51
|
Perna F, Espinoza-Gutarra MR, Bombaci G, Farag SS, Schwartz JE. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treat Res 2022; 183:225-254. [PMID: 35551662 DOI: 10.1007/978-3-030-96376-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3-5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody-Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC's potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | - Manuel R Espinoza-Gutarra
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Giuseppe Bombaci
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Jennifer E Schwartz
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
52
|
Worthington AK, Forsberg EC. A CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic. Am J Hematol 2022; 97:1226-1235. [PMID: 35560111 PMCID: PMC9378712 DOI: 10.1002/ajh.26588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome engineering has emerged as a powerful tool to modify precise genomic sequences with unparalleled accuracy and efficiency. Major advances in CRISPR technologies over the last 5 years have fueled the development of novel techniques in hematopoiesis research to interrogate the complexities of hematopoietic stem cell (HSC) biology. In particular, high throughput CRISPR based screens using various "flavors" of Cas coupled with sequencing and/or functional outputs are becoming increasingly efficient and accessible. In this review, we discuss recent achievements in CRISPR-mediated genomic engineering and how these new tools have advanced the understanding of HSC heterogeneity and function throughout life. Additionally, we highlight how these techniques can be used to answer previously inaccessible questions and the challenges to implement them. Finally, we focus on their translational potential to both model and treat hematological diseases in the clinic.
Collapse
Affiliation(s)
- Atesh K. Worthington
- Institute for the Biology of Stem Cells University of California‐Santa Cruz Santa Cruz California USA
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology University of California‐Santa Cruz Santa Cruz California USA
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells University of California‐Santa Cruz Santa Cruz California USA
- Biomolecular Engineering University of California‐Santa Cruz Santa Cruz California USA
| |
Collapse
|
53
|
Young RM, Engel NW, Uslu U, Wellhausen N, June CH. Next-Generation CAR T-cell Therapies. Cancer Discov 2022; 12:1625-1633. [PMID: 35417527 DOI: 10.1158/2159-8290.cd-21-1683] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SUMMARY CD19- and B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cells have enabled unprecedented responses in a subset of refractory patients with B-cell and plasma cell malignancies, leading to their approval by the FDA for the treatment of leukemia, lymphoma, and myeloma. These "living drugs" can become part of a synthetic immune system, persisting at least a decade in some patients. However, despite this tremendous impact, significant unmet treatment needs remain for patients with hematologic malignancies and solid cancers. In this perspective, we highlight recent innovations that advance the field toward production of a more potent and universal cellular immunotherapy of the future. Next-generation CAR T cells will incorporate advances in gene engineering and synthetic biology to enhance functionality and persistence, and reduce treatment-associated toxicities. The combination of autologous CAR T cells with various allogeneic cell treatment strategies designed to target the immunosuppressive tumor microenvironment will broaden the impact of future CAR T-cell therapies.
Collapse
Affiliation(s)
- Regina M Young
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nils W Engel
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ugur Uslu
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
54
|
Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-Vivo Induced CAR-T Cell for the Potential Breakthrough to Overcome the Barriers of Current CAR-T Cell Therapy. Front Oncol 2022; 12:809754. [PMID: 35223491 PMCID: PMC8866962 DOI: 10.3389/fonc.2022.809754] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy has shown impressive success in the treatment of hematological malignancies, but the systemic toxicity and complex manufacturing process of current autologous CAR-T cell therapy hinder its broader applications. Universal CAR-T cells have been developed to simplify the production process through isolation and editing of allogeneic T cells from healthy persons, but the allogeneic CAR-T cells have recently encountered safety concerns, and clinical trials have been halted by the FDA. Thus, there is an urgent need to seek new ways to overcome the barriers of current CAR-T cell therapy. In-vivo CAR-T cells induced by nanocarriers loaded with CAR-genes and gene-editing tools have shown efficiency for regressing leukemia and reducing systemic toxicity in a mouse model. The in-situ programming of autologous T-cells avoids the safety concerns of allogeneic T cells, and the manufacture of nanocarriers can be easily standardized. Therefore, the in-vivo induced CAR-T cells can potentially overcome the abovementioned limitations of current CAR-T cell therapy. Here, we provide a review on CAR structures, gene-editing tools, and gene delivery techniques applied in immunotherapy to help design and develop new in-vivo induced CAR-T cells.
Collapse
Affiliation(s)
- Tianqing Xin
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cheng
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchao Zhou
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Zhao
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhua Hu
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
Maganti HB, Kirkham AM, Bailey AJ, Shorr R, Kekre N, Pineault N, Allan DS. Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies. Cytotherapy 2022; 24:405-412. [DOI: 10.1016/j.jcyt.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 01/22/2023]
|
56
|
Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246157. [PMID: 34944782 PMCID: PMC8699597 DOI: 10.3390/cancers13246157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Allogeneic hematopoietic cell transplantation (allo-HCT) has been the only potentially curative treatment for the majority of patients. The ability of chimeric antigen receptor (CAR)-modified T-cell therapy directed against the CD19 antigen to induce durable remissions in patients with acute lymphoblastic leukemia (ALL) has provided optimism that this novel treatment paradigm can be extrapolated to AML. In this review, we provide an overview of candidate target antigens for CAR-T-cells in AML, an update on recent progress in preclinical and clinical development of investigational CAR-T-cell products, and discuss challenges for the clinical implementation of CAR-T-cell therapy in AML. Abstract Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.
Collapse
|
57
|
Genome editing in large animal models. Mol Ther 2021; 29:3140-3152. [PMID: 34601132 DOI: 10.1016/j.ymthe.2021.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.
Collapse
|
58
|
Abstract
Acute myeloid leukemia (AML) is an uncommon but potentially catastrophic diagnosis with historically high mortality rates. The standard of care treatment remained unchanged for decades; however, recent discoveries of molecular drivers of leukemogenesis and disease progression have led to novel therapies for AML. Ongoing research and clinical trials are actively seeking to personalize therapy by identifying molecular targets, discovering patient specific and disease specific risk factors, and identifying effective combinations of modalities and drugs. This review focuses on important updates in diagnostic and disease classifications that reflect new understanding of the biology of AML, its mutational heterogeneity, some important genetic and environmental risk factors, and new treatment options including cytotoxic chemotherapy, novel targeted agents, and cellular therapies.
Collapse
Affiliation(s)
- Laura F Newell
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Rachel J Cook
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
59
|
Shaw BC, Estus S. Pseudogene-Mediated Gene Conversion After CRISPR-Cas9 Editing Demonstrated by Partial CD33 Conversion with SIGLEC22P. CRISPR J 2021; 4:699-709. [PMID: 34558988 DOI: 10.1089/crispr.2021.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although gene editing workflows typically consider the possibility of off-target editing, pseudogene-directed homology repair has not, to our knowledge, been reported previously. Here, we employed a CRISPR-Cas9 strategy for targeted excision of exon 2 in CD33 in U937 human monocyte cell line. Candidate clonal cell lines were screened by using a clinically relevant antibody known to label the IgV domain encoded by exon 2 (P67.6, gemtuzumab). In addition to the anticipated deletion of exon 2, we also found unexpected P67.6-negative cell lines, which had apparently retained CD33 exon 2. Sequencing revealed that these lines underwent gene conversion from the nearby SIGLEC22P pseudogene during homology repair that resulted in three missense mutations relative to CD33. Ectopic expression studies confirmed that the P67.6 epitope is dependent upon these amino acids. In summation, we report that pseudogene-directed homology repair can lead to aberrant CRISPR gene editing.
Collapse
Affiliation(s)
- Benjamin C Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
| |
Collapse
|
60
|
Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:269. [PMID: 34446084 PMCID: PMC8390258 DOI: 10.1186/s13046-021-02076-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has gained attention as the supreme therapeutic modality for the treatment of various malignancies. Adoptive T-cell therapy (ACT) is one of the most distinctive modalities of this therapeutic approach, which seeks to harness the potential of combating cancer cells by using autologous or allogenic tumor-specific T-cells. However, a plethora of circumstances must be optimized to produce functional, durable, and efficient T-cells. Recently, the potential of ACT has been further realized by the introduction of novel gene-editing platforms such as the CRISPR/Cas9 system; this technique has been utilized to create T-cells furnished with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR) that have precise tumor antigen recognition, minimal side effects and treatment-related toxicities, robust proliferation and cytotoxicity, and nominal exhaustion. Here, we aim to review and categorize the recent breakthroughs of genetically modified TCR/CAR T-cells through CRISPR/Cas9 technology and address the pearls and pitfalls of each method. In addition, we investigate the latest ongoing clinical trials that are applying CRISPR-associated TCR/CAR T-cells for the treatment of cancers.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
61
|
Kim MY, Cooper ML, Jacobs MT, Ritchey JK, Hollaway J, Fehniger TA, DiPersio JF. CD7-deleted hematopoietic stem cells can restore immunity after CAR T cell therapy. JCI Insight 2021; 6:e149819. [PMID: 34423790 PMCID: PMC8410010 DOI: 10.1172/jci.insight.149819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Targeting T cell malignancies with universal CD7-targeting chimeric antigen receptor T cells (UCART7) can lead to profound immune deficiency due to loss of normal T and NK cells. While a small population of endogenous CD7- T cells exists, these cells are unlikely to be able to repopulate the entire immune repertoire after UCART7 treatment, as they are limited in number and proliferative capacity. To rescue T and NK cells after UCART7, we created hematopoietic stem cells genetically deleted for CD7 (CD7-KO HSCs). CD7-KO HSCs were able to engraft immunodeficient mice and differentiate into T and NK cells lacking CD7 expression. CD7-KO T and NK cells could perform effector functions as robustly as control T and NK cells. Furthermore, CD7-KO T cells were phenotypically and functionally distinct from endogenous CD7- T cells, indicating that CD7-KO T cells can supplement immune functions lacking in CD7- T cells. Mice engrafted with CD7-KO HSCs maintained T and NK cell numbers after UCART7 treatment, while these were significantly decreased in control mice. These studies support the development of CD7-KO HSCs to augment host immunity in patients with T cell malignancies after UCART7 treatment.
Collapse
MESH Headings
- Animals
- Antigens, CD7/genetics
- Cell Engineering/methods
- Cytotoxicity, Immunologic
- Gene Editing
- Gene Knockout Techniques
- Hematopoietic Stem Cell Transplantation/methods
- Hematopoietic Stem Cells/metabolism
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/therapy
- Mice
- RNA-Seq
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Cell Analysis
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Transplantation Chimera
Collapse
|
62
|
Li C, Mei H, Hu Y. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Brief Funct Genomics 2021; 19:175-182. [PMID: 31950135 PMCID: PMC7239310 DOI: 10.1093/bfgp/elz042] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor(CAR) T-cell therapy has shown remarkable effects and promising prospects in patients with refractory or relapsed malignancies, pending further progress in the next-generation CAR T cells with more optimized structure, enhanced efficacy and reduced toxicities. The clustered regulatory interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology holds immense promise for advancing the field owing to its flexibility, simplicity, high efficiency and multiplexing in precise genome editing. Herein, we review the applications and explorations of CRISPR/Cas9 technology in constructing allogenic universal CAR T cells, disrupting inhibitory signaling to enhance potency and exploration of safer and more controllable novel CAR T cells.
Collapse
Affiliation(s)
| | | | - Yu Hu
- Corresponding author: Heng Mei, Hubei clinical medical center of cell therapy for neoplastic disease, Wuhan 430022, Republic of China. Tel: +86-27-85726007, Fax: +86-27-85726387; E-mail:
| |
Collapse
|
63
|
Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35:1843-1863. [PMID: 33953290 PMCID: PMC8257483 DOI: 10.1038/s41375-021-01253-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease linked to a broad spectrum of molecular alterations, and as such, long-term disease control requires multiple therapeutic approaches. Driven largely by an improved understanding and targeting of these molecular aberrations, AML treatment has rapidly evolved over the last 3-5 years. The stellar successes of immunotherapies that harness the power of T cells to treat solid tumors and an improved understanding of the immune systems of patients with hematologic malignancies have led to major efforts to develop immunotherapies for the treatment of patients with AML. Several immunotherapies that harness T cells against AML are in various stages of preclinical and clinical development. These include bispecific and dual antigen receptor-targeting antibodies (targeted to CD33, CD123, CLL-1, and others), chimeric antigen receptor (CAR) T-cell therapies, and T-cell immune checkpoint inhibitors (including those targeting PD-1, PD-L1, CTLA-4, and newer targets such as TIM3 and STING). The current and future directions of these T-cell-based immunotherapies in the treatment landscape of AML are discussed in this review.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmad S Alotaibi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
64
|
Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, Jabbour E, Ravandi F, Kadia T, Burguera ADLF, Romano A, Loscocco F, Visani G, Martinelli G, Kantarjian H, Curti A. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front Oncol 2021; 11:656218. [PMID: 34041025 PMCID: PMC8143531 DOI: 10.3389/fonc.2021.656218] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the past few years, our improved knowledge of acute myeloid leukemia (AML) pathogenesis has led to the accelerated discovery of new drugs and the development of innovative therapeutic approaches. The role of the immune system in AML development, growth and recurrence has gained increasing interest. A better understanding of immunological escape and systemic tolerance induced by AML blasts has been achieved. The extraordinary successes of immune therapies that harness the power of T cells in solid tumors and certain hematological malignancies have provided new stimuli in this area of research. Accordingly, major efforts have been made to develop immune therapies for the treatment of AML patients. The persistence of leukemia stem cells, representing the most relevant cause of relapse, even after allogeneic stem cell transplant (allo-SCT), remains a major hurdle in the path to cure for AML patients. Several clinical trials with immune-based therapies are currently ongoing in the frontline, relapsed/refractory, post-allo-SCT and minimal residual disease/maintenance setting, with the aim to improve survival of AML patients. This review summarizes the available data with immune-based therapeutic modalities such as monoclonal antibodies (naked and conjugated), T cell engagers, adoptive T-cell therapy, adoptive-NK therapy, checkpoint blockade via PD-1/PD-L1, CTLA4, TIM3 and macrophage checkpoint blockade via the CD47/SIRPa axis, and leukemia vaccines. Combining clinical results with biological immunological findings, possibly coupled with the discovery of biomarkers predictive for response, will hopefully allow us to determine the best approaches to immunotherapy in AML.
Collapse
Affiliation(s)
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Tapan Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Alessandra Romano
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania, Catania, Italy
| | | | - Giuseppe Visani
- Haematology and Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Hagop Kantarjian
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
65
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|
66
|
Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, St. Laurent CD, McCord KA, Bains A, Sidhu G, Sarkar S, Plemel JR, Macauley MS. The CD33 short isoform is a gain-of-function variant that enhances Aβ 1-42 phagocytosis in microglia. Mol Neurodegener 2021; 16:19. [PMID: 33766097 PMCID: PMC7992807 DOI: 10.1186/s13024-021-00443-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CD33 is genetically linked to Alzheimer's disease (AD) susceptibility through differential expression of isoforms in microglia. The role of the human CD33 short isoform (hCD33m), preferentially encoded by an AD-protective CD33 allele (rs12459419T), is unknown. Here, we test whether hCD33m represents a loss-of-function or gain-of-function variant. METHODS We have developed two models to test the role of hCD33m. The first is a new strain of transgenic mice expressing hCD33m in the microglial cell lineage. The second is U937 cells where the CD33 gene was disrupted by CRISPR/Cas9 and complemented with different variants of hCD33. Primary microglia and U937 cells were tested in phagocytosis assays and single cell RNA sequencing (scRNAseq) was carried out on the primary microglia. Furthermore, a new monoclonal antibody was developed to detect hCD33m more efficiently. RESULTS In both primary microglia and U937 cells, we find that hCD33m enhances phagocytosis. This contrasts with the human CD33 long isoform (hCD33M) that represses phagocytosis, as previously demonstrated. As revealed by scRNAseq, hCD33m+ microglia are enriched in a cluster of cells defined by an upregulated expression and gene regulatory network of immediate early genes, which was further validated within microglia in situ. Using a new hCD33m-specific antibody enabled hCD33m expression to be examined, demonstrating a preference for an intracellular location. Moreover, this newly discovered gain-of-function role for hCD33m is dependent on its cytoplasmic signaling motifs, dominant over hCD33M, and not due to loss of glycan ligand binding. CONCLUSIONS These results provide strong support that hCD33m represents a gain-of-function isoform and offers insight into what it may take to therapeutically capture the AD-protective CD33 allele.
Collapse
Affiliation(s)
- Abhishek Bhattacherjee
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Madelene Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Ghazaleh Eskandari-Sedighi
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Chris D. St. Laurent
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Kelli A. McCord
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Arjun Bains
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Gaurav Sidhu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
| | - Jason R. Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, T6G 2E1 Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, T6G 2E1 Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Gunning Lemieux Chemistry Centre E5-18A, Edmonton, T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, Edmonton, T6G 2E1 Canada
| |
Collapse
|
67
|
Luo Y, Song G, Liang S, Li F, Liu K. Research advances in chimeric antigen receptor-modified T-cell therapy (Review). Exp Ther Med 2021; 21:484. [PMID: 33790993 PMCID: PMC8005741 DOI: 10.3892/etm.2021.9915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T-cells are T-cells that have been genetically engineered to express CAR molecules to target specific surface antigens on tumor cells. CAR T-cell therapy, a novel cancer immunotherapy, has been attracting increasing attention, since it exhibited notable efficacy in the treatment of hematological tumors in clinical trials. However, for this type of therapy, challenges must be overcome in the treatment of solid tumors. Furthermore, certain side effects associated with CAR T-cell therapy, including cytokine release syndrome, immune effector cell-related neurotoxicity syndrome, tumor lysis syndrome and on-target off-tumor toxicity, must be taken into consideration. The present study provides a systematic review of the principle, clinical application, current challenges, possible solutions and future perspectives for CAR T-cell therapy.
Collapse
Affiliation(s)
- Yuxi Luo
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,The First Clinic of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guiqin Song
- Department of Biology, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shichu Liang
- The First Clinic of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Feifei Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
68
|
Fix SM, Jazaeri AA, Hwu P. Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer. Cancer Discov 2021; 11:560-574. [PMID: 33563662 PMCID: PMC8193798 DOI: 10.1158/2159-8290.cd-20-1083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Adoptive cell therapy (ACT) for cancer shows tremendous potential; however, several challenges preclude its widespread use. These include poor T-cell function in hostile tumor microenvironments, a lack of tumor-specific target antigens, and the high cost and poor scalability of cell therapy manufacturing. Creative genome-editing strategies are beginning to emerge to address each of these limitations, which has initiated the next generation of cell therapy products now entering clinical trials. CRISPR is at the forefront of this revolution, offering a simple and versatile platform for genetic engineering. This review provides a comprehensive overview of CRISPR applications that have advanced ACT. SIGNIFICANCE: The clinical impact of ACT for cancer can be expanded by implementing specific genetic modifications that enhance the potency, safety, and scalability of cellular products. Here we provide a detailed description of such genetic modifications, highlighting avenues to enhance the therapeutic efficacy and accessibility of ACT for cancer. Furthermore, we review high-throughput CRISPR genetic screens that have unveiled novel targets for cell therapy enhancement.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- CRISPR-Cas Systems
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Clinical Trials as Topic
- Combined Modality Therapy
- Disease Management
- Drug Evaluation, Preclinical
- Gene Editing/methods
- Genetic Engineering
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Samantha M Fix
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
69
|
Khaldoyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune Biology of Acute Myeloid Leukemia: Implications for Immunotherapy. J Clin Oncol 2021; 39:419-432. [PMID: 33434043 PMCID: PMC8078464 DOI: 10.1200/jco.20.00475] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Anthony Stein
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Gerrit Ossenkoppele
- Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
70
|
Benmebarek MR, Cadilha BL, Herrmann M, Lesch S, Schmitt S, Stoiber S, Darwich A, Augsberger C, Brauchle B, Rohrbacher L, Oner A, Seifert M, Schwerdtfeger M, Gottschlich A, Rataj F, Fenn NC, Klein C, Subklewe M, Endres S, Hopfner KP, Kobold S. A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 2021; 35:2243-2257. [PMID: 33414484 PMCID: PMC7789085 DOI: 10.1038/s41375-020-01109-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Bruno L. Cadilha
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Monika Herrmann
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefanie Lesch
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Saskia Schmitt
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Stoiber
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Abbass Darwich
- grid.417728.f0000 0004 1756 8807Mucosal Immunology and Microbiota Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Christian Augsberger
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Bettina Brauchle
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Lisa Rohrbacher
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Arman Oner
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Matthias Seifert
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Melanie Schwerdtfeger
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Adrian Gottschlich
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Felicitas Rataj
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Nadja C. Fenn
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Christian Klein
- grid.417570.00000 0004 0374 1269Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marion Subklewe
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Endres
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | | | - Sebastian Kobold
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
71
|
Acharya UH, Walter RB. Chimeric Antigen Receptor (CAR)-Modified Immune Effector Cell Therapy for Acute Myeloid Leukemia (AML). Cancers (Basel) 2020; 12:E3617. [PMID: 33287224 PMCID: PMC7761730 DOI: 10.3390/cancers12123617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the availability of an increasing number of targeted therapeutics and wider use of allogeneic hematopoietic stem cell transplantation, many patients with acute myeloid leukemia (AML) ultimately succumb to this disease. Given their remarkable efficacy in B-acute lymphoblastic leukemia and other CD19-expressing B cell malignancies, there is hope adoptive cellular transfer, particularly chimeric antigen receptor (CAR)-modified immune effector cell (IEC) therapies, may afford a novel, potent immune-based approach for the treatment of AML that complements or replaces existing ones and improves cure rates. However, it is unclear how best to translate the success of these therapies from B cell malignancies, where use of highly potent immunotherapies is facilitated by identified target antigens with near ubiquitous expression on malignant cells and non-fatal consequences from "on-target, off-tumor cell" toxicities. Herein, we review the current status of CAR-modified IEC therapies for AML, with considerations regarding suitable, relatively leukemia-restricted target antigens, expected toxicities, and interactions of the engineered cells with a profoundly immunosuppressive tumor microenvironment that restricts their therapeutic efficacy. With these challenges in mind, we will discuss possible strategies to improve the cells' potency as well as their therapeutic window for optimal clinical use in AML.
Collapse
Affiliation(s)
- Utkarsh H. Acharya
- Divisions of Hematologic Malignancies & Immune Effector Cell Therapy, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
72
|
Chimeric antigen receptor T cell therapies for acute myeloid leukemia. Front Med 2020; 14:701-710. [PMID: 33263835 DOI: 10.1007/s11684-020-0763-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor T cell (CAR T) therapies have achieved unprecedented efficacy in B-cell tumors, prompting scientists and doctors to exploit this strategy to treat other tumor types. Acute myeloid leukemia (AML) is a group of heterogeneous myeloid malignancies. Relapse remains the main cause of treatment failure, especially for patients with intermediate or high risk stratification. Allogeneic hematopoietic stem cell transplantation could be an effective therapy because of the graft-versus-leukemia effect, which unfortunately puts the patient at risk of serious complications, such as graft-versus-host disease. Although the identification of an ideal target antigen for AML is challenging, CAR T therapy remains a highly promising strategy for AML patients, particularly for those who are ineligible to receive a transplantation or have positive minimal residual disease. In this review, we focus on the most recent and promising advances in CAR T therapies for AML.
Collapse
|
73
|
Siokas V, Tsouris Z, Aloizou AM, Bakirtzis C, Liampas I, Koutsis G, Anagnostouli M, Bogdanos DP, Grigoriadis N, Hadjigeorgiou GM, Dardiotis E. Multiple Sclerosis: Shall We Target CD33? Genes (Basel) 2020; 11:E1334. [PMID: 33198164 PMCID: PMC7696272 DOI: 10.3390/genes11111334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS). Myeloid lineage cells (microglia and macrophages) may participate in the pathogenic mechanisms leading to MS. CD33 is a transmembrane receptor, mainly expressed by myeloid lineage cells. CD33 rs3865444 is a promoter variant previously associated with Alzheimer's disease, whose role in MS remains obscure. OBJECTIVE To assess the role of CD33 rs3865444 in MS risk. METHODS We genotyped 1396 patients with MS and 400 healthy controls for the presence of the CD33 rs3865444 variant. Odds ratios (ORs) with the respective 95% confidence intervals (CIs), were calculated with the SNPStats software, assuming five genetic models (co-dominant, dominant, recessive, over-dominant, and log-additive), with the G allele as the reference allele. The value of 0.05 was set as the threshold for statistical significance. RESULTS CD33 rs3865444 was associated with MS risk in the dominant (GG vs. GT + TT; OR (95% C.I.) = 0.79 (0.63-0.99), p = 0.041) and the over-dominant (GG + TT vs. GT; OR (95% C.I.) = 0.77 (0.61-0.97), p = 0.03) modes of inheritance. Given that the GG genotype was more frequent and the GT genotype was less frequent in MS patients compared to controls-while the observed frequency of the TT genotype did not differ between the two groups-the observed difference in MS risk may be stemming from either the GG (as a risk factor) or the GT (as a protective factor) genotype of CD33 rs3865444. CONCLUSIONS Our preliminary results suggest a possible contribution of CD33 rs3865444 to MS. Therefore, larger multiethnic studies should be conducted, investigating the role of CD33 rs3865444 in MS.
Collapse
Affiliation(s)
- Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Zisis Tsouris
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Athina-Maria Aloizou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (C.B.); (N.G.)
| | - Ioannis Liampas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Vassilissis Sofias 72-74 Ave, 11528 Athens, Greece;
| | - Maria Anagnostouli
- Multiple Sclerosis and Demyelinating Diseases Unit and Immunogenetics Laboratory, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, B’ Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece; (C.B.); (N.G.)
| | - Georgios M. Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, 1678 Nicosia, Cyprus
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (V.S.); (Ζ.Τ.); (A.-M.A.); (I.L.); (G.M.H.)
| |
Collapse
|
74
|
Shi W, Jin W, Xia L, Hu Y. Novel agents targeting leukemia cells and immune microenvironment for prevention and treatment of relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Acta Pharm Sin B 2020; 10:2125-2139. [PMID: 32837873 PMCID: PMC7326461 DOI: 10.1016/j.apsb.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Relapse remains the worst life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML), whose prognosis has been historically dismal. Given the rapid development of genomics and immunotherapies, the interference strategies for AML recurrence have been changing these years. More and more novel targeting agents that have received the U.S. Food and Drug Administration (FDA) approval for de novo AML treatment have been administrated in the salvage or maintenance therapy of post-HSCT relapse. Targeted strategies that regulate the immune microenvironment of and optimize the graft versus leukemia (GVL) effect of immune cells are gradually improved. Such agents not only have been proven to achieve clinical benefits from a single drug, but if combined with classic therapies, can significantly improve the poor prognosis of AML patients who relapse after allo-HSCT. This review will focus on currently available and promising upcoming agents and also discuss the challenges and limitations of targeted therapies in the allogeneic hematopoietic stem cell transplantation community.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Weiwei Jin
- Department of Cardiovascular, Optical Valley School District, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
75
|
Miri SM, Tafsiri E, Cho WCS, Ghaemi A. CRISPR-Cas, a robust gene-editing technology in the era of modern cancer immunotherapy. Cancer Cell Int 2020; 20:456. [PMID: 32973401 PMCID: PMC7493839 DOI: 10.1186/s12935-020-01546-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called "adoptive cell transfer", or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects. In this context, CRISPR technology can be used to produce universal T-cells, equipped with recombinant T cell receptor (TCR) or chimeric antigen receptor (CAR), through multiplex genome engineering using Cas nucleases. The robust potential of CRISPR-Cas in preparing the building blocks of ACT immunotherapy has broaden the application of such therapies and some of them have gotten FDA approvals. Here, we have collected the last investigations in the field of immuno-oncology conducted in partnership with CRISPR technology. In addition, studies that have addressed the challenges in the path of CRISPR-mediated cancer immunotherapy, as well as pre-treatment applications of CRISPR-Cas have been mentioned in detail.
Collapse
Affiliation(s)
| | - Elham Tafsiri
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, P.O.Box: 1316943551, Iran
| |
Collapse
|
76
|
Isolation of a Highly Purified HSC-enriched CD34 +CD90 +CD45RA - Cell Subset for Allogeneic Transplantation in the Nonhuman Primate Large-animal Model. Transplant Direct 2020; 6:e579. [PMID: 33134503 PMCID: PMC7581184 DOI: 10.1097/txd.0000000000001029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a common treatment for patients suffering from different hematological disorders. Allo-HCT in combination with hematopoietic stem cell (HSC) gene therapy is considered a promising treatment option for millions of patients with HIV+ and acute myeloid leukemia. Most currently available HSC gene therapy approaches target CD34-enriched cell fractions, a heterogeneous mix of mostly progenitor cells and only very few HSCs with long-term multilineage engraftment potential. As a consequence, gene therapy approaches are currently limited in their HSC targeting efficiency, very expensive consuming huge quantities of modifying reagents, and can lead to unwanted side effects in nontarget cells. We have previously shown that purified CD34+CD90+CD45RA− cells are enriched for multipotent HSCs with long-term multilineage engraftment potential, which can reconstitute the entire hematopoietic system in an autologous nonhuman primate transplant model. Here, we tested the feasibility of transplantation with purified CD34+CD90+CD45RA− cells in the allogeneic setting in a nonhuman primate model.
Collapse
|
77
|
Humbert O, Samuelson C, Kiem HP. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. Br J Haematol 2020; 192:33-49. [PMID: 32506752 DOI: 10.1111/bjh.16807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/26/2022]
Abstract
Genome editing therapies represent a significant advancement in next-generation, precision medicine for the management of haematological diseases, and CRISPR/Cas9 has to date been the most successful implementation platform. From discovery in bacteria and archaea over three decades ago, through intensive basic research and pre-clinical development phases involving the modification of therapeutically relevant cell types, CRISPR/Cas9 genome editing is now being investigated in ongoing clinic trials. Despite the widespread enthusiasm brought by this new technology, significant challenges remain before genome editing can be routinely recommended and implemented in the clinic. These include risks of genotoxicity resulting from off-target DNA cleavage or chromosomal rearrangement, and suboptimal efficacy of homology-directed repair editing strategies, which thus limit therapeutic options. Practical hurdles such as high costs and inaccessibility to patients outside specialised centres must also be addressed. Future improvements in this rapidly developing field should circumvent current limitations with novel editing platforms and with the simplification of clinical protocols using in vivo delivery of editing reagents.
Collapse
Affiliation(s)
| | | | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
78
|
Abstract
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Gojo
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
79
|
Fathi E, Farahzadi R, Sheervalilou R, Sanaat Z, Vietor I. A general view of CD33 + leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res 2020; 55:10-16. [PMID: 32269970 PMCID: PMC7106116 DOI: 10.5045/br.2020.55.1.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myeloblastic leukemia (AML) is the most frequent acute leukemia in adulthood with very poor overall survival rates. In the past few decades, significant progresses had led to the findings of new therapeutic approaches and the better understanding of the molecular complexity of this hematologic malignancy. Leukemic stem cells (LSCs) play a key role in the initiation, progression, regression, and drug resistance of different types of leukemia. The cellular and molecular characteristics of LSCs and their mechanism in the development of leukemia had not yet been specified. Therefore, determining their cellular and molecular characteristics and creating new approaches for targeted therapy of LSCs is crucial for the future of leukemia research. For this reason, the recognition of surface maker targets on the cell surface of LSCs has attracted much attention. CD33 has been detected on blasts in most AML patients, making them an interesting target for AML therapy. Genetic engineering of T cells with chimeric antigen receptor (CAR-T cell therapy) is a novel therapeutic strategy. It extends the range of antigens available for use in adoptive T-cell immunotherapy. This review will focus on CAR-T cell approaches as well as monoclonal antibody (mAB)-based therapy, the two antibody-based therapies utilized in AML treatment.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
80
|
Benabdellah K, Sánchez-Hernández S, Aguilar-González A, Maldonado-Pérez N, Gutierrez-Guerrero A, Cortijo-Gutierrez M, Ramos-Hernández I, Tristán-Manzano M, Galindo-Moreno P, Herrera C, Martin F. Genome-edited adult stem cells: Next-generation advanced therapy medicinal products. Stem Cells Transl Med 2020; 9:674-685. [PMID: 32141715 PMCID: PMC7214650 DOI: 10.1002/sctm.19-0338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Over recent decades, gene therapy, which has enabled the treatment of several incurable diseases, has undergone a veritable revolution. Cell therapy has also seen major advances in the treatment of various diseases, particularly through the use of adult stem cells (ASCs). The combination of gene and cell therapy (GCT) has opened up new opportunities to improve advanced therapy medicinal products for the treatment of several diseases. Despite the considerable potential of GCT, the use of retroviral vectors has major limitations with regard to oncogene transactivation and the lack of physiological expression. Recently, gene therapists have focused on genome editing (GE) technologies as an alternative strategy. In this review, we discuss the potential benefits of using GE technologies to improve GCT approaches based on ASCs. We will begin with a brief summary of different GE platforms and techniques and will then focus on key therapeutic approaches that have been successfully used to treat diseases in animal models. Finally, we discuss whether ASC GE could become a real alternative to retroviral vectors in a GCT setting.
Collapse
Affiliation(s)
- Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Araceli Aguilar-González
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain.,Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Noelia Maldonado-Pérez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, Jill Roberts, Inflammatory Bowel Disease Research Institute, New York, New York, USA
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Iris Ramos-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Pablo Galindo-Moreno
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain
| | - Concha Herrera
- Department of Hematology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| |
Collapse
|
81
|
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 2020; 20:158-173. [PMID: 31907378 DOI: 10.1038/s41568-019-0230-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Abstract
For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR-ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles' heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Disease Management
- Disease Susceptibility
- Drug Development
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Research/history
- Research/trends
Collapse
Affiliation(s)
- David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
82
|
Zheng N, Li L, Wang X. Molecular mechanisms, off-target activities, and clinical potentials of genome editing systems. Clin Transl Med 2020; 10:412-426. [PMID: 32508055 PMCID: PMC7240848 DOI: 10.1002/ctm2.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Methodologies of genome editing are rapidly developing with the improvement of gene science and technology, mechanism-based understanding, and urgent needs. In addition to the specificity and efficiency of on-target sites, one of the most important issues is to find and avoid off-targets before clinical application of gene editing as a therapy. Various algorithms, modified nucleases, and delivery vectors are developed to localize and minimize off-target sites. The present review aimed to clarify off-targets of various genome editing and explore potentials of clinical application by understanding structures, mechanisms, clinical applications, and off-target activities of genome editing systems, including CRISPR/Cas9, CRISPR/Cas12a, zinc finger nucleases, transcription activator-like effector nucleases, meganucleases, and recent developments. Current genome editing in cancer therapy mainly targeted immune systems in tumor microenvironment by ex vivo modification of the immune cells in phases I/II of clinical trials. We believe that genome editing will be the critical part of clinical precision medicine strategy and multidisciplinary therapy strategy by integrating gene sequencing, clinical transomics, and single cell biomedicine. There is an urgent need to develop on/off-target-specific biomarkers to monitor the efficacy and side-effects of gene therapy. Thus, the genome editing will be an alternative of clinical therapies for cancer with the rapid development of methodology and an important part of clinical precision medicine strategy.
Collapse
Affiliation(s)
- Nannan Zheng
- Zhongshan Hospital Institute for Clinical ScienceShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan UniversityShanghaiChina
| | - Liyang Li
- Zhongshan Hospital Institute for Clinical ScienceShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital Institute for Clinical ScienceShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan UniversityShanghaiChina
| |
Collapse
|
83
|
Bernasconi P, Borsani O. Immune Escape after Hematopoietic Stem Cell Transplantation (HSCT): From Mechanisms to Novel Therapies. Cancers (Basel) 2019; 12:cancers12010069. [PMID: 31881776 PMCID: PMC7016529 DOI: 10.3390/cancers12010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Recent advances in understanding its molecular basis have opened the way to new therapeutic strategies, including targeted therapies. However, despite an improvement in prognosis it has been documented in recent years (especially in younger patients) that allogenic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment in AML and the first therapeutic option for high-risk patients. After allo-HSCT, relapse is still a major complication, and is observed in about 50% of patients. Current evidence suggests that relapse is not due to clonal evolution, but instead to the ability of the AML cell population to escape immune control by a variety of mechanisms including the altered expression of HLA-molecules, production of anti-inflammatory cytokines, relevant metabolic changes and expression of immune checkpoint (ICP) inhibitors capable of “switching-off” the immune response against leukemic cells. Here, we review the main mechanisms of immune escape and identify potential strategies to overcome these mechanisms.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-340-656-3988
| |
Collapse
|
84
|
Mercher T, Schwaller J. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Front Pediatr 2019; 7:401. [PMID: 31681706 PMCID: PMC6803505 DOI: 10.3389/fped.2019.00401] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
This review aims to provide an overview of the current knowledge of the genetic lesions driving pediatric acute myeloid leukemia (AML), emerging biological concepts, and strategies for therapeutic intervention. Hereby, we focus on lesions that preferentially or exclusively occur in pediatric patients and molecular markers of aggressive disease with often poor outcome including fusion oncogenes that involve epigenetic regulators like KMT2A, NUP98, or CBFA2T3, respectively. Functional studies were able to demonstrate cooperation with signaling mutations leading to constitutive activation of FLT3 or the RAS signal transduction pathways. We discuss the issues faced to faithfully model pediatric acute leukemia in mice. Emerging experimental evidence suggests that the disease phenotype is dependent on the appropriate expression and activity of the driver fusion oncogenes during a particular window of opportunity during fetal development. We also highlight biochemical studies that deciphered some molecular mechanisms of malignant transformation by KMT2A, NUP98, and CBFA2T3 fusions, which, in some instances, allowed the development of small molecules with potent anti-leukemic activities in preclinical models (e.g., inhibitors of the KMT2A-MENIN interaction). Finally, we discuss other potential therapeutic strategies that not only target driver fusion-controlled signals but also interfere with the transformed cell state either by exploiting the primed apoptosis or vulnerable metabolic states or by increasing tumor cell recognition and elimination by the immune system.
Collapse
Affiliation(s)
- Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, France
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital Beider Basel (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|