovery rate) in crosses that included one or both cultured parents. Crosses with higher levels of hatchery ancestry tend to produce a greater number of offspring that are recovered the following year. The recovery rate of a cross decreases when offspring are raised in a tank with fish of high levels of hatchery ancestry. We suggest changes in fish rearing practices at the FCCL to reduce genetic adaptation to captivity, as delta smelt numbers in the wild continue to decline and the use of FCCL fish for reintroduction becomes more likely.
Collapse
Affiliation(s)
- Amanda J Finger
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA
| | - Brian Mahardja
- Division of Environmental Services, California Department of Water Resources, West Sacramento, CA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Alyssa Benjamin
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA
| | - Joan Lindberg
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Luke Ellison
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Tewdros Ghebremariam
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA
| | - Bernie May
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA
| |
Collapse
|
79
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|
80
|
Beacham TD, Wallace C, Jonsen K, McIntosh B, Candy JR, Willis D, Lynch C, Withler RE. Variation in migration pattern, broodstock origin, and family productivity of coho salmon hatchery populations in British Columbia, Canada, derived from parentage-based tagging. Ecol Evol 2019; 9:9891-9906. [PMID: 31534702 PMCID: PMC6745653 DOI: 10.1002/ece3.5530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 01/06/2023] Open
Abstract
In salmonid parentage-based tagging (PBT) applications, entire hatchery broodstocks are genotyped, and subsequently, progeny can be nonlethally sampled and assigned back to their parents using parentage analysis, thus identifying their hatchery of origin and brood year (i.e., age). Inter- and intrapopulation variability in migration patterns, life history traits, and fishery contributions can be determined from PBT analysis of samples derived from both fisheries and escapements (portion of a salmon population that does not get caught in fisheries and returns to its natal river to spawn). In the current study of southern British Columbia coho salmon (Oncorhynchus kisutch) populations, PBT analysis provided novel information on intrapopulation heterogeneity among males in the total number of progeny identified in fisheries and escapements, the proportion of progeny sampled from fisheries versus escapement, the proportion of two-year-old progeny (jacks) produced, and the within-season return time of progeny. Fishery recoveries of coho salmon revealed heterogeneity in migration patterns among and within populations, with recoveries from north and central coast fisheries distinguishing "northern migrating" from "resident" populations. In northern migrating populations, the mean distance between fishery captures of sibs (brothers and sisters) was significantly less than the mean distance between nonsibs, indicating the possible presence of intrapopulation genetic heterogeneity for migration pattern. Variation among populations in productivity and within populations in fish catchability indicated that population selection and broodstock management can be implemented to optimize harvest benefits from hatcheries. Application of PBT provided valuable information for assessment and management of hatchery-origin coho salmon in British Columbia.
Collapse
Affiliation(s)
- Terry D. Beacham
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Colin Wallace
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Kim Jonsen
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Brenda McIntosh
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - John R. Candy
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - David Willis
- Fisheries and Oceans CanadaRegional HeadquartersVancouverBCCanada
| | - Cheryl Lynch
- Fisheries and Oceans CanadaRegional HeadquartersVancouverBCCanada
| | - Ruth E. Withler
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| |
Collapse
|
81
|
Rey O, Eizaguirre C, Angers B, Baltazar‐Soares M, Sagonas K, Prunier JG, Blanchet S. Linking epigenetics and biological conservation: Towards a
conservation epigenetics
perspective. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13429] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Olivier Rey
- CNRS UMR 5244, Interactions Hôtes‐Pathogènes‐Environnements (IHPE) Université de Perpignan Via Domitia Perpignan France
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Bernard Angers
- Department of Biological Sciences Université de Montréal Montreal QC Canada
| | | | - Kostas Sagonas
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Jérôme G. Prunier
- Evolution et Diversité Biologique, École Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA), CNRS, UPS, UMR5174 Institut de Recherche pour le Développement (IRD) Toulouse France
| | - Simon Blanchet
- Evolution et Diversité Biologique, École Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA), CNRS, UPS, UMR5174 Institut de Recherche pour le Développement (IRD) Toulouse France
- Station d'Ecologie Théorique et Expérimentale, UMR5321, CNRS Université Paul Sabatier (UP) Moulis France
| |
Collapse
|
82
|
Podgorniak T, Brockmann S, Konstantinidis I, Fernandes JMO. Differences in the fast muscle methylome provide insight into sex-specific epigenetic regulation of growth in Nile tilapia during early stages of domestication. Epigenetics 2019; 14:818-836. [PMID: 31131688 PMCID: PMC6597363 DOI: 10.1080/15592294.2019.1618164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/14/2023] Open
Abstract
Growth is a complex trait whose variability within a population cannot be explained solely by genetic variation. Epigenetic regulation is often suggested as an important factor shaping the phenotype, but its association with growth can be highly context- and species-dependent. Nevertheless, the mechanisms involved in epigenetic regulation of growth in fish are poorly understood. We have used reduced representation bisulphite sequencing to determine the genome-wide CpG methylation patterns in male and female Nile tilapia of different sizes but at the same early stage of domestication. The average CpG methylation level in the reduced genome representation was 63% across groups but many sites displayed group-specific methylation patterns. The number of differentially methylated (DM) CpGs was much higher when the interaction between sex and weight was included rather than when these factors were considered separately. There were 1128 DM CpGs between large and small females and 970 DM CpGs between large and small males. We have found many growth-related genes associated with DM CpGs, namely map3k5 and akt3 in females and gadd45g and ppargc1a in males. Only 5% of CpG locations associated with growth were common to both sexes. In particular, the autophagy-related gene atg14 displayed a high association of methylation with growth exclusively in males. The sexually dimorphic association between atg14 methylation and growth may uncover novel metabolic mechanisms at play during mouth brooding in Nile tilapia females. Taken together, our data suggest that epigenetic regulation of growth in Nile tilapia involves different gene networks in males and females.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sven Brockmann
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Ioannis Konstantinidis
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
83
|
Jonsson B, Jonsson N, Jonsson M. Supportive breeders of Atlantic salmon
Salmo salar
have reduced fitness in nature. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bror Jonsson
- Department of Landscape EcologyNorwegian Institute for Nature Research Oslo Norway
| | - Nina Jonsson
- Department of Landscape EcologyNorwegian Institute for Nature Research Oslo Norway
| | | |
Collapse
|
84
|
Gavery MR, Nichols KM, Berejikian BA, Tatara CP, Goetz GW, Dickey JT, Van Doornik DM, Swanson P. Temporal Dynamics of DNA Methylation Patterns in Response to Rearing Juvenile Steelhead ( Oncorhynchus mykiss) in a Hatchery versus Simulated Stream Environment. Genes (Basel) 2019; 10:E356. [PMID: 31075961 PMCID: PMC6563097 DOI: 10.3390/genes10050356] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Genetic selection is often implicated as the underlying cause of heritable phenotypic differences between hatchery and wild populations of steelhead trout (Oncorhynchus mykiss) that also differ in lifetime fitness. Developmental plasticity, which can also affect fitness, may be mediated by epigenetic mechanisms such as DNA methylation. Our previous study identified significant differences in DNA methylation between adult hatchery- and natural-origin steelhead from the same population that could not be distinguished by DNA sequence variation. In the current study, we tested whether hatchery-rearing conditions can influence patterns of DNA methylation in steelhead with known genetic backgrounds, and assessed the stability of these changes over time. Eyed-embryos from 22 families of Methow River steelhead were split across traditional hatchery tanks or a simulated stream-rearing environment for 8 months, followed by a second year in a common hatchery tank environment. Family assignments were made using a genetic parentage analysis to account for relatedness among individuals. DNA methylation patterns were examined in the liver, a relatively homogeneous organ that regulates metabolic processes and somatic growth, of juveniles at two time points: after eight months of rearing in either a tank or stream environment and after a subsequent year of rearing in a common tank environment. Further, we analyzed DNA methylation in the sperm of mature 2-year-old males from the earlier described treatments to assess the potential of environmentally-induced changes to be passed to offspring. Hepatic DNA methylation changes in response to hatchery versus stream-rearing in yearling fish were substantial, but few persisted after a second year in the tank environment. However, the early rearing environment appeared to affect how fish responded to developmental and environmental signals during the second year since novel DNA methylation differences were identified in the livers of hatchery versus stream-reared fish after a year of common tank rearing. Furthermore, we found profound differences in DNA methylation due to age, irrespective of rearing treatment. This could be due to smoltification associated changes in liver physiology after the second year of rearing. Although few rearing-treatment effects were observed in the sperm methylome, strong family effects were observed. These data suggest limited potential for intergenerational changes, but highlight the importance of understanding the effects of kinship among studied individuals in order to properly analyze and interpret DNA methylation data in natural populations. Our work is the first to study family effects and temporal dynamics of DNA methylation patterns in response to hatchery-rearing.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St., Seattle, WA 98105, USA.
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| | - Barry A Berejikian
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 7305 Beach Dr. East, Port Orchard, WA 98366, USA.
| | - Christopher P Tatara
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 7305 Beach Dr. East, Port Orchard, WA 98366, USA.
| | - Giles W Goetz
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St., Seattle, WA 98105, USA.
| | - Jon T Dickey
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St., Seattle, WA 98105, USA.
| | - Donald M Van Doornik
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 7305 Beach Dr. East, Port Orchard, WA 98366, USA.
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| |
Collapse
|
85
|
Evans ML, Hard JJ, Black AN, Sard NM, O’Malley KG. A quantitative genetic analysis of life-history traits and lifetime reproductive success in reintroduced Chinook salmon. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01174-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
86
|
Abstract
In the last decade, the concept of animal stress has been stressed thin to accommodate the effects of short-term changes in cell and tissue physiology, major behavioral syndromes in individuals and ecological disturbances in populations. Seyle's definition of stress as "the nonspecific (common) result of any demand upon the body" now encompasses homeostasis in a broader sense, including all the hierarchical levels in a networked biological system. The heterogeneity of stress responses thus varies within individuals, and stressors become multimodal in terms of typology, source and effects, as well as the responses that each individual elicits to cope with the disturbance. In fish, the time course of changes after stress strongly depends on several factors, including the stressful experiences in early life, the vertical transmission of stressful-prone phenotypes, the degree of individual phenotypic plasticity, the robustness and variety of the epigenetic network related to environmentally induced changes, and the intrinsic behavioral responses (individuality/personality) of each individual. The hierarchical heterogeneity of stress responses demands a code that may decrypt and simplify the analysis of both proximate and evolutionary causes of a particular stress phenotype. We propose an analytical framework, the stressotope, defined as an adaptive scenario dominated by common environmental selective pressures that elicit common multilevel acute stress-induced responses and produce a measurable allostatic load in the organism. The stressotope may constitute a blueprint of embedded interactions between stress-related variations in cell states, molecular mediators and systemic networks, a map of circuits that reflect the inherited and acquired stress responses in an ever-changing, microorganismal-loaded medium. Several features of the proposed model are discussed as a starting point to pin down the maximum common stress responses across immune-neuroendocrine relevant physiological levels and scenarios, including the characterization of behavioral responses, in fish.
Collapse
Affiliation(s)
- Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
87
|
Houston RD, Macqueen DJ. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Anim Genet 2019; 50:3-14. [PMID: 30426521 PMCID: PMC6492011 DOI: 10.1111/age.12748] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high-quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks. The salmon genome has also been pivotal in shaping our understanding of the evolutionary and functional consequences arising from an ancestral whole-genome duplication event characterising all Salmonidae members. Here, we provide a review of the current status of Atlantic salmon genetics and genomics, focussed on progress made from genome-wide research aimed at improving aquaculture production and enhancing understanding of salmonid ecology, physiology and evolution. We present our views on the future direction of salmon genomics, including the role of emerging technologies (e.g. genome editing) in elucidating genetic features that underpin functional variation in traits of commercial and evolutionary importance.
Collapse
Affiliation(s)
- R. D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianEH25 9RGUK
| | - D. J. Macqueen
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUK
| |
Collapse
|
88
|
Hagen IJ, Jensen AJ, Bolstad GH, Diserud OH, Hindar K, Lo H, Karlsson S. Supplementary stocking selects for domesticated genotypes. Nat Commun 2019; 10:199. [PMID: 30643117 PMCID: PMC6331577 DOI: 10.1038/s41467-018-08021-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023] Open
Abstract
Stocking of hatchery produced fish is common practise to mitigate declines in natural populations and may have unwanted genetic consequences. Here we describe a novel phenomenon arising where broodstock used for stocking may be introgressed with farmed individuals. We test how stocking affects introgression in a wild population of Atlantic salmon (Salmo salar) by quantifying how the number of adult offspring recaptured in a stocked river depend on parental introgression. We found that hatchery conditions favour farmed genotypes such that introgressed broodstock produce up to four times the number of adult offspring compared to non-introgressed broodstock, leading to increased introgression in the recipient spawning population. Our results provide the first empirical evidence that stocking can unintentionally favour introgressed individuals and through selection for domesticated genotypes compromise the fitness of stocked wild populations.
Collapse
Affiliation(s)
- Ingerid J Hagen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway.
| | - Arne J Jensen
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Ola H Diserud
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Håvard Lo
- Norwegian Veterinary Institute, P.O. Box 5695 Torgarden, 7485, Trondheim, Norway
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| |
Collapse
|
89
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
90
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
91
|
Characterization of Genetic and Epigenetic Variation in Sperm and Red Blood Cells from Adult Hatchery and Natural-Origin Steelhead, Oncorhynchus mykiss. G3-GENES GENOMES GENETICS 2018; 8:3723-3736. [PMID: 30275172 PMCID: PMC6222570 DOI: 10.1534/g3.118.200458] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While the goal of most conservation hatchery programs is to produce fish that are genetically and phenotypically indistinguishable from the wild stocks they aim to restore, there is considerable evidence that salmon and steelhead reared in hatcheries differ from wild fish in phenotypic traits related to fitness. Some evidence suggests that these phenotypic differences have a genetic basis (e.g., domestication selection) but another likely mechanism that remains largely unexplored is that differences between hatchery and wild populations arise as a result of environmentally-induced heritable epigenetic change. As a first step toward understanding the potential contribution of these two possible mechanisms, we describe genetic and epigenetic variation in hatchery and natural-origin adult steelhead, Oncorhynchus mykiss, from the Methow River, WA. Our main objectives were to determine if hatchery and natural-origin fish could be distinguished genetically and whether differences in epigenetic programming (DNA methylation) in somatic and germ cells could be detected between the two groups. Genetic analysis of 72 fish using 936 SNPs generated by Restriction Site Associated DNA Sequencing (RAD-Seq) did not reveal differentiation between hatchery and natural-origin fish at a population level. We performed Reduced Representation Bisulfite Sequencing (RRBS) on a subset of 10 hatchery and 10 natural-origin fish and report the first genome-wide characterization of somatic (red blood cells (RBCs)) and germ line (sperm) derived DNA methylomes in a salmonid, from which we identified considerable tissue-specific methylation. We identified 85 differentially methylated regions (DMRs) in RBCs and 108 DMRs in sperm of steelhead reared for their first year in a hatchery environment compared to those reared in the wild. This work provides support that epigenetic mechanisms may serve as a link between hatchery rearing and adult phenotype in steelhead; furthermore, DMRs identified in germ cells (sperm) highlight the potential for these changes to be passed on to future generations.
Collapse
|
92
|
Jonsson B, Jonsson N. Egg incubation temperature affects the timing of the Atlantic salmon Salmo salar homing migration. JOURNAL OF FISH BIOLOGY 2018; 93:1016-1020. [PMID: 30259996 DOI: 10.1111/jfb.13817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/22/2018] [Indexed: 05/25/2023]
Abstract
Here, we show that adult Atlantic salmon Salmo salar returned about 2 weeks later from the feeding areas in the North Atlantic Ocean to the Norwegian coast, through a phenotypically plastic mechanism, when they developed as embryos in c. 3°C warmer water than the regular incubation temperature. This finding has relevance to changes in migration timing caused by climate change and for cultivation and release of S. salar.
Collapse
Affiliation(s)
- Bror Jonsson
- Norwegian Institute for Nature Research, Landscape Ecology Department, Oslo, Norway
| | - Nina Jonsson
- Norwegian Institute for Nature Research, Landscape Ecology Department, Oslo, Norway
| |
Collapse
|
93
|
Lavoie C, Courcelle M, Redivo B, Derome N. Structural and compositional mismatch between captive and wild Atlantic salmon ( Salmo salar) parrs' gut microbiota highlights the relevance of integrating molecular ecology for management and conservation methods. Evol Appl 2018; 11:1671-1685. [PMID: 30344635 PMCID: PMC6183451 DOI: 10.1111/eva.12658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
Stocking methods are used in the Province of Quebec to restore Salmo salar populations. However, Atlantic salmon stocked juveniles show higher mortality rates than wild ones when introduced into nature. Hatchery environment, which greatly differs from the natural environment, is identified as the main driver of the phenotypic mismatch between captive and wild parrs. The latter is also suspected to impact the gut microbiota composition, which can be associated with essential metabolic functions for their host. We hypothesized that hatchery-raised parrs potentially recruit gut microbial communities that are different from those recruited in the wild. This study evaluated the impacts of artificial rearing on gut microbiota composition in 0+ parrs meant for stocking in two distinct Canadian rivers: Rimouski and Malbaie (Quebec, Canada). Striking differences between hatchery and wild-born parrs' gut microbiota suggest that microbiota could be another factor that could impact their survival in the targeted river, because the microbiome is narrowly related to host physiology. For instance, major commensals belonging to Enterobacteriaceae and Clostridiacea from wild parrs' gut microbiota were substituted in captive parrs by lactic acid bacteria from the Lactobacillaceae family. Overall, captive parrs host a generalist bacterial community whereas wild parrs' microbiota is much more specialized. This is the very first study demonstrating extensive impact of captive rearing on intestinal microbiota composition in Atlantic salmon intended for wild population stocking. Our results strongly suggest the need to implement microbial ecology concepts into conservation management of endangered salmon stocks supplemented with hatchery-reared parrs.
Collapse
Affiliation(s)
- Camille Lavoie
- Biology DepartmentLaval UniversityQuebecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Laval UniversityQuebecQCCanada
| | - Maxime Courcelle
- Institut des Sciences de l’Évolution (ISEM)Montpellier UniversityMontpellierFrance
| | | | - Nicolas Derome
- Biology DepartmentLaval UniversityQuebecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Laval UniversityQuebecQCCanada
| |
Collapse
|
94
|
Chen Z, Farrell AP, Matala A, Hoffman N, Narum SR. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol Appl 2018; 11:1686-1699. [PMID: 30344636 PMCID: PMC6183465 DOI: 10.1111/eva.12672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 01/03/2023] Open
Abstract
Temperature is a master environmental factor that limits the geographical distribution of species, especially in ectotherms. To address challenges in biodiversity conservation under ongoing climate change, it is essential to characterize relevant functional limitations and adaptive genomic content at population and species levels. Here, we present evidence for adaptive divergence in cardiac function and genomic regions in redband trout (Oncorhynchus mykiss gairdneri) populations from desert and montane streams. Cardiac phenotypes of individual fish were measured in the field with a custom-built electrocardiogram apparatus. Maximum heart rate and its rate limiting temperature during acute warming were significantly higher in fish that have evolved in the extreme of a desert climate compared to a montane climate. Association mapping with 526,301 single nucleotide polymorphisms (SNPs) across the genome revealed signatures of thermal selection both within and among ecotypes. Among desert and montane populations, 435 SNPs were identified as putative outliers under natural selection and 20 of these loci showed significant association with average summer water temperatures among populations. Phenotypes for cardiac performance were variable within each ecotype, and 207 genomic regions were strongly associated with either maximum heart rate or rate limiting temperatures among individuals. Annotation of significant loci provided candidate genes that underlie thermal adaptation, including pathways associated with cardiac function (IRX5, CASQ1, CAC1D, and TITIN), neuroendocrine system (GPR17 and NOS), and stress response (SERPH). By integrating comparative physiology and population genomics, results here advance our knowledge on evolutionary processes of thermal adaptation in aquatic ectotherms.
Collapse
Affiliation(s)
- Zhongqi Chen
- Hagerman Fish Culture Experiment StationAquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | - Anthony P. Farrell
- Department of ZoologyThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Faculty of Land and Food SystemsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Amanda Matala
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | | | - Shawn R. Narum
- Hagerman Fish Culture Experiment StationAquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
95
|
Ferchaud A, Laporte M, Perrier C, Bernatchez L. Impact of supplementation on deleterious mutation distribution in an exploited salmonid. Evol Appl 2018; 11:1053-1065. [PMID: 30026797 PMCID: PMC6050184 DOI: 10.1111/eva.12660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/03/2023] Open
Abstract
Deleterious mutations have important implications for the evolutionary trajectories of populations. While several studies recently investigated the dynamics of deleterious mutations in wild populations, no study has yet explored the fate of deleterious mutations in a context of populations managed by supplementation. Here, based on a dataset of nine wild and 15 supplemented Lake Trout populations genotyped at 4,982 single nucleotide polymorphisms (SNP)s by means of genotype by sequencing (GBS), we explored the effect of supplementation on the frequency of putatively deleterious variants. Three main findings are consequential for the management of fish populations. First, an increase in neutral genetic diversity in stocked populations compared with unstocked ones was observed. Second, putatively deleterious mutations were more likely to be found in unstocked than in stocked populations, suggesting a lower efficiency to purge deleterious mutations in unstocked lakes. Third, a population currently used as a major source for supplementation is characterized by several fixed putatively deleterious alleles. Therefore, other source populations with lower abundance of putatively deleterious mutations should be favored as sources of supplementation. We discuss management implications of our results, especially pertaining to the joint identification of neutral and deleterious mutations that could help refining the choice of source and sink populations for supplementation in order to maximize their evolutionary potential and to limit their mutation load.
Collapse
Affiliation(s)
- Anne‐Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Charles Perrier
- Centre d’Écologie Fonctionnelle et ÉvolutiveUnité Mixte de Recherche CNRS 5175Montpellier Cedex 5France
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| |
Collapse
|
96
|
Supplementation stocking of Lake Trout (Salvelinus namaycush) in small boreal lakes: Ecotypes influence on growth and condition. PLoS One 2018; 13:e0200599. [PMID: 30001412 PMCID: PMC6042763 DOI: 10.1371/journal.pone.0200599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022] Open
Abstract
Supplementation stocking is a commonly used management tool to sustain exploited fish populations. Possible negative consequences of supplementation on local stocks are a concern for the conservation of wild fish populations. However, the direct impacts of supplementation on life history traits of local populations have rarely been investigated. In addition, intraspecific hybridization between contrasting ecotypes (planktivorous and piscivorous) has been seldom considered in supplementation plans. Here, we combined genetic (genotype-by-sequencing analysis) and life history traits to document the effects of supplementation on maximum length, growth rates, body condition and genetic admixture in stocked populations of two Lake Trout ecotypes from small boreal lakes in Quebec and Ontario, Canada. In both ecotypes, the length of stocked individuals was greater than local individuals and, in planktivorous-stocked populations, most stocked fish exhibited a planktivorous-like growth while 20% of fish exhibited piscivorous-like growth. The body condition index was positively related to the proportion of local genetic background, but this pattern was only observed in stocked planktivorous populations. We conclude that interactions and hybridization between contrasting ecotypes is a risk that could result in deleterious impacts and possible outbreeding depression. We discuss the implications of these findings for supplementation stocking.
Collapse
|
97
|
Hu J, Pérez-Jvostov F, Blondel L, Barrett RDH. Genome-wide DNA methylation signatures of infection status in Trinidadian guppies (Poecilia reticulata
). Mol Ecol 2018; 27:3087-3102. [DOI: 10.1111/mec.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Juntao Hu
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Felipe Pérez-Jvostov
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Léa Blondel
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| | - Rowan D. H. Barrett
- Redpath Museum; McGill University; Montreal Quebec Canada
- Department of Biology; McGill University; Montreal Quebec Canada
| |
Collapse
|
98
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
99
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
100
|
Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ 2017; 5:e4147. [PMID: 29230373 PMCID: PMC5723431 DOI: 10.7717/peerj.4147] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|