51
|
Yang YH, Fang HL, Zhao M, Wei XL, Zhang N, Wang S, Lu Y, Yu XJ, Sun L, He X, Li DL, Liu JJ, Zang WJ. Specific α7 nicotinic acetylcholine receptor agonist ameliorates isoproterenol-induced cardiac remodelling in mice through TGF-β1/Smad3 pathway. Clin Exp Pharmacol Physiol 2017; 44:1192-1200. [PMID: 28732106 DOI: 10.1111/1440-1681.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 06/15/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yong-Hua Yang
- Department of Paediatrics; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Huan-Le Fang
- Department of Medicine; Medical College of Xi'an Pei Hua University; Xi'an China
| | - Ming Zhao
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Xiang-Lan Wei
- Department of Pharmacy; Xi'an Chest and Tuberculosis Hospital; Xi'an China
| | - Ning Zhang
- Department of Clinical Laboratory; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Shun Wang
- Department of Cardiology; the First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Yi Lu
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Xiao-Jiang Yu
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Lei Sun
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Xi He
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Dong-Ling Li
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Jin-Jun Liu
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| | - Wei-Jin Zang
- Department of Pharmacology; Xi'an Jiaotong University; Health Science Centre; Xi'an China
| |
Collapse
|
52
|
Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, Lai LP, Hsiao WF, Chen WP, Chern Y. The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J Biomed Sci 2017; 24:68. [PMID: 28870220 PMCID: PMC5584049 DOI: 10.1186/s12929-017-0367-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The type VI adenylyl cyclase (AC6) is a main contributor of cAMP production in the heart. The amino acid (aa) sequence of AC6 is highly homologous to that of another major cardiac adenylyl cyclase, AC5, except for its N-terminus (AC6-N, aa 1-86). Activation of AC6, rather than AC5, produces cardioprotective effects against heart failure, while the underlying mechanism remains to be unveiled. Using an AC6-null (AC6-/-) mouse and a knockin mouse with AC6-N deletion (AC6 ΔN/ΔN), we aimed to investigate the cardioprotective mechanism of AC6 in the heart. METHODS Western blot analysis and immunofluorescence staining were performed to determine the intracellular distribution of AC6, AC6-ΔN (a truncated AC6 lacking the first 86 amino acids), and STAT3 activation. Activities of AC6 and AC6-ΔN in the heart were assessed by cAMP assay. Apoptosis of cardiomyocytes were evaluated by the TUNEL assay and a propidium iodine-based survival assay. Fibrosis was examined by collagen staining. RESULTS Immunofluorescence staining revealed that cardiac AC6 was mainly anchored on the sarcolemmal membranes, while AC6-ΔN was redistributed to the sarcoplasmic reticulum. AC6ΔN/ΔN and AC6-/- mice had more apoptotic myocytes and cardiac remodeling than WT mice in experimental models of isoproterenol (ISO)-induced myocardial injury. Adult cardiomyocytes isolated from AC6ΔN/ΔN or AC6-/- mice survived poorly after exposure to ISO, which produced no effect on WT cardiomyocytes under the condition tested. Importantly, ISO treatment induced cardiac STAT3 phosphorylation/activation in WT mice, but not in AC6ΔN/ΔN and AC6-/- mice. Pharmacological blockage of PKA-, Src-, or STAT3- pathway markedly reduced the survival of WT myocytes in the presence of ISO, but did not affect those of AC6ΔN/ΔN and AC6-/- myocytes, suggesting an important role of AC6 in mediating cardioprotective action through the activation of PKA-Src-STAT3-signaling. CONCLUSIONS Collectively, AC6-N controls the anchorage of cardiac AC6 on the sarcolemmal membrane, which enables the coupling of AC6 with the pro-survival PKA-STAT3 pathway. Our findings may facilitate the development of novel therapies for heart failure.
Collapse
Affiliation(s)
- Yu-Shuo Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chien-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chen-Li Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Yong-Cyuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Lin-Ping Lai
- Institute of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Fan Hsiao
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
53
|
Jin H, Fujita T, Jin M, Kurotani R, Namekata I, Hamaguchi S, Hidaka Y, Cai W, Suita K, Ohnuki Y, Mototani Y, Shiozawa K, Prajapati R, Liang C, Umemura M, Yokoyama U, Sato M, Tanaka H, Okumura S, Ishikawa Y. Cardiac overexpression of Epac1 in transgenic mice rescues lipopolysaccharide-induced cardiac dysfunction and inhibits Jak-STAT pathway. J Mol Cell Cardiol 2017. [DOI: 10.1016/j.yjmcc.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
55
|
Fujita T, Umemura M, Yokoyama U, Okumura S, Ishikawa Y. The role of Epac in the heart. Cell Mol Life Sci 2017; 74:591-606. [PMID: 27549789 PMCID: PMC11107744 DOI: 10.1007/s00018-016-2336-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
As one of the most important second messengers, 3',5'-cyclic adenosine monophosphate (cAMP) mediates various extracellular signals including hormones and neurotransmitters, and induces appropriate responses in diverse types of cells. Since cAMP was formerly believed to transmit signals through only two direct target molecules, protein kinase A and the cyclic nucleotide-gated channel, the sensational discovery in 1998 of another novel direct effecter of cAMP [exchange proteins directly activated by cAMP (Epac)] attracted a great deal of scientific interest in cAMP signaling. Numerous studies on Epac have since disclosed its important functions in various tissues in the body. Recently, observations of genetically manipulated mice in various pathogenic models have begun to reveal the in vivo significance of previous in vitro or cellular-level findings. Here, we focused on the function of Epac in the heart. Accumulating evidence has revealed that both Epac1 and Epac2 play important roles in the structure and function of the heart under physiological and pathological conditions. Accordingly, developing the ability to regulate cAMP-mediated signaling through Epac may lead to remarkable new therapies for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
56
|
Jin H, Fujita T, Jin M, Kurotani R, Hidaka Y, Cai W, Suita K, Prajapati R, Liang C, Ohnuki Y, Mototani Y, Umemura M, Yokoyama U, Sato M, Okumura S, Ishikawa Y. Epac activation inhibits IL-6-induced cardiac myocyte dysfunction. J Physiol Sci 2016; 68:77-87. [PMID: 27995459 PMCID: PMC6353818 DOI: 10.1007/s12576-016-0509-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/25/2016] [Indexed: 11/30/2022]
Abstract
Pro-inflammatory cytokines are released in septic shock and impair cardiac function via the Jak-STAT pathway. It is well known that sympathetic and thus catecholamine signaling is activated thereafter to compensate for cardiac dysfunction. The mechanism of such compensation by catecholamine signaling has been traditionally understood to be cyclic AMP-dependent protein kinase (PKA)-mediated enforcement of cardiac contractility. We hypothesized that the exchange protein activated by cAMP (Epac), a newly identified target of cAMP signaling that functions independently of PKA, also plays a key role in this mechanism. In cultured cardiac myocytes, activation of Epac attenuated the inhibitory effect of interleukin-6 on the increase of intracellular Ca2+ concentration and contractility in response to isoproterenol, most likely through inhibition of the Jak-STAT pathway via SOCS3, with subsequent changes in inducible nitric oxide synthase expression. These findings suggest a new role of catecholamine signaling in compensating for cardiac dysfunction in heart failure. Epac and its downstream pathway may be a novel target for treating cardiac dysfunction in endotoxemia.
Collapse
Affiliation(s)
- Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Meihua Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita-shi, Osaka, 565-8565, Japan
| | - Reiko Kurotani
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Biochemical Engineering, Faculty of Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Rajesh Prajapati
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Chen Liang
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Motohiko Sato
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan. .,Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
57
|
Nakamura T, Fujita T, Kishimura M, Suita K, Hidaka Y, Cai W, Umemura M, Yokoyama U, Uechi M, Ishikawa Y. Vidarabine, an Anti-Herpes Virus Agent, Protects Against the Development of Heart Failure With Relatively Mild Side-Effects on Cardiac Function in a Canine Model of Pacing-Induced Dilated Cardiomyopathy. Circ J 2016; 80:2496-2505. [PMID: 27818454 DOI: 10.1253/circj.cj-16-0736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In heart failure patients, chronic hyperactivation of sympathetic signaling is known to exacerbate cardiac dysfunction. In this study, the cardioprotective effect of vidarabine, an anti-herpes virus agent, which we identified as a cardiac adenylyl cyclase inhibitor, in dogs with pacing-induced dilated cardiomyopathy (DCM) was evaluated. In addition, the adverse effects of vidarabine on basal cardiac function was compared to those of the β-blocker, carvedilol.Methods and Results:Vidarabine and carvedilol attenuated the development of pacing-induced systolic dysfunction significantly and with equal effectiveness. Both agents also inhibited the development of cardiac apoptosis and fibrosis and reduced the Na+-Ca2+exchanger-1 protein level in the heart. Importantly, carvedilol significantly enlarged the left ventricle and atrium; vidarabine, in contrast, did not. Vidarabine-treated dogs maintained cardiac response to β-AR stimulation better than carvedilol-treated dogs did. CONCLUSIONS Vidarabine may protect against pacing-induced DCM with less suppression of basal cardiac function than carvedilol in a dog model. (Circ J 2016; 80: 2496-2505).
Collapse
Affiliation(s)
- Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ohnuki Y, Umeki D, Mototani Y, Shiozawa K, Nariyama M, Ito A, Kawamura N, Yagisawa Y, Jin H, Cai W, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S. Role of phosphodiesterase 4 expression in the Epac1 signaling-dependent skeletal muscle hypertrophic action of clenbuterol. Physiol Rep 2016; 4:4/10/e12791. [PMID: 27207782 PMCID: PMC4886163 DOI: 10.14814/phy2.12791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 04/08/2016] [Indexed: 02/04/2023] Open
Abstract
Clenbuterol (CB), a selective β2-adrenergic receptor (AR) agonist, induces muscle hypertrophy and counteracts muscle atrophy. However, it is paradoxically less effective in slow-twitch muscle than in fast-twitch muscle, though slow-twitch muscle has a greater density of β-AR We recently demonstrated that Epac1 (exchange protein activated by cyclic AMP [cAMP]1) plays a pivotal role in β2-AR-mediated masseter muscle hypertrophy through activation of the Akt and calmodulin kinase II (CaMKII)/histone deacetylase 4 (HDAC4) signaling pathways. Here, we investigated the role of Epac1 in the differential hypertrophic effect of CB using tibialis anterior muscle (TA; typical fast-twitch muscle) and soleus muscle (SOL; typical slow-twitch muscle) of wild-type (WT) and Epac1-null mice (Epac1KO). The TA mass to tibial length (TL) ratio was similar in WT and Epac1KO at baseline and was significantly increased after CB infusion in WT, but not in Epac1KO The SOL mass to TL ratio was also similar in WT and Epac1KO at baseline, but CB-induced hypertrophy was suppressed in both mice. In order to understand the mechanism involved, we measured the protein expression levels of β-AR signaling-related molecules, and found that phosphodiesterase 4 (PDE4) expression was 12-fold greater in SOL than in TA These results are consistent with the idea that increased PDE4-mediated cAMP hydrolysis occurs in SOL compared to TA, resulting in a reduced cAMP concentration that is insufficient to activate Epac1 and its downstream Akt and CaMKII/HDAC4 hypertrophic signaling pathways in SOL of WT This scenario can account for the differential effects of CB on fast- and slow-twitch muscles.
Collapse
Affiliation(s)
- Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
59
|
The E, Du P, Chang Y, Dai F, Wei C, Li J. Role of HSF1-upregulated AC6 in ameliorating heart failure in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:79-85. [PMID: 27643574 DOI: 10.1016/j.etap.2016.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE Our previous studies discovered that Heat shock factor 1(HSF1) can alleviate pressure overload induced heart failure in mice. However, its molecular mechanisms are yet to be further explained. Many studies have already verified that Adenylyl Cyclase 6 (AC6) can ameliorate heart failure, but it is still unknown whether or not the pathway HSF1 is involved in the process. Our preliminary experiment showed that the expression level of AC6 is positively associated with HSF1. Therefore, in the present study, we aimed to explore whether HSF1 can play its role in ameliorating heart failure by regulating AC6, and how the potential internal mechanisms work. METHODS We applied the Transverse Aortic Constriction (TAC) for 4 weeks to develop the C57BL/6 mice pressure overload induced heart failure model. First, the mice were divided into TAC group and SHAM group. Changes in the cardiac function and morphology of the mice were observed by an ultrasonic device and Masson staining slices, expressions of AC6 mRNA were observed by RT-QPCR, expressions of HSF1 and proteinkinase A (PKA) were examined by Western Blotting, and the levels of cyclic adenosine monophosphate (cAMP) from aortic blood were measured by ELISA. Second, the TAC group were further divided into subgroups of HSF1 transgene mice, HSF1 knockout mice and wild type mice, followed by the aforesaid observations. RESULTS In the SHAM group, no obvious variations of cardiac function, AC6 mRNAHSF1, PKA, cAMP and other test results were found among each of the subgroups. Compared to the SHAM group, the TAC group presented clearly weakened heart functions, while, expressions of AC6 mRNA, HSF1, PKA and cAMP all recorded obvious increases. In the TAC group, compared to the WT subgroup, the HSF1 KO subgroup presented decreases in expressions of AC6 mRNA, HSF1, PKA and cAMP, and at the same time, the heart functions were weaker, while, the HSF1 TG subgroup recorded the contrary results. CONCLUSION In the pressure overload heart failure model, HSF1 can ameliorate heart failure by positively regulating the pathway of AC6/cAMP/PKA.
Collapse
Affiliation(s)
- Erlinda The
- Key Laboratory of Arrhythmias of the Ministry of Education of China, and Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Peizhao Du
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yaowei Chang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fangjie Dai
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chunyan Wei
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiming Li
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
60
|
Micova P, Hahnova K, Hlavackova M, Elsnicova B, Chytilova A, Holzerova K, Zurmanova J, Neckar J, Kolar F, Novakova O, Novotny J. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Mol Cell Biochem 2016; 423:151-163. [DOI: 10.1007/s11010-016-2833-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/23/2016] [Indexed: 11/30/2022]
|
61
|
Abstract
INTRODUCTION/BACKGROUND Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. SOURCES OF DATA A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. AREAS OF AGREEMENT Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. AREAS OF CONTROVERSY Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. GROWING POINTS Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. AREAS TIMELY FOR DEVELOPING RESEARCH Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies.
Collapse
Affiliation(s)
- Adam Nabeebaccus
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Sean Zheng
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| |
Collapse
|
62
|
Bravo CA, Vatner DE, Vatner SF. Response to Letter to the Editor on "Does Vidarabine Mediate Cardioprotection via Inhibition of AC5?". J Pharmacol Exp Ther 2016; 358:244-5. [PMID: 27402380 PMCID: PMC6047221 DOI: 10.1124/jpet.116.234807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Claudio A Bravo
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
63
|
Xu B, Daimon M. Cardiac aging phenomenon and its clinical features by echocardiography. J Echocardiogr 2016; 14:139-145. [DOI: 10.1007/s12574-016-0292-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/01/2016] [Accepted: 04/24/2016] [Indexed: 01/09/2023]
|
64
|
Cai W, Fujita T, Hidaka Y, Jin H, Suita K, Prajapati R, Liang C, Umemura M, Yokoyama U, Sato M, Okumura S, Ishikawa Y. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction. Biochem Biophys Res Commun 2016; 475:1-7. [PMID: 27117748 DOI: 10.1016/j.bbrc.2016.04.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023]
Abstract
Type 5 adenylyl cyclase (AC5) plays an important role in the development of chronic catecholamine stress-induced heart failure and arrhythmia in mice. Epac (exchange protein activated by cAMP), which is directly activated by cAMP independent of protein kinase A, has been recently identified as a novel mediator of cAMP signaling in the heart. However, the role of Epac in AC5-mediated cardiac dysfunction and arrhythmias remains poorly understood. We therefore generated AC5 transgenic mice (AC5TG) with selective disruption of the Epac1 gene (AC5TG-Epac1KO), and compared their phenotypes with those of AC5TG after chronic isoproterenol (ISO) infusion. Decreased cardiac function as well as increased susceptibility to pacing-induced atrial fibrillation (AF) in response to ISO were significantly attenuated in AC5TG-Epac1KO mice, compared to AC5TG mice. Increased cardiac apoptosis and cardiac fibrosis were also concomitantly attenuated in AC5TG-Epac1KO mice compared to AC5TG mice. These findings indicate that Epac1 plays an important role in AC5-mediated cardiac dysfunction and AF susceptibility.
Collapse
Affiliation(s)
- Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Rajesh Prajapati
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chen Liang
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Motohiko Sato
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Physiology, Aichi Medical University, Aichi, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Tsurumi University School of Dental Medicine, Yokohama, Japan.
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
65
|
Raju G, Ram Reddy A. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 154:84-88. [PMID: 26519914 DOI: 10.1016/j.saa.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/03/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.
Collapse
Affiliation(s)
- Gajula Raju
- Department of Chemistry, University College of Science, Osmania University Campus, Hyderabad-500 007, India
| | - A Ram Reddy
- Department of Chemistry, University College of Science, Osmania University Campus, Hyderabad-500 007, India.
| |
Collapse
|
66
|
Cardiac Effects of Attenuating Gsα - Dependent Signaling. PLoS One 2016; 11:e0146988. [PMID: 26811901 PMCID: PMC4727906 DOI: 10.1371/journal.pone.0146988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 12/28/2015] [Indexed: 01/21/2023] Open
Abstract
Aims Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option. Methods and Results We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice) overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05) and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02). No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01) and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001). In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation. Conclusion Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.
Collapse
|
67
|
Vatner DE, Yan L, Lai L, Yuan C, Mouchiroud L, Pachon RE, Zhang J, Dillinger J, Houtkooper RH, Auwerx J, Vatner SF. Type 5 adenylyl cyclase disruption leads to enhanced exercise performance. Aging Cell 2015; 14:1075-84. [PMID: 26424149 PMCID: PMC4693460 DOI: 10.1111/acel.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/18/2022] Open
Abstract
The most important physiological mechanism mediating enhanced exercise performance is increased sympathetic, beta adrenergic receptor (β-AR), and adenylyl cyclase (AC) activity. This is the first report of decreased AC activity mediating increased exercise performance. We demonstrated that AC5 disruption, that is, knock out (KO) mice, a longevity model, increases exercise performance. Importantly for its relation to longevity, exercise was also improved in old AC5 KO. The mechanism resided in skeletal muscle rather than in the heart, as confirmed by cardiac- and skeletal muscle-specific AC5 KO's, where exercise performance was no longer improved by the cardiac-specific AC5 KO, but was by the skeletal muscle-specific AC5 KO, and there was no difference in cardiac output during exercise in AC5 KO vs. WT. Mitochondrial biogenesis was a major mechanism mediating the enhanced exercise. SIRT1, FoxO3a, MEK, and the anti-oxidant, MnSOD were upregulated in AC5 KO mice. The improved exercise in the AC5 KO was blocked with either a SIRT1 inhibitor, MEK inhibitor, or by mating the AC5 KO with MnSOD hetero KO mice, confirming the role of SIRT1, MEK, and oxidative stress mechanisms. The Caenorhabditis elegans worm AC5 ortholog, acy-3 by RNAi, also improved fitness, mitochondrial function, antioxidant defense, and lifespan, attesting to the evolutionary conservation of this pathway. Thus, decreasing sympathetic signaling through loss of AC5 is not only a mechanism to improve exercise performance, but is also a mechanism to improve healthful aging, as exercise also protects against diabetes, obesity, and cardiovascular disease, which all limit healthful aging.
Collapse
Affiliation(s)
- Dorothy E. Vatner
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Lin Yan
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Lo Lai
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Chujun Yuan
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Laurent Mouchiroud
- Laboratory of Integrative and Systems Physiology Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ronald E. Pachon
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Jie Zhang
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Jean‐Guillaume Dillinger
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| | - Riekelt H. Houtkooper
- Laboratory of Integrative and Systems Physiology Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Stephen F. Vatner
- Department of Cell Biology & Molecular Medicine New Jersey Medical School Rutgers University Newark NJ USA
| |
Collapse
|
68
|
Boularan C, Gales C. Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 2015; 6:203. [PMID: 26483685 PMCID: PMC4589651 DOI: 10.3389/fphar.2015.00203] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
Collapse
Affiliation(s)
- Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| | - Céline Gales
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|
69
|
Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition. PLoS One 2015; 10:e0128263. [PMID: 26053620 PMCID: PMC4460071 DOI: 10.1371/journal.pone.0128263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/24/2015] [Indexed: 01/09/2023] Open
Abstract
Background Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB) induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC) isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX)-induced muscle atrophy and fast-to-slow MHC isoform transition. Methodology We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC) composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1) expression, Akt/mammalian target of rapamycin (mTOR) pathway, and calcineurin pathway) and atrophic signaling (Akt/Forkhead box-O (FOXO) pathway and myostatin expression) in masseter muscle of rats treated with DEX and/or CB. Results and Conclusion Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth), and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.
Collapse
|
70
|
Inhibition of adenylyl cyclase type 5 increases longevity and healthful aging through oxidative stress protection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:250310. [PMID: 25945149 PMCID: PMC4405291 DOI: 10.1155/2015/250310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
Mice with disruption of adenylyl cyclase type 5 (AC5 knockout, KO) live a third longer than littermates. The mechanism, in part, involves the MEK/ERK pathway, which in turn is related to protection against oxidative stress. The AC5 KO model also protects against diabetes, obesity, and the cardiomyopathy induced by aging, diabetes, and cardiac stress and also demonstrates improved exercise capacity. All of these salutary features are also mediated, in part, by oxidative stress protection. For example, chronic beta adrenergic receptor stimulation induced cardiomyopathy was rescued by AC5 KO. Conversely, in AC5 transgenic (Tg) mice, where AC5 is overexpressed in the heart, the cardiomyopathy was exacerbated and was rescued by enhancing oxidative stress resistance. Thus, the AC5 KO model, which resists oxidative stress, is uniquely designed for clinical translation, since it not only increases longevity and exercise, but also protects against diabetes, obesity, and cardiomyopathy. Importantly, inhibition of AC5's action to prolong longevity and enhance healthful aging, as well as its mechanism through resistance to oxidative stress, is unique among all of the nine AC isoforms.
Collapse
|
71
|
Kamide T, Okumura S, Ghosh S, Shinoda Y, Mototani Y, Ohnuki Y, Jin H, Cai W, Suita K, Sato I, Umemura M, Fujita T, Yokoyama U, Sato M, Furutani K, Kitano H, Ishikawa Y. Oscillation of cAMP and Ca(2+) in cardiac myocytes: a systems biology approach. J Physiol Sci 2015; 65:195-200. [PMID: 25585963 PMCID: PMC10717207 DOI: 10.1007/s12576-014-0354-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/18/2014] [Indexed: 12/19/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and Ca(2+) levels may oscillate in harmony within excitable cells; a mathematical oscillation loop model, the Cooper model, of these oscillations was developed two decades ago. However, in that model all adenylyl cyclase (AC) isoforms were assumed to be inhibited by Ca(2+), and it is now known that the heart expresses multiple AC isoforms, among which the type 5/6 isoforms are Ca(2+)-inhibitable whereas the other five (AC2, 3, 4, 7, and 9) are not. We used a computational systems biology approach with CellDesigner simulation software to develop a comprehensive graphical map and oscillation loop model for cAMP and Ca(2+). This model indicated that Ca(2+)-mediated inhibition of AC is essential to create oscillations of Ca(2+) and cAMP, and the oscillations were not altered by incorporation of phosphodiesterase-mediated cAMP hydrolysis or PKA-mediated inhibition of AC into the model. More importantly, they were created but faded out immediately in the co-presence of Ca(2+)-noninhibitable AC isoforms. Because the subcellular locations of AC isoforms are different, spontaneous cAMP and Ca(2+) oscillations may occur within microdomains containing only Ca(2+)-inhibitable isoforms in cardiac myocytes, which might be necessary for fine tuning of excitation-contraction coupling.
Collapse
Affiliation(s)
- Takehisa Kamide
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-2 Tsurumi, Tsurumi-ku, Yokohama, 230-8501 Japan
| | - Samik Ghosh
- The Systems Biology Institute, Minato, Tokyo, 108-0071 Japan
| | - Yoko Shinoda
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-2 Tsurumi, Tsurumi-ku, Yokohama, 230-8501 Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-2 Tsurumi, Tsurumi-ku, Yokohama, 230-8501 Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-2 Tsurumi, Tsurumi-ku, Yokohama, 230-8501 Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Itaru Sato
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Motohiko Sato
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195 Japan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, 565-0871 Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Minato, Tokyo, 108-0071 Japan
- Okinawa Institute of Science and Technology Graduate School, Onna-Son, Okinawa, 904-0412 Japan
- Laboratory for Disease Systems Modeling, Riken Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| |
Collapse
|
72
|
Coupling of β1-adrenergic receptor to type 5 adenylyl cyclase and its physiological relevance in cardiac myocytes. Biochem Biophys Res Commun 2015; 458:531-535. [PMID: 25677623 DOI: 10.1016/j.bbrc.2015.01.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/27/2015] [Indexed: 01/10/2023]
Abstract
Myocardial β-adrenergic receptor (β-AR) β1- and β2-subtypes are highly homologous, but play opposite roles in cardiac apoptosis and heart failure, as do cardiac adenylyl cyclase (AC) subtypes 5 (AC5) and 6 (AC6): β1-AR and AC5 promote cardiac remodeling, while β2-AR and AC6 activate cell survival pathways. However, the mechanisms involved remain poorly understood. We hypothesized that AC5 is coupled preferentially to β1-AR rather than β2-AR, and we examined this idea by means of pharmacological and genetic approaches. We found that selective inhibition of AC5 with 2'5'-dideoxyadenosine significantly suppressed cAMP accumulation and cardiac apoptosis induced by selective β1-AR stimulation, but had no effect on cAMP accumulation and cardiac apoptosis in response to selective β2-AR stimulation. The results of selective stimulation of β1-AR and β2-AR in neonatal cardiac myocytes prepared from wild-type and AC5-knockout mice were also consistent with the idea that β1-AR selectively couples with AC5. We believe these results are helpful for understanding the mechanisms underlying the different roles of AR subtypes in healthy and diseased hearts.
Collapse
|
73
|
Kang S, Hong X, Ruan CW, Yu P, Yu SS, Chen M, Zhang DF, Fan HM, Liu ZM. Effects of GRK5 and ADRB1 polymorphisms influence on systolic heart failure. J Transl Med 2015; 13:44. [PMID: 25638254 PMCID: PMC4345005 DOI: 10.1186/s12967-015-0402-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G-protein receptor kinase 5 (GRK5) Gln41 > Leu and β1-adrenergic receptor (ADRB1) Arg389 > Gly polymorphisms presented the different distribution of genotype frequencies between Caucasian American and African American, and produced the difference in β-blocker treatment effect among them with systolic heart failure (SHF). OBJECTIVE This study sought to identify the distributed characteristics of these variant genotypes in Chinese population, and influence of GRK5 and ADRB1 polymorphisms on SHF morbidity and β-blocker treatment effect in patients with SHF. METHODS This study was based on cross-sectional survey data. 1794 and 1718 subjects' ADRB1 and GRK5 gene sequencing (sanger method) data were achieved respectively. Blood samples collection, clinical laboratory detection, electrocardiogram and echocardiography examinations were performed. Medication usage was confirmed at in-hospital visits or the questionnaire by personal interview. RESULTS GRK5 Leu41Leu genotype was not found in our Chinese population. In non-SHF population, allele frequencies of GRK5 Gln41 and Leu41 were 2782 (0.992) and 22 (0.008) (Hardy-Weinberg equilibrium test χ(2) = 0.088, P = 0.767), and allele frequencies of ADRB1 Arg389 and Gly389 were 2127 (0.715) and 849 (0.285) (χ(2) = 0.272, P = 0.602). In SHF patients, allele frequencies of Gln41 and Leu41 were 446 (0.991) and 4 (0.009) (χ(2) = 0.018, P = 0.893), and allele frequencies of Arg389 and Gly389 were 331 (0.726) and 125 (0.274) (χ(2) = 1.892, P = 0.169). Further in logistic regression model, these ADRB1 and GRK5 variants were not significantly independently associated with the risk of SHF morbidity. Those carrying genotype ADRB1 Gly389Gly did not reduce significantly the risk of SHF morbidity after β-blocker therapy. CONCLUSIONS GRK5 Leu41Leu genotype was not found in our Chinese population, neither ADRB1 nor GRK5 variants presented independently associated with the risk of SHF morbidity, most ADRB1 and GRK5 polymorphisms did decrease significantly the risk of SHF morbidity after β-blocker therapy except for those carrying genotype ADRB1 Gly389Gly.
Collapse
Affiliation(s)
- Sheng Kang
- Department of cardiology, Shanghai East hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| | - Xuan Hong
- Department of cardiology, Shanghai East hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| | - Chang-wu Ruan
- Department of Cardiology, Shanghai the 8th People's Hospital, Caobao Road 8, 200235, Shanghai, China.
| | - Ping Yu
- Department of cardiology, Shanghai East hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| | - Shan-shan Yu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| | - Ming Chen
- Department of cardiology, Shanghai East hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| | - Dai-fu Zhang
- Department of Cardiology, Pudong New District People's Hospital, Chuan Ring Road 490, 201299, Shanghai, China.
| | - Hui-min Fan
- Department of cardiology, Shanghai East hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| | - Zhong-min Liu
- Department of cardiology, Shanghai East hospital, Tongji University, Jimo Rd 150, 200120, Shanghai, P. R. China.
| |
Collapse
|
74
|
Zhao Z, Babu GJ, Wen H, Fefelova N, Gordan R, Sui X, Yan L, Vatner DE, Vatner SF, Xie LH. Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart. Am J Physiol Heart Circ Physiol 2014; 308:H240-9. [PMID: 25485900 DOI: 10.1152/ajpheart.00630.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibition of β-adrenergic receptor (β-AR) signaling is one of the most common therapeutic approaches for patients with arrhythmias. Adenylyl cyclase (AC) is the key enzyme responsible for transducing β-AR stimulation to increases in cAMP. The two major AC isoforms in the heart are types 5 and 6. Therefore, it is surprising that prior studies on overexpression of AC5 and AC6 in transgenic (Tg) mice have not examined mediation of arrhythmogenesis. Our goal was to examine the proarrhythmic substrate in AC5Tg hearts. Intracellular calcium ion (Ca(2+) i) was imaged in fluo-4 AM-loaded ventricular myocytes. The sarcoplasmic reticulum (SR) Ca(2+) content, fractional Ca(2+) release, and twitch Ca(2+) transient were significantly higher in the AC5Tg vs. wild-type (WT) myocytes, indicating Ca(2+) overload in AC5Tg myocytes. Action potential (AP) duration was significantly longer in AC5Tg than in WT myocytes. Additionally, AC5Tg myocytes developed spontaneous Ca(2+) waves in a larger fraction compared with WT myocytes, particularly when cells were exposed to isoproterenol. The Ca(2+) waves further induced afterdepolarizations and triggered APs. AC5Tg hearts had increased level of SERCA2a, oxidized Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and phosphorylation of ryanodine receptors (RyR) at the CaMKII site, especially after isoproterenol treatment. This was consistent with higher reactive oxygen species production in AC5Tg myocytes after isoproterenol treatment. Isoproterenol induced more severe arrhythmias in AC5Tg than in WT mice. We conclude that AC5 overexpression promotes arrhythmogenesis, by inducing SR Ca(2+) overload and hyperactivation of RyR (phosphorylation by CaMKII), which in turn induces spontaneous Ca(2+) waves and afterdepolarizations.
Collapse
Affiliation(s)
- Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China; Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey; Department of Reproductive and Genetic Toxicology, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, People's Republic of China; and
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Xiangzhen Sui
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lin Yan
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, New Jersey; School of Pharmacology, Xinxiang Medical University, Xixiang, People's Republic of China
| |
Collapse
|
75
|
Ohnuki Y, Umeki D, Mototani Y, Jin H, Cai W, Shiozawa K, Suita K, Saeki Y, Fujita T, Ishikawa Y, Okumura S. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation. J Physiol 2014; 592:5461-75. [PMID: 25344550 DOI: 10.1113/jphysiol.2014.282996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling.
Collapse
Affiliation(s)
- Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Huiling Jin
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Wenqian Cai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
76
|
Yan L, Vatner SF, Vatner DE. Disruption of type 5 adenylyl cyclase prevents β-adrenergic receptor cardiomyopathy: a novel approach to β-adrenergic receptor blockade. Am J Physiol Heart Circ Physiol 2014; 307:H1521-8. [PMID: 25193472 DOI: 10.1152/ajpheart.00491.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
β-Adrenergic receptor (β-AR) blockade is widely used to treat heart failure, since the adverse effects of chronic β-AR stimulation are central to the pathogenesis of this disease state. Transgenic (Tg) mice, where β-AR signaling is chronically enhanced by overexpression of cardiac β₂-ARs, is a surrogate for this mechanism, since these mice develop cardiomyopathy as reflected by reduced left ventricular (LV) function, increased fibrosis, apoptosis, and myocyte hypertrophy. We hypothesized that disruption of type 5 adenylyl cyclase (AC5), which is in the β-AR signaling pathway in the heart, but exerts only a minor β-AR blocking effect, could prevent the cardiomyopathy in β₂-AR Tg mice without the negative effects of full β-AR blockade. Accordingly, we mated β₂-AR Tg mice with AC5 knockout (KO) mice. The β₂-AR Tg × AC5 KO bigenic mice prevented the cardiomyopathy as reflected by improved LV ejection fraction, reduced apoptosis, fibrosis, and myocyte size and preserved exercise capacity. The rescue was not simply due to a β-blocking effect of AC5 KO, since neither baseline LV function nor the response to isoproterenol was diminished substantially compared with the negative inotropic effects of β-blockade. However, AC5 disruption in β₂-AR Tg activates the antioxidant, manganese superoxide dismutase, an important mechanism protecting the heart from cardiomyopathy. These results indicate that disruption of AC5 prevents the cardiomyopathy induced by chronically enhanced β-AR signaling in mice with overexpressed β₂-AR, potentially by enhancing resistance to oxidative stress and apoptosis, suggesting a novel, alternative approach to β-AR blockade.
Collapse
Affiliation(s)
- Lin Yan
- Departments of Cell Biology and Molecular Medicine and Medicine and the Cardiovascular Research Institute, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Stephen F Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine and the Cardiovascular Research Institute, Rutgers University-New Jersey Medical School, Newark, New Jersey
| | - Dorothy E Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine and the Cardiovascular Research Institute, Rutgers University-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
77
|
Watkins AJ, Sinclair KD. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am J Physiol Heart Circ Physiol 2014; 306:H1444-52. [DOI: 10.1152/ajpheart.00981.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the association between maternal periconceptional diet and adult offspring health is well characterised, our understanding of the impact of paternal nutrition at the time of conception on offspring phenotype remains poorly defined. Therefore, we determined the effect of a paternal preconception low protein diet (LPD) on adult offspring cardiovascular and metabolic health in mice. Male C57BL/6 mice were fed either normal protein diet (NPD; 18% casein) or LPD (9% casein) for 7 wk before mating. At birth, a reduced male-to-female ratio ( P = 0.03) and increased male offspring weight ( P = 0.009) were observed in litters from LPD compared with NPD stud males with no differences in mean litter size. LPD offspring were heavier than NPD offspring at 2 and 3 wk of age ( P < 0.02). However, no subsequent differences in body weight were observed. Adult male offspring derived from LPD studs developed relative hypotension (decreased by 9.2 mmHg) and elevated heart rate ( P < 0.05), whereas both male and female offspring displayed vascular dysfunction and impaired glucose tolerance relative to NPD offspring. At cull (24 wk), LPD males had elevated adiposity ( P = 0.04), reduced heart-to-body weight ratio ( P = 0.04), and elevated circulating TNF-α levels ( P = 0.015) compared with NPD males. Transcript expression in offspring heart and liver tissue was reduced for genes involved in calcium signaling ( Adcy, Plcb, Prkcb) and metabolism ( Fto) in LPD offspring ( P < 0.03). These novel data reveal the impact of suboptimal paternal nutrition on adult offspring cardiovascular and metabolic homeostasis, and provide some insight into the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Adam J. Watkins
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; and
- Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; and
| |
Collapse
|
78
|
Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflugers Arch 2014; 466:1163-75. [PMID: 24756197 DOI: 10.1007/s00424-014-1515-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022]
Abstract
Cyclic AMP regulates a multitude of cellular responses and orchestrates a network of intracellular events. In the heart, cAMP is the main second messenger of the β-adrenergic receptor (β-AR) pathway producing positive chronotropic, inotropic, and lusitropic effects during sympathetic stimulation. Whereas short-term stimulation of β-AR/cAMP is beneficial for the heart, chronic activation of this pathway triggers pathological cardiac remodeling, which may ultimately lead to heart failure (HF). Cyclic AMP is controlled by two families of enzymes with opposite actions: adenylyl cyclases, which control cAMP production and phosphodiesterases, which control its degradation. The large number of families and isoforms of these enzymes, their different localization within the cell, and their organization in macromolecular complexes leads to a high level of compartmentation, both in space and time, of cAMP signaling in cardiac myocytes. Here, we review the expression level, molecular characteristics, functional properties, and roles of the different adenylyl cyclase and phosphodiesterase families expressed in heart muscle and the changes that occur in cardiac hypertrophy and failure.
Collapse
|
79
|
Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, Jin H, Ohnuki Y, Tsuneoka Y, Kurotani R, Suita K, Kawakami Y, Hamaguchi S, Abe T, Kiyonari H, Tsunematsu T, Bai Y, Suzuki S, Hidaka Y, Umemura M, Ichikawa Y, Yokoyama U, Sato M, Ishikawa F, Izumi-Nakaseko H, Adachi-Akahane S, Tanaka H, Ishikawa Y. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest 2014; 124:2785-801. [PMID: 24892712 DOI: 10.1172/jci64784] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PKA phosphorylates multiple molecules involved in calcium (Ca2+) handling in cardiac myocytes and is considered to be the predominant regulator of β-adrenergic receptor-mediated enhancement of cardiac contractility; however, recent identification of exchange protein activated by cAMP (EPAC), which is independently activated by cAMP, has challenged this paradigm. Mice lacking Epac1 (Epac1 KO) exhibited decreased cardiac contractility with reduced phospholamban (PLN) phosphorylation at serine-16, the major PKA-mediated phosphorylation site. In Epac1 KO mice, intracellular Ca2+ storage and the magnitude of Ca2+ movement were decreased; however, PKA expression remained unchanged, and activation of PKA with isoproterenol improved cardiac contractility. In contrast, direct activation of EPAC in cardiomyocytes led to increased PLN phosphorylation at serine-16, which was dependent on PLC and PKCε. Importantly, Epac1 deletion protected the heart from various stresses, while Epac2 deletion was not protective. Compared with WT mice, aortic banding induced a similar degree of cardiac hypertrophy in Epac1 KO; however, lack of Epac1 prevented subsequent cardiac dysfunction as a result of decreased cardiac myocyte apoptosis and fibrosis. Similarly, Epac1 KO animals showed resistance to isoproterenol- and aging-induced cardiomyopathy and attenuation of arrhythmogenic activity. These data support Epac1 as an important regulator of PKA-independent PLN phosphorylation and indicate that Epac1 regulates cardiac responsiveness to various stresses.
Collapse
|
80
|
Miyamoto SD, Stauffer BL, Polk J, Medway A, Friedrich M, Haubold K, Peterson V, Nunley K, Nelson P, Sobus R, Stenmark KR, Sucharov CC. Gene expression and β-adrenergic signaling are altered in hypoplastic left heart syndrome. J Heart Lung Transplant 2014; 33:785-93. [PMID: 24793904 DOI: 10.1016/j.healun.2014.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The purpose of the current study was to define the myocellular changes and adaptation of the β-adrenergic receptor (β-AR) system that occur in the systemic right ventricle (RV) of children with hypoplastic left heart syndrome (HLHS). METHODS Explanted hearts from children with HLHS and non-failing controls were used for this study. HLHS patients were divided into 2 groups: "compensated" (C-HLHS), infants listed for primary transplant with normal RV function and absence of heart failure symptoms, and "decompensated" (D-HLHS), patients listed for transplant after failed surgical palliation with RV failure and/or refractory protein-losing enteropathy or plastic bronchitis. RESULTS Compared with non-failing control RVs, the HLHS RV demonstrated decreased sarcoplasmic reticulum calcium-adenosine triphosphatase 2a and α-myosin heavy chain (MHC) gene expression, decreased total β-AR due to down-regulation of β1-AR, preserved cyclic adenosine monophosphate levels, and increased calcium/calmodulin-dependent protein kinase II (CaMKII) activity. There was increased atrial natriuretic peptide expression only in the C-HLHS group. Unique to those in the D-HLHS group was increased β-MHC and decreased α-MHC protein expression (MHC isoform switching), increased adenylyl cyclase 5 expression, and increased phosphorylation of the CaMK target site on phospholamban, threonine 17. CONCLUSIONS The HLHS RV has an abnormal myocardial gene expression pattern, downregulation of β1-AR, preserved cyclic adenosine monophosphate levels, and increased CaMKII activity compared with the non-failing control RV. There is MHC isoform switching, increased adenylyl cyclase 5, and increased phosphorylation of phospholamban threonine 17 only in the D-HLHS group. Although abnormal gene expression and changes in the β-AR system precede clinically evident ventricular failure in HLHS, additional unique adaptations occur in those with HLHS and failed surgical palliation.
Collapse
Affiliation(s)
- Shelley D Miyamoto
- Department of Pediatrics and Children's Hospital Colorado, Aurora, Colorado.
| | - Brian L Stauffer
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado; Division of Cardiology, Denver Health and Hospital Authority, Denver, Colorado
| | - Jeremy Polk
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Allen Medway
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Matthew Friedrich
- Department of Pediatrics and Children's Hospital Colorado, Aurora, Colorado
| | - Kurt Haubold
- Department of Pediatrics and Children's Hospital Colorado, Aurora, Colorado
| | - Valencia Peterson
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Karin Nunley
- Department of Pediatrics and Children's Hospital Colorado, Aurora, Colorado
| | - Penny Nelson
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Rebecca Sobus
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics and Children's Hospital Colorado, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, University of Colorado Denver School of Medicine, Aurora, Colorado
| |
Collapse
|
81
|
Bukhari F, MacGillivray T, del Monte F, Hajjar RJ. Genetic maneuvers to ameliorate ventricular function in heart failure: therapeutic potential and future implications. Expert Rev Cardiovasc Ther 2014; 3:85-97. [PMID: 15723577 DOI: 10.1586/14779072.3.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy to treat heart failure has evolved into a growing field of investigation yielding remarkable results in preclinical models. Whether these results will persist in clinical trials remains to be seen. However, researchers still face a number of obstacles that need to be overcome before this treatment can be employed effectively. Efforts are required to identify better vectors with minimal side effects and maximal efficiency and durability. There is also a need to develop less invasive and more effective techniques to deliver these vectors. This review will discuss different methods to achieve these goals, the various pathologic mechanisms that have been targeted so far and those with strong potential for use in the future.
Collapse
Affiliation(s)
- Fariya Bukhari
- University of Arizona, Department of Medicine, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
82
|
Oikawa M, Wu M, Lim S, Knight WE, Miller CL, Cai Y, Lu Y, Blaxall BC, Takeishi Y, Abe JI, Yan C. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 2013; 64:11-9. [PMID: 23988739 PMCID: PMC3869570 DOI: 10.1016/j.yjmcc.2013.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Phosphodiesterase 3A (PDE3A) is a major regulator of cAMP in cardiomyocytes. PDE3 inhibitors are used for acute treatment of congestive heart failure, but are associated with increased incidence of arrhythmias and sudden death with long-term use. We previously reported that chronic PDE3A downregulation or inhibition induced myocyte apoptosis in vitro. However, the cardiac protective effect of PDE3A has not been demonstrated in vivo in disease models. In this study, we examined the role of PDE3A in regulating myocardial function and survival in vivo using genetically engineered transgenic mice with myocardial overexpression of the PDE3A1 isozyme (TG). TG mice have reduced cardiac function characterized by reduced heart rate and ejection fraction (52.5±7.8% vs. 83.9±4.7%) as well as compensatory expansion of left ventricular diameter (4.19±0.19mm vs. 3.10±0.18mm). However, there was no maladaptive increase of fibrosis and apoptosis in TG hearts compared to wild type (WT) hearts, and the survival rates also remained the same. The diminution of cardiac contractile function is very likely attributed to a decrease in beta-adrenergic receptor (β-AR) response in TG mice. Importantly, the myocardial infarct size (4.0±1.8% vs. 24.6±3.8%) and apoptotic cell number (1.3±1.0% vs. 5.6±1.5%) induced by ischemia/reperfusion (I/R) injury were significantly attenuated in TG mice. This was associated with decreased expression of inducible cAMP early repressor (ICER) and increased expression of anti-apoptotic protein BCL-2. To further verify the anti-apoptotic effects of PDE3A1, we performed in vitro apoptosis study in isolated adult TG and WT cardiomyocytes. We found that the apoptotic rates stimulated by hypoxia/reoxygenation or H2O2 were indeed significantly reduced in TG myocytes, and the differences between TG and WT myocytes were completely reversed in the presence of the PDE3 inhibitor milrinone. These together indicate that PDE3A1 negatively regulates β-AR signaling and protects against I/R injury by inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Masayoshi Oikawa
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Meiping Wu
- Department of Cardiovascular, Shanghai Hospital of TCM, Affiliated to Shanghai University of TCM, Shanghai, China
| | - Soyeon Lim
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Walter E. Knight
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Clint L. Miller
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Yujun Cai
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Yan Lu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Burns C. Blaxall
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Yasuchika Takeishi
- Fukushima Medical University, Department of Cardiology and Hematology, Fukushima city, Fukushima prefecture, Japan
| | - Jun-ichi Abe
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
83
|
Brand CS, Hocker HJ, Gorfe AA, Cavasotto CN, Dessauer CW. Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds. J Pharmacol Exp Ther 2013; 347:265-75. [PMID: 24006339 DOI: 10.1124/jpet.113.208157] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatment of dysfunctions involving AC/cAMP signaling. However, inhibitors described as AC5- or AC1-selective have not been screened against the full panel of AC isoforms. We have measured pharmacological inhibitor profiles for all transmembrane AC isoforms. We found that 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22,536), 2-amino-7-(furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), and adenine 9-β-d-arabinofuranoside (Ara-A), described as supposedly AC5-selective, do not discriminate between AC5 and AC6, whereas the putative AC1-selective inhibitor 5-[[2-(6-amino-9H-purin-9-yl)ethyl]amino]-1-pentanol (NB001) does not directly target AC1 to reduce cAMP levels. A structure-based virtual screen targeting the ATP binding site of AC was used to identify novel chemical structures that show some preference for AC1 or AC2. Mutation of the AC2 forskolin binding pocket does not interfere with inhibition by SQ22,536 or the novel AC2 inhibitor, suggesting binding to the catalytic site. Thus, we show that compounds lacking the adenine chemical signature and targeting the ATP binding site can potentially be used to develop AC isoform-specific inhibitors, and discuss the need to reinterpret literature using AC5/6-selective molecules SQ22,536, NKY80, and Ara-A.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Integrative Biology and Pharmacology (C.S.B., H.J.H., A.A.G., C.W.D.), and School of Biomedical Informatics (C.N.C.), University of Texas Health Science Center, Houston, Texas; and Instituto de Investigación en Biomedicina de Buenos Aires-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina (C.N.C.)
| | | | | | | | | |
Collapse
|
84
|
Liao Y, Bin J, Luo T, Zhao H, Ledent C, Asakura M, Xu D, Takashima S, Kitakaze M. CB1 cannabinoid receptor deficiency promotes cardiac remodeling induced by pressure overload in mice. Int J Cardiol 2013; 167:1936-44. [DOI: 10.1016/j.ijcard.2012.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 03/07/2012] [Accepted: 05/04/2012] [Indexed: 02/09/2023]
|
85
|
Braeunig JH, Schweda F, Han PL, Seifert R. Similarly potent inhibition of adenylyl cyclase by P-site inhibitors in hearts from wild type and AC5 knockout mice. PLoS One 2013; 8:e68009. [PMID: 23840883 PMCID: PMC3698094 DOI: 10.1371/journal.pone.0068009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/24/2013] [Indexed: 01/26/2023] Open
Abstract
Adenylyl cyclase type 5 (AC5) was described as major cardiac AC isoform. The knockout of AC5 (AC5KO) exerted cardioprotective effects in heart failure. Our study explored the impact of AC5KO on mouse heart AC activities and evaluated putative AC5-selective inhibitors. In cardiac membranes from AC5KO mice, basal AC activity was decreased, while AC stimulation was intact. The putative AC5-selective P-site inhibitors SQ22,536 [9-(tetra-hydro-2-furanyl)-9H-purin-6-amine], vidarabine (9-β-D-arabinosyladenine) and NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] inhibited recombinant AC5 more potently than AC2 and AC1, but selectivity was only modest (∼4-40-fold). These compounds inhibited cardiac AC from WT and AC5KO mice with similar potencies. In conclusion, AC regulation in AC5KO hearts was unimpaired, questioning the supposed dominant role of AC5 in the heart. Moreover, the AC inhibitors SQ22,536, NKY80 and vidarabine lack adequate selectivity for AC5 and, therefore, do not present suitable tools to study AC5-specific functions.
Collapse
Affiliation(s)
- Joerg H. Braeunig
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Pyung-Lim Han
- Department of Brain and Cognitive Science, Graduate School, Ewha Woman University, Seoul, Korea
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
86
|
Vatner SF, Park M, Yan L, Lee GJ, Lai L, Iwatsubo K, Ishikawa Y, Pessin J, Vatner DE. Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. Am J Physiol Heart Circ Physiol 2013; 305:H1-8. [PMID: 23624627 DOI: 10.1152/ajpheart.00080.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptor/adenylyl cyclase (AC)/cAMP signaling is crucial for all cellular responses to physiological and pathophysiological stimuli. There are nine isoforms of membrane-bound AC, with type 5 being one of the two major isoforms in the heart. Since the role of AC in the heart in regulating cAMP and acute changes in inotropic and chronotropic state are well known, this review will address our current understanding of the distinct regulatory role of the AC5 isoform in response to chronic stress. Transgenic overexpression of AC5 in cardiomyocytes of the heart (AC5-Tg) improves baseline cardiac function but impairs the ability of the heart to withstand stress. For example, chronic catecholamine stimulation induces cardiomyopathy, which is more severe in AC5-Tg mice, mediated through the AC5/sirtuin 1/forkhead box O3a pathway. Conversely, disrupting AC5, i.e., AC5 knockout, protects the heart from chronic catecholamine cardiomyopathy as well as the cardiomyopathies resulting from chronic pressure overload or aging. Moreover, AC5 knockout results in a 30% increase in a healthy life span, resembling the most widely studied model of longevity, i.e., calorie restriction. These two models of longevity share similar gene regulation in the heart, muscle, liver, and brain in that they are both protected against diabetes, obesity, and diabetic and aging cardiomyopathy. A pharmacological inhibitor of AC5 also provides protection against cardiac stress, diabetes, and obesity. Thus AC5 inhibition has novel, potential therapeutic applicability to several diseases not only in the heart but also in aging, diabetes, and obesity.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lai L, Yan L, Gao S, Hu CL, Ge H, Davidow A, Park M, Bravo C, Iwatsubo K, Ishikawa Y, Auwerx J, Sinclair DA, Vatner SF, Vatner DE. Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. Circulation 2013; 127:1692-701. [PMID: 23536361 DOI: 10.1161/circulationaha.112.001212] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND For reasons that remain unclear, whether type 5 adenylyl cyclase (AC5), 1 of 2 major AC isoforms in heart, is protective or deleterious in response to cardiac stress is controversial. To reconcile this controversy we examined the cardiomyopathy induced by chronic isoproterenol in AC5 transgenic (Tg) mice and the signaling mechanisms involved. METHODS AND RESULTS Chronic isoproterenol increased oxidative stress and induced more severe cardiomyopathy in AC5 Tg, as left ventricular ejection fraction fell 1.9-fold more than wild type, along with greater left ventricular dilation and increased fibrosis, apoptosis, and hypertrophy. Oxidative stress induced by chronic isoproterenol, detected by 8-OhDG was 15% greater, P=0.007, in AC5 Tg hearts, whereas protein expression of manganese superoxide dismutase (MnSOD) was reduced by 38%, indicating that the susceptibility of AC5 Tg to cardiomyopathy may be attributable to decreased MnSOD expression. Consistent with this, susceptibility of the AC5 Tg to cardiomyopathy was suppressed by overexpression of MnSOD, whereas protection afforded by the AC5 knockout (KO) was lost in AC5 KO×MnSOD heterozyous KO mice. Elevation of MnSOD was eliminated by both sirtuin and MEK inhibitors, suggesting both the SIRT1/FoxO3a and MEK/ERK pathway are involved in MnSOD regulation by AC5. CONCLUSIONS Overexpression of AC5 exacerbates the cardiomyopathy induced by chronic catecholamine stress by altering regulation of SIRT1/FoxO3a, MEK/ERK, and MnSOD, resulting in oxidative stress intolerance, thereby shedding light on new approaches for treatment of heart failure.
Collapse
Affiliation(s)
- Lo Lai
- Department of Cell Biology & Molecular Medicine, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Umeki D, Ohnuki Y, Mototani Y, Shiozawa K, Fujita T, Nakamura Y, Saeki Y, Okumura S. Effects of Chronic Akt/mTOR Inhibition by Rapamycin on Mechanical Overload–Induced Hypertrophy and Myosin Heavy Chain Transition in Masseter Muscle. J Pharmacol Sci 2013; 122:278-88. [DOI: 10.1254/jphs.12195fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
89
|
Yan L, Park JY, Dillinger JG, De Lorenzo MS, Yuan C, Lai L, Wang C, Ho D, Tian B, Stanley WC, Auwerx J, Vatner DE, Vatner SF. Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity. Aging Cell 2012; 11:1110-20. [PMID: 23020244 DOI: 10.1111/acel.12013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2012] [Indexed: 02/04/2023] Open
Abstract
Adenylyl cyclase type 5 knockout mice (AC5 KO) live longer and are stress resistant, similar to calorie restriction (CR). AC5 KO mice eat more, but actually weigh less and accumulate less fat compared with WT mice. CR applied to AC5 KO results in rapid decrease in body weight, metabolic deterioration, and death. These data suggest that despite restricted food intake in CR, but augmented food intake in AC5 KO, the two models affect longevity and metabolism similarly. To determine shared molecular mechanisms, mRNA expression was examined genome-wide for brain, heart, skeletal muscle, and liver. Significantly more genes were regulated commonly rather than oppositely in all the tissues in both models, indicating commonality between AC5 KO and CR. Gene ontology analysis identified many significantly regulated, tissue-specific pathways shared by the two models, including sensory perception in heart and brain, muscle function in skeletal muscle, and lipid metabolism in liver. Moreover, when comparing gene expression changes in the heart under stress, the glutathione regulatory pathway was consistently upregulated in the longevity models but downregulated with stress. In addition, AC5 and CR shared changes in genes and proteins involved in the regulation of longevity and stress resistance, including Sirt1, ApoD, and olfactory receptors in both young- and intermediate-age mice. Thus, the similarly regulated genes and pathways in AC5 KO and CR mice, particularly related to the metabolic phenotype, suggest a unified theory for longevity and stress resistance.
Collapse
Affiliation(s)
- Lin Yan
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Ji Yeon Park
- Department of Biochemistry and Molecular Biology; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Jean-Guillaume Dillinger
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Mariana S. De Lorenzo
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Chujun Yuan
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Lo Lai
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Chunbo Wang
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - David Ho
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - William C. Stanley
- Division of Cardiology; Department of Medicine; School of Medicine; University of Maryland; Baltimore; MD; 21201; USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology; Ecole Polytechnique Fédérale de Lausanne; Lausanne; CH-1015; Switzerland
| | - Dorothy E. Vatner
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| | - Stephen F. Vatner
- Cardiovascular Research Institute; Department of Cell Biology and Molecular Medicine; University of Medicine and Dentistry of New Jersey; New Jersey Medical School; Newark; NJ; 07103; USA
| |
Collapse
|
90
|
Chen YZ, Matsushita MM, Robertson P, Rieder M, Girirajan S, Antonacci F, Lipe H, Eichler EE, Nickerson DA, Bird TD, Raskind WH. Autosomal dominant familial dyskinesia and facial myokymia: single exome sequencing identifies a mutation in adenylyl cyclase 5. ACTA ACUST UNITED AC 2012; 69:630-5. [PMID: 22782511 DOI: 10.1001/archneurol.2012.54] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Familial dyskinesia with facial myokymia (FDFM) is an autosomal dominant disorder that is exacerbated by anxiety. In a 5-generation family of German ancestry, we previously mapped FDFM to chromosome band 3p21-3q21. The 72.5-Mb linkage region was too large for traditional positional mutation identification. OBJECTIVE To identify the gene responsible for FDFM by exome resequencing of a single affected individual. PARTICIPANTS We performed whole exome sequencing in 1 affected individual and used a series of bioinformatic filters, including functional significance and presence in dbSNP or the 1000 Genomes Project, to reduce the number of candidate variants. Co-segregation analysis was performed in 15 additional individuals in 3 generations. MAIN OUTCOME MEASURES Unique DNA variants in the linkage region that co-segregate with FDFM. RESULTS The exome contained 23 428 single-nucleotide variants, of which 9391 were missense, nonsense, or splice site alterations. The critical region contained 323 variants, 5 of which were not present in 1 of the sequence databases. Adenylyl cyclase 5 (ADCY5) was the only gene in which the variant (c.2176G>A) was co-transmitted perfectly with disease status and was not present in 3510 control white exomes. This residue is highly conserved, and the change is nonconservative and predicted to be damaging. CONCLUSIONS ADCY5 is highly expressed in striatum. Mice deficient in Adcy5 develop a movement disorder that is worsened by stress. We conclude that FDFM likely results from a missense mutation in ADCY5. This study demonstrates the power of a single exome sequence combined with linkage information to identify causative genes for rare autosomal dominant mendelian diseases.
Collapse
Affiliation(s)
- Ying-Zhang Chen
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bai Y, Tsunematsu T, Jiao Q, Ohnuki Y, Mototani Y, Shiozawa K, Jin M, Cai W, Jin HL, Fujita T, Ichikawa Y, Suita K, Kurotani R, Yokoyama U, Sato M, Iwatsubo K, Ishikawa Y, Okumura S. Pharmacological stimulation of type 5 adenylyl cyclase stabilizes heart rate under both microgravity and hypergravity induced by parabolic flight. J Pharmacol Sci 2012; 119:381-9. [PMID: 22850613 DOI: 10.1254/jphs.12102fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We previously demonstrated that type 5 adenylyl cyclase (AC5) functions in autonomic regulation in the heart. Based on that work, we hypothesized that pharmacological modulation of AC5 activity could regulate the autonomic control of the heart rate under micro- and hypergravity. To test this hypothesis, we selected the approach of activating AC5 activity in mice with a selective AC5 activator (NKH477) or inhibitor (vidarabine) and examining heart rate variability during parabolic flight. The standard deviation of normal R-R intervals, a marker of total autonomic variability, was significantly greater under micro- and hypergravity in the vidarabine group, while there were no significant changes in the NKH477 group, suggesting that autonomic regulation was unstable in the vidarabine group. The ratio of low frequency and high frequency (HF) in heart rate variability analysis, a marker of sympathetic activity, became significantly decreased under micro- and hypergravity in the NKH477 group, while there was no such decrease in the vidarabine group. Normalized HF, a marker of parasympathetic activity, became significantly greater under micro- and hypergravity in the NKH477 group. In contrast, there was no such increase in the vidarabine group. This study is the first to indicate that pharmacological modulation of AC5 activity under micro- and hypergravity could be useful to regulate the autonomic control of the heart rate.
Collapse
Affiliation(s)
- Yunzhe Bai
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
3'-5'-Cyclic adenosine monophosphate (cAMP), generated by adenylyl cyclase (AC), serves as a second messenger in signaling pathways regulating many aspects of cardiac physiology, including contraction rate and action potential duration, and in the pathophysiology of hypertrophy and heart failure. A kinase-anchoring proteins localize the effect of cAMP in space and time by organizing receptors, AC, protein kinase A, and other components of the cAMP cascade into multiprotein complexes. In this review, we discuss how the interaction of A kinase-anchoring proteins with distinct AC isoforms affects cardiovascular physiology.
Collapse
|
93
|
Li Y, Chen L, Kass RS, Dessauer CW. The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem 2012; 287:29815-24. [PMID: 22778270 DOI: 10.1074/jbc.m112.380568] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The scaffolding protein Yotiao is a member of a large family of protein A-kinase anchoring proteins with important roles in the organization of spatial and temporal signaling. In heart, Yotiao directly associates with the slow outward potassium ion current (I(Ks)) and recruits both PKA and PP1 to regulate I(Ks) phosphorylation and gating. Human mutations that disrupt I(Ks)-Yotiao interaction result in reduced PKA-dependent phosphorylation of the I(Ks) subunit KCNQ1 and inhibition of sympathetic stimulation of I(Ks), which can give rise to long-QT syndrome. We have previously identified a subset of adenylyl cyclase (AC) isoforms that interact with Yotiao, including AC1-3 and AC9, but surprisingly, this group did not include the major cardiac isoforms AC5 and AC6. We now show that either AC2 or AC9 can associate with KCNQ1 in a complex mediated by Yotiao. In transgenic mouse heart expressing KCNQ1-KCNE1, AC activity was specifically associated with the I(Ks)-Yotiao complex and could be disrupted by addition of the AC9 N terminus. A survey of all AC isoforms by RT-PCR indicated expression of AC4-6 and AC9 in adult mouse cardiac myocytes. Of these, the only Yotiao-interacting isoform was AC9. Furthermore, the endogenous I(Ks)-Yotiao complex from guinea pig also contained AC9. Finally, AC9 association with the KCNQ1-Yotiao complex sensitized PKA phosphorylation of KCNQ1 to β-adrenergic stimulation. Thus, in heart, Yotiao brings together PKA, PP1, PDE4D3, AC9, and the I(Ks) channel to achieve localized temporal regulation of β-adrenergic stimulation.
Collapse
Affiliation(s)
- Yong Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
94
|
Kairouz V, Lipskaia L, Hajjar RJ, Chemaly ER. Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Ann N Y Acad Sci 2012; 1254:42-50. [PMID: 22548568 DOI: 10.1111/j.1749-6632.2012.06520.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Use of gene therapy for heart failure is gaining momentum as a result of the recent successful completion of phase II of the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, which showed clinical safety and efficacy of an adeno-associated viral vector expressing sarco-endoplasmic reticulum calcium ATPase (SERCA2a). Resorting to gene therapy allows the manipulation of molecular targets not presently amenable to pharmacologic modulation. This short review focuses on the molecular targets of heart failure gene therapy that have demonstrated translational potential. At present, most of these targets are related to calcium handling in the cardiomyocyte. They include SERCA2a, phospholamban, S100A1, ryanodine receptor, and the inhibitor of the protein phosphatase 1. Other targets related to cAMP signaling are reviewed, such as adenylyl cyclase. MicroRNAs are emerging as novel therapeutic targets and convenient vectors for gene therapy, particularly in heart disease. We propose a discussion of recent advances and controversies in key molecular targets of heart failure gene therapy.
Collapse
Affiliation(s)
- Victor Kairouz
- Department of Internal Medicine, University at Buffalo School of Medicine and Biomedical Sciences, Erie County Medical Center, Buffalo, New York, USA
| | | | | | | |
Collapse
|
95
|
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16:1492-526. [PMID: 22229339 PMCID: PMC3329953 DOI: 10.1089/ars.2011.4179] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several "anti-aging" strategies that treat CVDs and improve healthy cardiac aging.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and in cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity, and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (eg, renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics, and exercise training.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
97
|
Iwatsubo K, Bravo C, Uechi M, Baljinnyam E, Nakamura T, Umemura M, Lai L, Gao S, Yan L, Zhao X, Park M, Qiu H, Okumura S, Iwatsubo M, Vatner DE, Vatner SF, Ishikawa Y. Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase. Am J Physiol Heart Circ Physiol 2012; 302:H2622-8. [PMID: 22505646 DOI: 10.1152/ajpheart.00190.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite numerous discoveries from genetically engineered mice, relatively few have been translated to the bedside, mainly because it is difficult to translate from genes to drugs. This investigation examines an antiviral drug, which also has an action to selectively inhibit type 5 adenylyl cyclase (AC5), a pharmaceutical correlate of the AC5 knockout (KO) model, which exhibits longevity and stress resistance. Our objective was to examine the extent to which pretreatment with this drug, adenine 9-β-d-arabinofuranoside (Ara-A), favorably ameliorates the development of heart failure (HF). Ara-A exhibited selective inhibition for AC5 compared with the other major cardiac AC isoform, AC6, i.e., it reduced AC activity significantly in AC5 transgenic (Tg) mice, but not in AC5KO mice and had little effect in either wild-type or AC6Tg mice. Permanent coronary artery occlusion for 3 wk in C57Bl/6 mice increased mortality and induced HF in survivors, as reflected by reduced cardiac function, while increasing cardiac fibrosis. The AC5 inhibitor Ara-A significantly improved all of these end points and also ameliorated chronic isoproterenol-induced cardiomyopathy. As with the AC5KO mice, Ara-A increased mitogen/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) phosphorylation. A MEK inhibitor abolished the beneficial effects of the AC5 inhibitor in the HF model, indicating the involvement of the downstream MEK-ERK pathway of AC5. Our data suggest that pharmacological AC5 inhibition may serve as a new therapeutic approach for HF.
Collapse
Affiliation(s)
- Kosaku Iwatsubo
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Errami M, Tassa AT, Galindo CL, Skinner MA, Hill JA, Garner HR. Carbamazepine alone and in combination with doxycycline attenuates isoproterenol-induced cardiac hypertrophy. Heart Int 2011; 5:e7. [PMID: 21977292 PMCID: PMC3184704 DOI: 10.4081/hi.2010.e7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 01/19/2023] Open
Abstract
β-adrenergic signaling is involved in the development of cardiac hypertrophy (CH), justifying the use of β-blockers as a therapy to minimize and postpone the consequences of this disease. Evidence suggests that adenylate cyclase, a downstream effector of the β-adrenergic pathway, might be a therapeutic target. We examined the effects of the anti-epileptic drug carbamazepine (CBZ), an inhibitor of adenylate cyclase. In a murine cardiac hypertrophy model, carbamazepine significantly attenuates isoproteronol (ISO)-induced cardiac hypertrophy. Carbamazepine also has an effect in transverse aortic banding induced cardiac hypertrophy (TAB) (P=0.07). When carbamazepine was given in combination with the antibiotic doxycycline (DOX), which inhibits matrix metalloproteinases (MMPs), therapeutic outcome measured by heart weight-to-body weight and heart weight-to-tibia length ratios was improved compared to either drug alone. Additionally, the combination therapy resulted in an increase in the survival rate over a 56-day period compared to that of untreated mice with cardiac hypertrophy or either drug used alone. Moreover, in support of a role for carbamaze -pine as a β-adrenergic antagonist via cAMP inhibition, a lower heart rate and a lower level of the activated phosphorylated form of the cAMP Response Element-Binding (CREB) were observed in heart extracts from mice treated with carbamazepine. Gene expression analysis identified 19 genes whose expression is significantly altered in treated animals and might be responsible for the added benefit provided by the combination therapy. These results suggest that carbamazepine acts as a β-adrenergic antagonist. Carbamazepine and doxycycline are approved by the US Food and Drug Administration (FDA) as drugs that might complement medications for cardiac hypertrophy or serve as an alternative therapy to traditional β-blockers. Furthermore, these agents reproducibly impact the expression of genes that may serve as additional therapeutic targets in the management of cardiac hypertrophy.
Collapse
|
99
|
Nelson CP, Rainbow RD, Brignell JL, Perry MD, Willets JM, Davies NW, Standen NB, Challiss RJ. Principal role of adenylyl cyclase 6 in K⁺ channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovasc Res 2011; 91:694-702. [PMID: 21606183 PMCID: PMC3156907 DOI: 10.1093/cvr/cvr137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/06/2011] [Accepted: 05/12/2011] [Indexed: 02/07/2023] Open
Abstract
AIMS Membrane potential is a key determinant of vascular tone and many vasodilators act through the modulation of ion channel currents [e.g. the ATP-sensitive potassium channel (K(ATP))] involved in setting the membrane potential. Adenylyl cyclase (AC) isoenzymes are potentially important intermediaries in such vasodilator signalling pathways. Vascular smooth muscle cells (VSMCs) express multiple AC isoenzymes, but the reason for such redundancy is unknown. We investigated which of these isoenzymes are involved in vasodilator signalling and regulation of vascular ion channels important in modulating membrane potential. METHODS AND RESULTS AC isoenzymes were selectively depleted (by >75%) by transfection of cultured VSMCs with selective short interfering RNA sequences. AC6 was the predominant isoenzyme involved in vasodilator-mediated cAMP accumulation in VSMCs, accounting for ∼60% of the total response to β-adrenoceptor (β-AR) stimulation. AC3 played a minor role in β-AR signalling, whereas AC5 made no significant contribution. AC6 was also the principal isoenzyme involved in β-AR-mediated protein kinase A (PKA) signalling (determined using the fluorescent biosensor for PKA activity, AKAR3) and the substantial β-AR/PKA-dependent enhancement of K(ATP) current. K(ATP) current was shown to play a vital role in setting the resting membrane potential and in mediating the hyperpolarization observed upon β-AR stimulation. CONCLUSION AC6, but not the closely related AC5, plays a principal role in vasodilator signalling and regulation of the membrane potential in VSMCs. These findings identify AC6 as a vital component in the vasodilatory apparatus central to the control of blood pressure.
Collapse
Affiliation(s)
- Carl P. Nelson
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Richard D. Rainbow
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Jennifer L. Brignell
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Matthew D. Perry
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Jonathon M. Willets
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Noel W. Davies
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicholas B. Standen
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - R.A. John Challiss
- Department of Cell Physiology and Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
100
|
Ho D, Yan L, Iwatsubo K, Vatner DE, Vatner SF. Modulation of beta-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail Rev 2011; 15:495-512. [PMID: 20658186 DOI: 10.1007/s10741-010-9183-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced beta-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic beta-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsalpha or beta-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of beta-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the beta-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering beta-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC.
Collapse
Affiliation(s)
- David Ho
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|