51
|
Jayamani J, Shanmugam G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur J Med Chem 2014; 85:352-8. [PMID: 25105923 DOI: 10.1016/j.ejmech.2014.07.111] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023]
Abstract
Proteins under stressful conditions can lead to the formation of an ordered self-assembled structure, referred to as amyloid fibrils, to which many neurodegenerative diseases such as Type II diabetes, Alzheimer's, Parkinson's, Huntington's, etc., are attributed. Inhibition of amyloid fibril formation using natural products is one of the main therapeutic strategies to prevent the progression of these diseases. Polyphenols are the mostly consumed as antioxidants in a human nutrition. Herein, we have studied the effect of a simple polyphenol, gallic acid (GA), one of the main components in plant tissues, especially in tea leaves, on the insulin amyloid fibril formation. Different biophysical characterizations such as turbidity, atomic force microscopy (AFM), Thioflavin T (ThT) assays, circular dichroism, and Fourier transform-infrared spectroscopy have been used to analyze the inhibition of amyloid fibril formation. The occurrence of fibrils in an AFM image and ThT fluorescence enhancement confirms the formation of insulin amyloid fibrils when incubated under acidic pH 2 at 65 °C. In the presence of GA, absence of fibrils in AFM image and no change in the intensity of ThT fluorescence confirms the inhibition of insulin amyloid fibrils by GA. Spectroscopic results reveal that GA inhibits the conformational transition of α-helix → β-sheet, which is generally induced during the insulin fibril formation. It was found that the inhibitory effect of GA is concentration dependent and non-linear. Based on the observed results, we propose that GA interacts with native insulin, preventing nuclei formation, which is essential for fibril growth, thereby inhibiting the amyloid fibril formation. The present results thus demonstrate that GA can effectively inhibit insulin amyloid fibril formation in vitro.
Collapse
Affiliation(s)
- Jayaraman Jayamani
- Bioorganic Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawn, 2 Rafi Marg, New Delhi 110 001, India
| | - Ganesh Shanmugam
- Bioorganic Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawn, 2 Rafi Marg, New Delhi 110 001, India.
| |
Collapse
|
52
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
53
|
Planque SA, Nishiyama Y, Hara M, Sonoda S, Murphy SK, Watanabe K, Mitsuda Y, Brown EL, Massey RJ, Primmer SR, O'Nuallain B, Paul S. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 2014; 289:13243-58. [PMID: 24648510 PMCID: PMC4036335 DOI: 10.1074/jbc.m114.557231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/13/2014] [Indexed: 01/10/2023] Open
Abstract
Peptide bond-hydrolyzing catalytic antibodies (catabodies) could degrade toxic proteins, but acquired immunity principles have not provided evidence for beneficial catabodies. Transthyretin (TTR) forms misfolded β-sheet aggregates responsible for age-associated amyloidosis. We describe nucleophilic catabodies from healthy humans without amyloidosis that degraded misfolded TTR (misTTR) without reactivity to the physiological tetrameric TTR (phyTTR). IgM class B cell receptors specifically recognized the electrophilic analog of misTTR but not phyTTR. IgM but not IgG class antibodies hydrolyzed the particulate and soluble misTTR species. No misTTR-IgM binding was detected. The IgMs accounted for essentially all of the misTTR hydrolytic activity of unfractionated human serum. The IgMs did not degrade non-amyloidogenic, non-superantigenic proteins. Individual monoclonal IgMs (mIgMs) expressed variable misTTR hydrolytic rates and differing oligoreactivity directed to amyloid β peptide and microbial superantigen proteins. A subset of the mIgMs was monoreactive for misTTR. Excess misTTR was dissolved by a hydrolytic mIgM. The studies reveal a novel antibody property, the innate ability of IgMs to selectively degrade and dissolve toxic misTTR species as a first line immune function.
Collapse
Affiliation(s)
- Stephanie A. Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sarah K. Murphy
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Kenji Watanabe
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Eric L. Brown
- the Center for Infectious Diseases, University of Texas School of Public Health, Houston, Texas 77030
| | | | - Stanley R. Primmer
- the Supercentenarian Research Foundation, Lauderhill, Florida 33319, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
54
|
Pressure–temperature folding landscape in proteins involved in neurodegenerative diseases and cancer. Biophys Chem 2013; 183:9-18. [DOI: 10.1016/j.bpc.2013.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 01/02/2023]
|
55
|
Laferrière F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E, Laude H, Rezaei H, Béringue V. Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 2013; 9:e1003702. [PMID: 24130496 PMCID: PMC3795044 DOI: 10.1371/journal.ppat.1003702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrP(Sc), an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). Stable variations in PrP(Sc) conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrP(Sc) quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrP(Sc) quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrP(Sc). To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrP(Sc) tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrP(Sc) aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrP(Sc) quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.
Collapse
Affiliation(s)
- Florent Laferrière
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
56
|
Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC, Carver JA. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg Med Chem Lett 2013; 23:6336-40. [PMID: 24157371 DOI: 10.1016/j.bmcl.2013.09.071] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 01/12/2023]
Abstract
Many protein misfolding diseases, for example, Alzheimer's, Parkinson's and Huntington's, are characterised by the accumulation of protein aggregates in an amyloid fibrillar form. Natural products which inhibit fibril formation are a promising avenue to explore as therapeutics for the treatment of these diseases. In this study we have shown, using in vitro thioflavin T assays and transmission electron microscopy, that grape seed extract inhibits fibril formation of kappa-casein (κ-CN), a milk protein which forms amyloid fibrils spontaneously under physiological conditions. Among the components of grape seed extract, gallic acid was the most active component at inhibiting κ-CN fibril formation, by stabilizing κ-CN to prevent its aggregation. Concomitantly, gallic acid significantly reduced the toxicity of κ-CN to pheochromocytoma12 cells. Furthermore, gallic acid effectively inhibited fibril formation by the amyloid-beta peptide, the putative causative agent in Alzheimer's disease. It is concluded that the gallate moiety has the fibril-inhibitory activity.
Collapse
Affiliation(s)
- Yanqin Liu
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | |
Collapse
|
57
|
Ndlovu H, Ashcroft AE, Radford SE, Harris SA. Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2013; 4:429-440. [PMID: 23946911 PMCID: PMC3740767 DOI: 10.3762/bjnano.4.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.
Collapse
Affiliation(s)
- Hlengisizwe Ndlovu
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
58
|
Mota MJ, Lopes RP, Delgadillo I, Saraiva JA. Microorganisms under high pressure--adaptation, growth and biotechnological potential. Biotechnol Adv 2013; 31:1426-34. [PMID: 23831003 DOI: 10.1016/j.biotechadv.2013.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022]
Abstract
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology.
Collapse
Affiliation(s)
- Maria J Mota
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
59
|
Eichelberger SL, Sultana I, Gao J, Getie-Kebtie M, Alterman M, Eichelberger MC. Potency under pressure: the impact of hydrostatic pressure on antigenic properties of influenza virus hemagglutinin. Influenza Other Respir Viruses 2013; 7:961-8. [PMID: 23496824 PMCID: PMC4634276 DOI: 10.1111/irv.12102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2013] [Indexed: 11/27/2022] Open
Abstract
Background Influenza vaccines are effective in protecting against illness and death caused by this seasonal pathogen. The potency of influenza vaccines is measured by single radial immunodiffusion (SRID) assay that quantifies antigenic forms of hemagglutinin (HA). Hydrostatic pressure results in loss of binding of influenza virus to red blood cells, but it is not known whether this infers loss of potency. Objectives Our goal was to determine the impact of pressure on HA antigenic structure. Methods Viruses included in the 2010–2011 trivalent influenza vaccine were subjected to increasing number of cycles at 35 000 psi in a barocycler, and the impact of this treatment measured by determining hemagglutination units (HAU) and potency. Potency was assessed by SRID and immunogenicity in mice. Results After 25 cycles of pressure, the potency measured by SRID assay was below the limit of quantification for the H1N1 and B viruses used in our study, while the H3N2 component retained some potency that was lost after 50 pressure cycles. Pressure treatment also resulted in loss of HAU, but this did not strictly correlate with the potency value. Curiously, loss of potency was abrogated when influenza A, but not B, antigens were exposed to pressure in chicken egg allantoic fluid. Protection against pressure appeared to be mediated by specific interactions because addition of bovine serum albumin did not have the same effect. Conclusions Our results show that pressure‐induced loss of potency is strain dependent and suggests that pressure treatment may be useful for identifying vaccine formulations that improve HA stability.
Collapse
Affiliation(s)
- Schafer L Eichelberger
- Division of Cellular and Gene Therapies, Office of Cell, Tissue and Gene Therapy, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
60
|
Ariesandi W, Chang CF, Chen TE, Chen YR. Temperature-dependent structural changes of Parkinson's alpha-synuclein reveal the role of pre-existing oligomers in alpha-synuclein fibrillization. PLoS One 2013; 8:e53487. [PMID: 23349712 PMCID: PMC3551866 DOI: 10.1371/journal.pone.0053487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Amyloid fibrils of α-synuclein are the main constituent of Lewy bodies deposited in substantial nigra of Parkinson's disease brains. α-Synuclein is an intrinsically disordered protein lacking compact secondary and tertiary structures. To enhance the understanding of its structure and function relationship, we utilized temperature treatment to study α-synuclein conformational changes and the subsequent effects. We found that after 1 hr of high temperature pretreatment, >80°C, α-synuclein fibrillization was significantly inhibited. However, the temperature melting coupled with circular dichroism spectra showed that α-synuclein was fully reversible and the NMR studies showed no observable structural changes of α-synuclein after 95°C treatment. By using cross-linking and analytical ultracentrifugation, rare amount of pre-existing α-synuclein oligomers were found to decrease after the high temperature treatment. In addition, a small portion of C-terminal truncation of α-synuclein also occurred. The reduction of pre-existing oligomers of α-synuclein may contribute to less seeding effect that retards the kinetics of amyloid fibrillization. Overall, our results showed that the pre-existing oligomeric species is a key factor contributing to α-synuclein fibrillization. Our results facilitate the understanding of α-synuclein fibrillization.
Collapse
Affiliation(s)
- Winny Ariesandi
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tseng-Erh Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
61
|
Agócs G, Szabó BT, Köhler G, Osváth S. Comparing the folding and misfolding energy landscapes of phosphoglycerate kinase. Biophys J 2012; 102:2828-34. [PMID: 22735533 DOI: 10.1016/j.bpj.2012.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022] Open
Abstract
Partitioning of polypeptides between protein folding and amyloid formation is of outstanding pathophysiological importance. Using yeast phosphoglycerate kinase as model, here we identify the features of the energy landscape that decide the fate of the protein: folding or amyloidogenesis. Structure formation was initiated from the acid-unfolded state, and monitored by fluorescence from 10 ms to 20 days. Solvent conditions were gradually shifted between folding and amyloidogenesis, and the properties of the energy landscape governing structure formation were reconstructed. A gradual transition of the energy landscape between folding and amyloid formation was observed. In the early steps of both folding and misfolding, the protein searches through a hierarchically structured energy landscape to form a molten globule in a few seconds. Depending on the conditions, this intermediate either folds to the native state in a few minutes, or forms amyloid fibers in several days. As conditions are changed from folding to misfolding, the barrier separating the molten globule and native states increases, although the barrier to the amyloid does not change. In the meantime, the native state also becomes more unstable and the amyloid more stable. We conclude that the lower region of the energy landscape determines the final protein structure.
Collapse
Affiliation(s)
- Gergely Agócs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
62
|
Brummitt RK, Andrews JM, Jordan JL, Fernandez EJ, Roberts CJ. Thermodynamics of amyloid dissociation provide insights into aggregate stability regimes. Biophys Chem 2012; 168-169:10-8. [PMID: 22750559 DOI: 10.1016/j.bpc.2012.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Amyloid aggregates have been hypothesized as a global low free energy state for proteins at finite concentrations. Near its midpoint unfolding temperature, α-chymotrypsinogen A (aCgn) spontaneously forms amyloid polymers, indicating the free energy of aggregates (A) is significantly lower than that for unfolded (U) and native (N) monomers at those particular conditions. The relative thermodynamic stability of A, U, and N states was estimated semi-quantitatively as a function of temperature (T) and [urea] via a combination of calorimetry, urea-assisted unfolding and dissociation, aggregation kinetics, and changes in solvent-exposed surface area, combined with thermodynamic integration and a linear transfer free energy model. The results at first suggest that N is more thermodynamically stable than A at sufficiently low T and [urea], but this may be convoluted with kinetic effects. Interestingly, the kinetic stability of aggregates highlights that the practical measure of stability may be the free energy barrier(s) between A and U, as U serves as a key intermediate between N and A states.
Collapse
Affiliation(s)
- Rebecca K Brummitt
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
63
|
Fong VH, Vieira A. Transthyretin aggregates induce production of reactive nitrogen species. NEURODEGENER DIS 2012; 11:42-8. [PMID: 22627469 DOI: 10.1159/000338153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Misfolded and aggregated transthyretins (agTTR) contribute to neurodegenerative amyloid diseases such as familial amyloid polyneuropathy and senile systemic amyloidosis. The neurotoxicity mechanisms of agTTR, however, are not well understood. In the current study, the possible contribution of reactive nitrogen species (RNS) to such mechanisms was investigated by examining agTTR-mediated changes in cellular RNS levels. METHODS AND RESULTS The production of RNS was assessed through nitrate and nitrite assays in two human cell lines after exposure to agTTR (2.4 µM pre-aggregation concentration). In both epidermoid (A431) and schwannoma (sNF94.3) cell lines, agTTR induced significant increases in RNS (p < 0.05 relative to the same concentration of normal TTR, or no-TTR controls). Redox modulators such as apocynin (1-(4-hydroxy-3-methoxy-phenyl)ethanone) and L-NMMA (N(G)-monomethyl-L-arginine) were tested for their effects on RNS production. These modulators decreased RNS production in both cell lines; although the effects of L-NMMA were statistically significant only in the schwannoma cells. Moreover, cells treated with agTTR exhibited decreases in metabolic activity relative to TTR- or non-TTR-treated cells (p < 0.05) as assessed by reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). CONCLUSION The results provide novel evidence for involvement of RNS in pro-oxidative effects of agTTR in two different human cell lines, and show that agTTR can induce more generalized changes in cellular metabolic activity.
Collapse
Affiliation(s)
- Vai-Hong Fong
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
64
|
Piccirilli F, Mangialardo S, Lupi S, Postorino P, Perucchi A. Infrared Microspectroscopy study of insulin crystals at high pressure. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/359/1/012014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
65
|
Yamaoki Y, Imamura H, Fulara A, Wójcik S, Bożycki L, Kato M, Keiderling TA, Dzwolak W. An FT-IR study on packing defects in mixed β-aggregates of poly(L-glutamic acid) and poly(D-glutamic acid): a high-pressure rescue from a kinetic trap. J Phys Chem B 2012; 116:5172-8. [PMID: 22506583 DOI: 10.1021/jp2125685] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Under favorable conditions of pH and temperature, poly(L-glutamic acid) (PLGA) adopts different types of secondary and quaternary structures, which include spiral assemblies of amyloid-like fibrils. Heating of acidified solutions of PLGA (or PDGA) triggers formation of β(2)-type aggregates with morphological and tinctorial properties typical for amyloid fibrils. In contrast to regular antiparallel β-sheet (β(1)), the amide I' vibrational band of β(2)-fibrils is unusually red-shifted below 1600 cm(-1), which has been attributed to bifurcated hydrogen bonds coupling C═O and N-D groups of the main chains to glutamic acid side chains. However, unlike for pure PLGA, the amide I' band of aggregates precipitating from racemic mixtures of PLGA and PDGA (β(1)) is dominated by components at 1613 and 1685 cm(-1)-typically associated with intermolecular antiparallel β-sheets. The coaggregation of PLGA and PDGA chains is slower and biphasic and leads to less-structured assemblies of fibrils, which is reflected in scanning electron microscopy images, sedimentation properties, and fluorescence intensity after staining with thioflavin T. The β(1)-type aggregates are metastable, and they slowly convert to fibrils with the infrared characteristics of β(2)-type fibrils. The process is dramatically accelerated under high pressure. This implies the presence of void volumes within structural defects in racemic aggregates, preventing the precise alignment of main and side chains necessary to zip up ladders of bifurcated hydrogen bonds. As thermodynamic costs associated with maintaining void volumes within the racemic aggregate increase under high pressure, a hyperbaric treatment of misaligned chains leads to rectifying the packing defects and formation of the more compact form of fibrils.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
It has been known for nearly 100 years that pressure unfolds proteins, yet the physical basis of this effect is not understood. Unfolding by pressure implies that the molar volume of the unfolded state of a protein is smaller than that of the folded state. This decrease in volume has been proposed to arise from differences between the density of bulk water and water associated with the protein, from pressure-dependent changes in the structure of bulk water, from the loss of internal cavities in the folded states of proteins, or from some combination of these three factors. Here, using 10 cavity-containing variants of staphylococcal nuclease, we demonstrate that pressure unfolds proteins primarily as a result of cavities that are present in the folded state and absent in the unfolded one. High-pressure NMR spectroscopy and simulations constrained by the NMR data were used to describe structural and energetic details of the folding landscape of staphylococcal nuclease that are usually inaccessible with existing experimental approaches using harsher denaturants. Besides solving a 100-year-old conundrum concerning the detailed structural origins of pressure unfolding of proteins, these studies illustrate the promise of pressure perturbation as a unique tool for examining the roles of packing, conformational fluctuations, and water penetration as determinants of solution properties of proteins, and for detecting folding intermediates and other structural details of protein-folding landscapes that are invisible to standard experimental approaches.
Collapse
|
67
|
Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1722-8. [PMID: 22407491 DOI: 10.1002/adma.201104864] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/12/2012] [Indexed: 05/06/2023]
Abstract
A novel strategy to dissociate amyloid aggregation is presented, using localised heat generation from a clinically used amyloid staining dye, thioflavin-S (ThS)-modified graphene oxide (GO) under NIR laser irradiation. Compared to traditional chemotherapies, photothermal therapy shows reduced side effects and improved selectivity and safety.
Collapse
Affiliation(s)
- Meng Li
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Graduate School of the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Jilin, PR China
| | | | | | | | | |
Collapse
|
68
|
Follonier S, Panke S, Zinn M. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Appl Microbiol Biotechnol 2012; 93:1805-15. [DOI: 10.1007/s00253-011-3854-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 02/02/2023]
|
69
|
Pressure-accelerated dissociation of amyloid fibrils in wild-type hen lysozyme. Biophys J 2012; 102:121-6. [PMID: 22225805 DOI: 10.1016/j.bpj.2011.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/08/2011] [Accepted: 10/24/2011] [Indexed: 11/20/2022] Open
Abstract
The dynamics of amyloid fibrils, including their formation and dissociation, could be of vital importance in life. We studied the kinetics of dissociation of the amyloid fibrils from wild-type hen lysozyme at 25°C in vitro as a function of pressure using Trp fluorescence as a probe. Upon 100-fold dilution of 8 mg ml(-1) fibril solution in 80 mM NaCl, pH 2.2, no immediate change occurred in Trp fluorescence, but at pressures of 50-450 MPa the fluorescence intensity decreased rapidly with time (k(obs) = 0.00193 min(-1) at 0.1 MPa, 0.0348 min(-1) at 400 MPa). This phenomenon is attributable to the pressure-accelerated dissociation of amyloid fibrils into monomeric hen lysozyme. From the pressure dependence of the rates, which reaches a plateau at ~450 MPa, we determined the activation volume ΔV(0‡) = -32.9 ± 1.7 ml mol(monomer)(-1) and the activation compressibility Δκ(‡) = -0.0075 ± 0.0006 ml mol(monomer)(-1) bar(-1) for the dissociation reaction. The negative ΔV(0‡) and Δκ(‡) values are consistent with the notion that the amyloid fibril from wild-type hen lysozyme is in a high-volume and high-compressibility state, and the transition state for dissociation is coupled with a partial hydration of the fibril.
Collapse
|
70
|
Abstract
There has been much progress in our understanding of transthyretin (TTR)-related amyloidosis including familial amyloidotic polyneuropathy (FAP), senile systemic amyloidosis and its related disorders from many clinical and experimental aspects. FAP is an inherited severe systemic amyloidosis caused by mutated TTR, and characterized by amyloid deposition mainly in the peripheral nervous system and the heart. Liver transplantation is the only available treatment for the disease. FAP is now recognized not to be a rare disease, and to have many variations based on genetical and biochemical variations of TTR. This chapter covers the recent advances in the clinical and pathological aspects of, and therapeutic approaches to FAP, and the trend as to the molecular pathogenesis of TTR.
Collapse
Affiliation(s)
- Takamura Nagasaka
- Department of Neurology, University of Yamanashi, 1110 Shimokato, 409-3898, Chuou-city, Yamanashi, Japan,
| |
Collapse
|
71
|
Ye Z, Bayron Poueymiroy D, Aguilera JJ, Srinivasan S, Wang Y, Serpell LC, Colón W. Inflammation protein SAA2.2 spontaneously forms marginally stable amyloid fibrils at physiological temperature. Biochemistry 2011; 50:9184-91. [PMID: 21942925 DOI: 10.1021/bi200856v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For nearly four decades, the formation of amyloid fibrils by the inflammation-related protein serum amyloid A (SAA) has been pathologically linked to the disease amyloid A (AA) amyloidosis. However, here we show that the nonpathogenic murine SAA2.2 spontaneously forms marginally stable amyloid fibrils at 37 °C that exhibit cross-beta structure, binding to thioflavin T, and fibrillation by a nucleation-dependent seeding mechanism. In contrast to the high stability of most known amyloid fibrils to thermal and chemical denaturation, experiments monitored by glutaraldehyde cross-linking/SDS-PAGE, thioflavin T fluorescence, and light scattering (OD(600)) showed that the mature amyloid fibrils of SAA2.2 dissociate upon incubation in >1.0 M urea or >45 °C. When considering the nonpathogenic nature of SAA2.2 and its ~1000-fold increased concentration in plasma during an inflammatory response, its extreme in vitro amyloidogenicity under physiological-like conditions suggest that SAA amyloid might play a functional role during inflammation. Of general significance, the combination of methods used here is convenient for exploring the stability of amyloid fibrils that are sensitive to urea and temperature. Furthermore, our studies imply that analogous to globular proteins, which can possess structures ranging from intrinsically disordered to extremely stable, amyloid fibrils formed in vivo might have a broader range of stabilities than previously appreciated with profound functional and pathological implications.
Collapse
Affiliation(s)
- Zhuqiu Ye
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | | | | | | | | | | |
Collapse
|
72
|
El Moustaine D, Perrier V, Van Ba IAT, Meersman F, Ostapchenko VG, Baskakov IV, Lange R, Torrent J. Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 2011; 286:13448-59. [PMID: 21357423 PMCID: PMC3075691 DOI: 10.1074/jbc.m110.192872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Prion proteins (PrP) can aggregate into toxic and possibly infectious amyloid fibrils. This particular macrostructure confers on them an extreme and still unexplained stability. To provide mechanistic insights into this self-assembly process, we used high pressure as a thermodynamic tool for perturbing the structure of mature amyloid fibrils that were prepared from recombinant full-length mouse PrP. Application of high pressure led to irreversible loss of several specific amyloid features, such as thioflavin T and 8-anilino-1-naphthalene sulfonate binding, alteration of the characteristic proteinase K digestion pattern, and a significant decrease in the β-sheet structure and cytotoxicity of amyloid fibrils. Partial disaggregation of the mature fibrils into monomeric soluble PrP was observed. The remaining amyloid fibrils underwent a change in secondary structure that led to morphologically different fibrils composed of a reduced number of proto-filaments. The kinetics of these reactions was studied by recording the pressure-induced dissociation of thioflavin T from the amyloid fibrils. Analysis of the pressure and temperature dependence of the relaxation rates revealed partly unstructured and hydrated kinetic transition states and highlighted the importance of collapsing and hydrating inter- and intramolecular cavities to overcome the high free energy barrier that stabilizes amyloid fibrils.
Collapse
Affiliation(s)
- Driss El Moustaine
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Veronique Perrier
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Isabelle Acquatella-Tran Van Ba
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Filip Meersman
- the Department of Chemistry, Katholieke Universiteit Leuven, Leuven B-3001, Belgium, and
| | - Valeriy G. Ostapchenko
- the Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ilia V. Baskakov
- the Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Reinhard Lange
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| | - Joan Torrent
- From the University of Montpellier 2 and
- INSERM, U710, Montpellier F-34095, France
- Ecole Pratique des Hautes Études, Paris F-75007, France
| |
Collapse
|
73
|
Jackson AJ, McGillivray DJ. Protein aggregate structure under high pressure. Chem Commun (Camb) 2011; 47:487-9. [DOI: 10.1039/c0cc02314k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Volkova KD, Kovalska VB, Losytskyy MY, Fal KO, Derevyanko NO, Slominskii YL, Tolmachov OI, Yarmoluk SM. Hydroxy and Methoxy Substituted Thiacarbocyanines for Fluorescent Detection of Amyloid Formations. J Fluoresc 2010; 21:775-84. [DOI: 10.1007/s10895-010-0770-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
|
75
|
Abstract
AbstractIn recent years, significant progress in high pressure macromolecular crystallography has been observed. It can be attributed both to the developments in experimental techniques, as well as to recognition of importance of high pressure protein studies in biochemistry and biophysics. The number of protein structures determined at pressure up to 1 GPa is growing. The unique advantages of this method can greatly improve the investigation of higher energy conformers of functional significance and our understanding of functionally important conformers, protein folding processes and the structural base of conformational diseases.
Collapse
|
76
|
|
77
|
Sarupria S, Ghosh T, García AE, Garde S. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 2010; 78:1641-51. [PMID: 20146357 DOI: 10.1002/prot.22680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies.
Collapse
Affiliation(s)
- Sapna Sarupria
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
78
|
General Framework of Pressure Effects on Structures Formed by Entropically Driven Self-Assembly. ENTROPY 2010. [DOI: 10.3390/e12061632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
79
|
Winter R. Exploring the Energy and Conformational Landscape of Biomolecules Under Extreme Conditions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-9258-8_47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
80
|
Trivella DBB, Bleicher L, Palmieri LDC, Wiggers HJ, Montanari CA, Kelly JW, Lima LMTR, Foguel D, Polikarpov I. Conformational differences between the wild type and V30M mutant transthyretin modulate its binding to genistein: implications to tetramer stability and ligand-binding. J Struct Biol 2010; 170:522-31. [PMID: 20211733 DOI: 10.1016/j.jsb.2010.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 11/26/2022]
Abstract
Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis.
Collapse
Affiliation(s)
- Daniela B B Trivella
- Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Silva JL, Vieira TCRG, Gomes MPB, Bom APA, Lima LMTR, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D. Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 2010; 43:271-9. [PMID: 19817406 PMCID: PMC2825094 DOI: 10.1021/ar900179t] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington's disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen's paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP-nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding-misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.
Collapse
Affiliation(s)
- Jerson L. Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Tuane C. R. G. Vieira
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Mariana P. B. Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Ana Paula Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | | | - Monica S. Freitas
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | - Daniella Ishimaru
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| | | | - Debora Foguel
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem
| |
Collapse
|
82
|
Agócs G, Solymosi K, Varga A, Módos K, Kellermayer M, Závodszky P, Fidy J, Osváth S. Recovery of functional enzyme from amyloid fibrils. FEBS Lett 2010; 584:1139-42. [PMID: 20132817 DOI: 10.1016/j.febslet.2010.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/21/2023]
Abstract
Amyloid deposits, which accumulate in numerous diseases, are the final stage of multi-step protein conformational-conversion and oligomerization processes. The underlying molecular mechanisms are not fully understood, and particularly little is known about the reverse reaction. Here we show that phosphoglycerate kinase amyloid fibrils can be converted back into native protein. We achieved recovery with 60% efficiency, which is comparable to the success rate of the unfolding-refolding studies, and the recovered enzyme was folded, stable and fully active. The key intermediate stages in the recovery process are fibril disassembly and unfolding followed by spontaneous protein folding.
Collapse
Affiliation(s)
- Gergely Agócs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Yoon J, Jang S, Lee K, Shin S. Simulation Studies on the Stabilities of Aggregates Formed by Fibril-Forming Segments of α-Synuclein. J Biomol Struct Dyn 2009; 27:259-70. [DOI: 10.1080/07391102.2009.10507314] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
84
|
Bom APDA, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AMO, Valente AP, Cordeiro Y, Silva JL. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 2009; 285:2857-66. [PMID: 19933157 PMCID: PMC2807339 DOI: 10.1074/jbc.m109.075861] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. 1H-15N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Celej MS, Caarls W, Demchenko AP, Jovin TM. A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson's disease mutants. Biochemistry 2009; 48:7465-72. [PMID: 19586054 DOI: 10.1021/bi9003843] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracytoplasmic neuronal deposits containing amyloid fibrils of the 140-amino acid presynaptic protein alpha-synuclein (AS) are the hallmark of Parkinson's (PD) disease and related neurodegenerative disorders. Three point mutations (A53T, A30P, and E46K) are linked to early onset PD. Compared to the wild-type (WT) protein, the mutants aggregate faster in vitro, but their fibrillar products are quite similar. Using the extrinsic multiple-emission probe 4'-(diethylamino)-3-hydroxyflavone (FE), we demonstrate unique and distinct spectroscopic signatures for the amyloid fibrils formed by the WT and mutant AS, presumably indicative of subtle differences in supramolecular structure. The two well-separated emission bands of the FE probe originate from a proton transfer reaction in the excited state. The ratiometric response constitutes a sensitive, tunable reporter of microenvironmental properties such as polarity and hydrogen bonding. The very distinctive fluorescence spectra of the FE probe bound to the four AS variants reflect different tautomeric equilibria in the excited state and the existence of at least two different binding sites in the fibrils for the dye. Deconvolution of the two-dimensional excitation-emission spectra leads to estimations of different local dielectric constants and extents of hydration characteristic of the proteins. The sensitivity of such a simple external probe to conformational alterations induced by point mutations is unprecedented and provides new insight into key phenomena related to amyloid fibrils: plasticity, polymorphism, propagation of structural features, and structure-function relationships underlying toxicity.
Collapse
Affiliation(s)
- M Soledad Celej
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
86
|
Palhano FL, Rocha CB, Bernardino A, Weissmuller G, Masuda CA, Montero-Lomelí M, Gomes AM, Chien P, Fernandes PMB, Foguel D. A fluorescent mutant of the NM domain of the yeast prion Sup35 provides insight into fibril formation and stability. Biochemistry 2009; 48:6811-23. [PMID: 19530740 DOI: 10.1021/bi9000276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Sup35 protein of Saccharomyces cerevisiae forms a prion that generates the [PSI(+)] phenotype. Its NM region governs prion status, forming self-seeding amyloid fibers in vivo and in vitro. A tryptophan mutant of Sup35 (NM(F117W)) was used to probe its aggregation. Four indicators of aggregation, Trp 117 maximum emission, Trp polarization, thio-T binding, and light scattering increase, revealed faster aggregation at 4 degrees C than at 25 degrees C, and all indicators changed in a concerted fashion at the former temperature. Curiously, at 25 degrees C the changes were not synchronized; the first two indicators, which reflect nucleation, changed more quickly than the last two, which reflect fibril formation. These results suggest that nucleation is insensitive to temperature, whereas fibril extension is temperature dependent. As expected, aggregation is accelerated when a small fraction (5%) of the nuclei produced at 4 or 25 degrees C are added to a suspension containing the soluble NM domain, although these nuclei do not seem to propagate any structural information to the growing fibrils. Fibrils grown at 4 degrees C were less stable in GdmCl than those grown at higher temperature. However, they were both resistant to high pressure; in fact, both sets of fibrils responded to high pressure by adopting an altered conformation with a higher capacity for thio-T binding. From these data, we calculated the change in volume and free energy associated with this conformational change. AFM revealed that the fibrils grown at 4 degrees C were statistically smaller than those grown at 25 degrees C. In conclusion, the introduction of Trp 117 allowed us to more carefully dissect the effects of temperature on the aggregation of the Sup35 NM domain.
Collapse
Affiliation(s)
- Fernando L Palhano
- Instituto de Bioquimica Medica, Programa de Biologia Estrutural e Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Federoff HJ. Development of vaccination approaches for the treatment of neurological diseases. J Comp Neurol 2009; 515:4-14. [PMID: 19399901 DOI: 10.1002/cne.22034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several progressive neurodegenerative diseases share a common pathology: the accumulation of misfolded proteins within cells or neuropil of the brain. Characteristically, these misfolded proteins form organized beta-sheet-containing assemblies that have optical and biochemical properties of amyloid. Thus, the brain amyloidoses, Alzheimer's disease (AD), Parkinson's disease, and the prionoses or transmissible spongioform encelphalopathies (TSEs) all manifest putatively pathogenic misfolded proteins, suggesting that these proteins or their precursors may be targets for therapeutics development efforts. Two different biological approaches, both predicated on vaccination, are discussed in this monograph as preclinical approaches for the treatment of AD and a TSE. Herein, I first describe an active vaccination approach that exploits immune shaping to engender a prophylactic T(H)2 response to Abeta in AD mouse models. Second, I describe a passive vaccination strategy whereby recombinant adeno-associated virus vectored delivery of anti-prion single-chain fragment variable antibodies attenuates disease progression and promotes life extension in a mouse TSE model.
Collapse
Affiliation(s)
- Howard J Federoff
- Department of Neurology, Georgetown University, Washington DC 20057, USA.
| |
Collapse
|
88
|
Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol 2009; 27:434-41. [DOI: 10.1016/j.tibtech.2009.04.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/26/2022]
|
89
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
90
|
Crisman RL, Randolph TW. Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. Biotechnol Bioeng 2009; 102:483-92. [DOI: 10.1002/bit.22082] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
91
|
Yoshidome T, Harano Y, Kinoshita M. Pressure effects on structures formed by entropically driven self-assembly: illustration for denaturation of proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011912. [PMID: 19257074 DOI: 10.1103/physreve.79.011912] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Indexed: 05/27/2023]
Abstract
We propose a general framework of pressure effects on the structures formed by the self-assembly of solute molecules immersed in solvent. The integral equation theory combined with the morphometric approach is employed for a hard-body model system. Our picture is that protein folding and ordered association of proteins are driven by the solvent entropy: At low pressures, the structures almost minimizing the excluded volume (EV) generated for solvent particles are stabilized. Such structures appear to be even more stabilized at high pressures. However, it is experimentally known that the native structure of a protein is unfolded, and ordered aggregates such as amyloid fibrils and actin filaments are dissociated by applying high pressures. This initially puzzling result can also be elucidated in terms of the solvent entropy. A clue to the basic mechanism is in the phenomenon that, when a large hard-sphere solute is immersed in small hard spheres forming the solvent, the small hard spheres are enriched near the solute and this enrichment becomes greater as the pressure increases. We argue that "attraction" is entropically provided between the solute surface and solvent particles, and the attraction becomes higher with rising pressure. Due to this effect, at high pressures, the structures possessing the largest possible solvent-accessible surface area together with sufficiently small EV become more stable in terms of the solvent entropy. To illustrate this concept, we perform an analysis of pressure denaturation of three different proteins. It is shown that only the structures that have the characteristics described above exhibit interesting behavior. They first become more destabilized relative to the native structure as the pressure increases, but beyond a threshold pressure the relative instability begins to decrease and they eventually become more stable than the native structure.
Collapse
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
92
|
Palhano FL, Leme LP, Busnardo RG, Foguel D. Trapping the monomer of a non-amyloidogenic variant of transthyretin: exploring its possible use as a therapeutic strategy against transthyretin amyloidogenic diseases. J Biol Chem 2008; 284:1443-53. [PMID: 18984591 DOI: 10.1074/jbc.m807100200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transthyretin (TTR) is a 127-residue homotetrameric beta-sheet-rich protein that transports thyroxine in the blood and cerebrospinal fluid. The deposition of fibrils and amorphous aggregates of TTR in patients' tissues is a hallmark of TTR amyloid disease. Familial amyloidotic polyneuropathy is a hereditary form of TTR amyloidosis that is associated with one among 80 different variants of TTR. The most aggressive variants of TTR are V30M, L55P, and A25T, and the propensity to undergo aggregation seems to be linked to tetramer stability. T119M is a very stable, non-amyloidogenic variant of TTR. Here we show that the combination of high hydrostatic pressure with subdenaturing concentrations of urea (4 m) at 1 degrees C irreversibly dissociates T119M into monomers in less than 30 min in a concentration-dependent fashion. After pressure and urea removal, long lived monomers are the only species present in solution. We took advantage of the slow reassociation kinetics of these monomers into tetramers to produce heterotetramers by mixing the T119M monomers with the tetramers of the aggressive mutants of TTR. Our data show that T119M monomers can be successfully incorporated into all of these tetramers even when the exchange is performed in a more physiological environment such as human plasma; these monomers render the resultant heterotetramers less amyloidogenic. The data presented here are relevant for the understanding of T119M folding and association reactions and provide a protocol for producing T119M monomers that function as inhibitors of TTR aggregation when incorporated in to tetramers. This protocol may provide a new strategy for treating TTR diseases for which there is no therapy available other than liver transplantation.
Collapse
Affiliation(s)
- Fernando L Palhano
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, and Instituto Milênio de Biologia Estrutural e Biotecnologia Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | | | | | | |
Collapse
|
93
|
Bañares-Hidalgo A, Bolaños-Gutiérrez A, Gil F, Cabré EJ, Pérez-Gil J, Estrada P. Self-aggregation of a recombinant form of the propeptide NH2-terminal of the precursor of pulmonary surfactant protein SP-B: a conformational study. J Ind Microbiol Biotechnol 2008; 35:1367-76. [PMID: 18797948 DOI: 10.1007/s10295-008-0437-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/30/2008] [Indexed: 12/23/2022]
Abstract
A recombinant form of the peptide N-terminally positioned from proSP-B (SP-BN) has been produced in Escherichia coli as fusion with the Maltose Binding Protein, separated from it by Factor Xa cleavage and purified thereafter. This protein module is thought to control assembly of mature SP-B, a protein essential for respiration, in pulmonary surfactant as it progress through the progressively acidified secretory pathway of pneumocytes. Self-aggregation studies of the recombinant propeptide have been carried out as the pH of the medium evolved from neutral to moderately acid, again to neutral and finally basic. The profile of aggregation versus subsequent changes in pH showed differences depending on the ionic strength of the medium, low or moderate, and the presence of additives such as L-arginine (a known aggregation suppressor) and Ficoll 70 (a macromolecular crowder). Circular dichroism studies of SP-BN samples along the aggregation process showed a decrease in alpha-helical content and a concomitant increase in beta-sheet. Intrinsic fluorescence emission of SP-BN was dominated by the emission of Trp residues in neutral medium, being its emission maximum shifted to red at low pH, suggesting that the protein undergoes a pH-dependent conformational change that increases the exposure of their Trp to the environment. A marked increase in the fluorescence emission of the extrinsic probe bis-ANS indicated the exposure of hydrophobic regions of SP-BN at pH 5. The fluorescence of bis-ANS decreased slightly at low ionic strength, but to a great extent at moderate ionic strength when the pH was reversed to neutrality, suggesting that self-aggregation properties of the SP-BN module could be tightly modulated by the conditions of pH and the ionic environment encountered by pulmonary surfactant during assembly and secretion.
Collapse
Affiliation(s)
- A Bañares-Hidalgo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense, Ciudad Universitaria, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
94
|
Mishra R, Winter R. Cold- and Pressure-Induced Dissociation of Protein Aggregates and Amyloid Fibrils. Angew Chem Int Ed Engl 2008; 47:6518-21. [DOI: 10.1002/anie.200802027] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Mishra R, Winter R. Kälte- und druckinduzierte Dissoziation von Proteinaggregaten und Amyloidfibrillen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
96
|
Concentration dependence of alpha-synuclein fibril length assessed by quantitative atomic force microscopy and statistical-mechanical theory. Biophys J 2008; 95:4871-8. [PMID: 18676659 DOI: 10.1529/biophysj.107.127464] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The initial concentration of monomeric amyloidogenic proteins is a crucial factor in the in vitro formation of amyloid fibrils. We use quantitative atomic force microscopy to study the effect of the initial concentration of human alpha-synuclein on the mean length of mature alpha-synuclein fibrils, which are associated with Parkinson's disease. We determine that the critical initial concentration, below which low-molecular-weight species dominate and above which fibrils are the dominant species, lies at approximately 15 muM, in good agreement with earlier measurements using biochemical methods. In the concentration regime where fibrils dominate, we find that their mean length increases with initial concentration. These results correspond well to the qualitative predictions of a recent statistical-mechanical model of amyloid fibril formation. In addition, good quantitative agreement of the statistical-mechanical model with the measured mean fibril length as a function of initial protein concentration, as well as with the fibril length distributions for several protein concentrations, is found for reasonable values of the relevant model parameters. The comparison between theory and experiment yields, for the first time to our knowledge, an estimate of the magnitude of the free energies associated with the intermolecular interactions that govern alpha-synuclein fibril formation.
Collapse
|
97
|
Kim HY, Cho MK, Riedel D, Fernandez C, Zweckstetter M. Dissociation of Amyloid Fibrils of α-Synuclein in Supercooled Water. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
98
|
Kim HY, Cho MK, Riedel D, Fernandez C, Zweckstetter M. Dissociation of Amyloid Fibrils of α-Synuclein in Supercooled Water. Angew Chem Int Ed Engl 2008; 47:5046-8. [DOI: 10.1002/anie.200800342] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
99
|
Stevens FJ. Possible evolutionary links between immunoglobulin light chains and other proteins involved in amyloidosis. Amyloid 2008; 15:96-107. [PMID: 18484336 DOI: 10.1080/13506120802005973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With limited exceptions, proteins that account for the amyloidoses appear to be evolutionarily unrelated. Transthyretin is classified as having an "immunoglobulin-like" fold as found in light chain variable and constant domains. Thus, these amyloidogenic proteins have significant conformational similarity. In the absence of primary structure similarity sufficient to justify an inference of an evolutionary relationship, transthyretin is considered an analog of immunoglobulin domains having accrued the immunoglobulin-like fold by some form of convergent evolution of structure. Improvements in sequence comparison tools and strategies, coupled with recent logarithmic increases in the availability of primary structure data, now make it possible to suggest that transthyretin and immunoglobulins may have a common evolutionary origin. In addition, lactadherin, the medin fragment of which accounts for the most common form of human amyloid, also appears to be evolutionarily linked to transthyretin and immunoglobulins.
Collapse
Affiliation(s)
- Fred J Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
100
|
Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. J Mol Biol 2008; 378:1064-73. [PMID: 18433772 DOI: 10.1016/j.jmb.2008.03.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 11/23/2022]
Abstract
The aggregation of alpha-synuclein, a presynaptic protein, has an important role in the etiology of Parkinson's disease. Oligomers or protofibrils adopting the cross-beta-sheet structure characteristic of fibrillating amyloid proteins are presumed to be the primary cytotoxic species. Current techniques for monitoring the kinetics of alpha-synuclein aggregation based on fluorescent dyes such as Thioflavin-T and Congo red detect only the terminal fibrillar species, are discontinuous and notoriously irreproducible. We have devised a new fluorescence aggregation assay that is continuous and provides a large set of fluorescence parameters sensitive to the presence of oligomeric intermediates as well as fibrils. The approach involves tagging functionally neutral Ala-to-Cys variants of alpha-synuclein with the long-lifetime fluorophore pyrene. Upon induction of aggregation at 37 degrees C, the entire family of steady-state descriptors of pyrene emission (monomer intensity, solvent polarity ratio (I(I)/I(III)), and anisotropy; and excimer intensity) change dramatically, particularly during the early stages in which oligomeric intermediates form and evolve. The pyrene probe senses a progressive decrease in polarity, an increase in molecular mass and close intermolecular association in a manner dependent on position in the sequence and the presence of point mutations. The time-resolved decays (0-160 ns) of intensity and anisotropy exhibited complex, characteristic features. The new assay constitutes a convenient platform for the high-throughput screening of agents useful in the diagnosis and therapy of Parkinson's disease as well as in basic investigations.
Collapse
|