51
|
Chen C, Wang T, Yan K, Liu S, Zhao Y, Li B. Photocatalytic CO 2 reduction on Cu single atoms incorporated in ordered macroporous TiO 2 toward tunable products. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01155g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Cu/3DOM-TiO2 photocatalyst exhibits high performance toward CO2 to CH4 conversion in a gas–solid system while producing C2H4 in a liquid–solid system.
Collapse
Affiliation(s)
- Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ke Yan
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, P. R. China
| | - Yu Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
52
|
Kumar Ummireddi A, Kumar Sharma S, Ganesh S. Pala R. Influence of Tetraethylammonium Cation on Electrochemical CO2 Reduction over Cu, Ag, Ni, and Fe Surfaces. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
Deng B, Huang M, Zhao X, Mou S, Dong F. Interfacial Electrolyte Effects on Electrocatalytic CO 2 Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bangwei Deng
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| | - Ming Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Xiaoli Zhao
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Shiyong Mou
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Fan Dong
- Research Center for Environmental Science and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, People’s Republic of China
| |
Collapse
|
54
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
55
|
Wang Y, Liu J, Zheng G. Designing Copper-Based Catalysts for Efficient Carbon Dioxide Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005798. [PMID: 33913569 DOI: 10.1002/adma.202005798] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Indexed: 06/12/2023]
Abstract
The electroreduction of carbon dioxide (CO2 ) has been emerging as a high- potential approach for CO2 utilization using renewables. When copper (Cu) based catalysts are used, this platform can produce multi-carbon (C2+ ) fuels and chemicals with almost net-zero emission, contributing to the closure of the anthropogenic carbon cycle. Nonetheless, the rational design and development of Cu-based catalysts are critical toward the realization of highly selective and efficient CO2 electroreduction. In this review, first the latest advances in Cu-catalyzed CO2 electroreduction in the product selectivity and electrocatalytic activity are briefly summarized. Then, recent theoretical and mechanistic studies of CO2 electroreduction on Cu-based catalysts are investigated, which serve as programs to design catalysts. Strategies for devising Cu catalysts that aim at promoting different key elementary steps for hydrocarbon and C2+ oxygenates production are further summarized. Moreover, challenges in understanding the mechanism, operando investigation of Cu catalysts and reactions, and systems' influences are also presented. Finally, the future prospects of CO2 electroreduction are discussed.
Collapse
Affiliation(s)
- Yuhang Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Junlang Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
56
|
Le JB, Yang XH, Zhuang YB, Jia M, Cheng J. Recent Progress toward Ab Initio Modeling of Electrocatalysis. J Phys Chem Lett 2021; 12:8924-8931. [PMID: 34499508 DOI: 10.1021/acs.jpclett.1c02086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrode potential is the key factor for controlling electrocatalytic reactions at electrochemical interfaces, and moreover, it is also known that the pH and solutes (e.g., cations) of the solution have prominent effects on electrocatalysis. Understanding these effects requires microscopic information on the electrochemical interfaces, in which theoretical simulations can play an important role. This Perspective summarizes the recent progress in method development for modeling electrochemical interfaces, including different methods for describing the electrolytes at the interfaces and different schemes for charging up the electrode surfaces. In the final section, we provide an outlook for future development in modeling methods and their applications to electrocatalysis.
Collapse
Affiliation(s)
- Jia-Bo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Hui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong-Bin Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mei Jia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
57
|
Liu H, Liu J, Yang B. Promotional Role of a Cation Intermediate Complex in C 2 Formation from Electrochemical Reduction of CO 2 over Cu. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01072] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
58
|
Le JB, Chen A, Li L, Xiong JF, Lan J, Liu YP, Iannuzzi M, Cheng J. Modeling Electrified Pt(111)-H ad/Water Interfaces from Ab Initio Molecular Dynamics. JACS AU 2021; 1:569-577. [PMID: 34467320 PMCID: PMC8395682 DOI: 10.1021/jacsau.1c00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/08/2023]
Abstract
Unraveling the atomistic structures of electric double layers (EDL) at electrified interfaces is of paramount importance for understanding the mechanisms of electrocatalytic reactions and rationally designing electrode materials with better performance. Despite numerous efforts dedicated in the past, a molecular level understanding of the EDL is still lacking. Combining the state-of-the-art ab initio molecular dynamics (AIMD) and recently developed computational standard hydrogen electrode (cSHE) method, it is possible to realistically simulate the EDL under well-defined electrochemical conditions. In this work, we report extensive AIMD calculation of the electrified Pt(111)-Had/water interfaces at the saturation coverage of adsorbed hydrogen (Had) corresponding to the typical hydrogen evolution reaction conditions. We calculate the electrode potentials of a series of EDL models with various surface charge densities using the cSHE method and further obtain the Helmholtz capacitance that agrees with experiment. Furthermore, the AIMD simulations allow for detailed structural analyses of the electrified interfaces, such as the distribution of adsorbate Had and the structures of interface water and counterions, which can in turn explain the computed dielectric property of interface water. Our calculation provides valuable molecular insight into the electrified interfaces and a solid basis for understanding a variety of electrochemical processes occurring inside the EDL.
Collapse
Affiliation(s)
- Jia-Bo Le
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Ningbo
Institute of Materials Technology and Engineering, Chinese Academy
of Sciences, Ningbo 315201, China
| | - Ao Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lang Li
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Fang Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinggang Lan
- Department
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yun-Pei Liu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Marcella Iannuzzi
- Department
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jun Cheng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
59
|
Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. J Colloid Interface Sci 2021; 600:847-853. [PMID: 34051469 DOI: 10.1016/j.jcis.2021.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The renewable energy-powered electroreduction of carbon dioxide or monoxide (CO) has been emerging as an attractive means to decarbonize the emission-intensive chemical manufacturing, which heavily relies on fossil fuels nowadays. One potential approach to promote the activity of electrocatalysts is to construct hybrid interface that can increase the stability of intermediates on electrode surfaces. Herein we developed a copper nanoparticle/polypyrrole (Cu-Ppy) nanowire composite as an efficient electrocatalyst for electrochemical CO reduction reaction. Compared to pure Cu nanoparticles, the Cu-Ppy composite exhibited a dramatically enhanced Faradaic efficiency of converting CO to ethylene (C2H4) from 34% to 69% at -0.78 V vs. reversible hydrogen electrode (RHE) in KOH electrolyte, and an excellent C2H4 partial current density of 276 mA·cm-2 at -1.18 V vs. RHE. Density functional theory calculations showed that the Cu-Ppy composite could bind CO more strongly as compared to pure Cu. As the Ppy coating allowed to stabilize OCCO*, a key intermediate in the C2H4 formation, both the activity and selectivity of Cu-Ppy for CO-to-C2H4 were increased. Our work suggests that constructing rationally designed hybrid interface can tune the local environment of catalyst surface toward enhanced activity and product selectivity.
Collapse
|
60
|
Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00100-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Liu Y, Jiang H, Hou Z. Hidden Mechanism Behind the Roughness‐Enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yinghuan Liu
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM University of Science and Technology of China Hefei Anhui 230026 China
| | - Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
62
|
Liu Y, Jiang H, Hou Z. Hidden Mechanism Behind the Roughness-Enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. Angew Chem Int Ed Engl 2021; 60:11133-11137. [PMID: 33660382 DOI: 10.1002/anie.202016332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 02/06/2023]
Abstract
High roughness has been proved to be an effective design strategy for electrocatalyst in many systems. Especially, high selectivity of carbon monoxide reduction (CORR) in competition with the hydrogen evolution reaction has been observed on high roughness electrocatalysts. However, the two well-known mechanisms, i.e., decreasing the energy barrier of CORR and increasing local pH, failed to understand the roughness-enhanced selectivity in a recent experiment. Herein we unravel the hidden mechanism by establishing a comprehensive kinetic model for CORR on catalysts with different roughness factors. We conclude that the roughness-enhanced CORR selectivity is actually kinetic controlled by local-electric-field-directed mass transfer of adsorbed species on the electrode surface. Several ways to optimize CORR selectivity are predicted. Our work highlights the kinetics in electrocatalysis on nanocatalysts, and provides a conceptually new principle for future catalyst design.
Collapse
Affiliation(s)
- Yinghuan Liu
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
63
|
|
64
|
Chang X, Xiong H, Xu Y, Zhao Y, Lu Q, Xu B. Determining intrinsic stark tuning rates of adsorbed CO on copper surfaces. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01090e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This work reports a general and effective strategy of determining the intrinsic Stark tuning rate by removing the impact of the dynamical coupling of adsorbed CO on the Cu surface with surface enhanced infrared absorption spectroscopy (SEIRAS).
Collapse
Affiliation(s)
- Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Haocheng Xiong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Yaran Zhao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
65
|
Malkani AS, Anibal J, Chang X, Xu B. Bridging the Gap in the Mechanistic Understanding of Electrocatalysis via In Situ Characterizations. iScience 2020; 23:101776. [PMID: 33294785 PMCID: PMC7689167 DOI: 10.1016/j.isci.2020.101776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Electrocatalysis offers a promising strategy to take advantage of the increasingly available and affordable renewable energy for the sustainable production of fuels and chemicals. Attaining this promise requires a molecular level insight of the electrical interface that can be used to tailor the selectivity of electrocatalysts. Addressing this selectivity challenge remains one of the most important areas in modern electrocatalytic research. In this Perspective, we focus on the use of in situ techniques to bridge the gap in the fundamental understanding of electrocatalytic processes. We begin with a brief discussion of traditional electrochemical techniques, ex situ measurements and in silico analysis. Subsequently, we discuss the utility and limitations of in situ methodologies, with a focus on vibrational spectroscopies. We then end by looking ahead toward promising new areas for the application of in situ techniques and improvements to current methods.
Collapse
Affiliation(s)
- Arnav S. Malkani
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Jacob Anibal
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Xiaoxia Chang
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
66
|
Malkani AS, Anibal J, Xu B. Cation Effect on Interfacial CO 2 Concentration in the Electrochemical CO 2 Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnav S. Malkani
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob Anibal
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
67
|
Malkani AS, Li J, Oliveira NJ, He M, Chang X, Xu B, Lu Q. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. SCIENCE ADVANCES 2020; 6:6/45/eabd2569. [PMID: 33158873 PMCID: PMC7673714 DOI: 10.1126/sciadv.abd2569] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 05/31/2023]
Abstract
Electrolyte cations affect the activity of surface-mediated electrocatalytic reactions; however, understanding the modes of interaction between cations and reaction intermediates remains lacking. We show that larger alkali metal cations (excluding the thickness of the hydration shell) promote the electrochemical CO reduction reaction on polycrystalline Cu surfaces in alkaline electrolytes. Combined reactivity and in situ surface-enhanced spectroscopic investigations show that changes to the interfacial electric field strength cannot solely explain the reactivity trend with cation size, suggesting the presence of a nonelectric field strength component in the cation effect. Spectroscopic investigations with cation chelating agents and organic molecules show that the electric and nonelectric field components of the cation effect could be affected by both cation identity and composition of the electrochemical interface. The interdependent nature of interfacial species indicates that the cation effect should be considered an integral part of the broader effect of composition and structure of the electrochemical interface on electrode-mediated reactions.
Collapse
Affiliation(s)
- A S Malkani
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - J Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - N J Oliveira
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - M He
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - X Chang
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - B Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Q Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
68
|
Banerjee S, Anayah RI, Gerke CS, Thoi VS. From Molecules to Porous Materials: Integrating Discrete Electrocatalytic Active Sites into Extended Frameworks. ACS CENTRAL SCIENCE 2020; 6:1671-1684. [PMID: 33145407 PMCID: PMC7596858 DOI: 10.1021/acscentsci.0c01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic and covalent-organic frameworks can serve as a bridge between the realms of homo- and heterogeneous catalytic systems. While there are numerous molecular complexes developed for electrocatalysis, homogeneous catalysts are hindered by slow catalyst diffusion, catalyst deactivation, and poor product yield. Heterogeneous catalysts can compensate for these shortcomings, yet they lack the synthetic and chemical tunability to promote rational design. To narrow this knowledge gap, there is a burgeoning field of framework-related research that incorporates molecular catalysts within porous architectures, resulting in an exceptional catalytic performance as compared to their molecular analogues. Framework materials provide structural stability to these catalysts, alter their electronic environments, and are easily tunable for increased catalytic activity. This Outlook compares molecular catalysts and corresponding framework materials to evaluate the effects of such integration on electrocatalytic performance. We describe several different classes of molecular motifs that have been included in framework materials and explore how framework design strategies improve on the catalytic behavior of their homogeneous counterparts. Finally, we will provide an outlook on new directions to drive fundamental research at the intersection of reticular-and electrochemistry.
Collapse
Affiliation(s)
- Soumyodip Banerjee
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rasha I. Anayah
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Carter S. Gerke
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V. Sara Thoi
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- E-mail:
| |
Collapse
|
69
|
Wallentine S, Bandaranayake S, Biswas S, Baker LR. Direct Observation of Carbon Dioxide Electroreduction on Gold: Site Blocking by the Stern Layer Controls CO 2 Adsorption Kinetics. J Phys Chem Lett 2020; 11:8307-8313. [PMID: 32946241 DOI: 10.1021/acs.jpclett.0c02628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Directly observing active surface intermediates represents a major challenge in electrocatalysis, especially for CO2 electroreduction on Au. We use in-situ, plasmon-enhanced vibrational sum frequency generation spectroscopy, which has detection limits of <1% of a monolayer and can access the Au/electrolyte interface during active electrocatalysis in the absence of mass transport limitations. Measuring the potential-dependent surface coverage of atop CO confirms that the rate-determining step for this reaction is CO2 adsorption. An analysis of the interfacial electric field reveals the formation of a dense cation layer at the electrode surface, which is correlated to the onset of CO production. The Tafel slope increases in conjunction with the field saturation due to active site blocking by adsorbed cations. These findings show that CO2 reduction is extremely sensitive to the potential-dependent structure of the electrochemical double layer and provides direct observation of the interfacial processes that govern these kinetics.
Collapse
Affiliation(s)
- Spencer Wallentine
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
70
|
Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal 2020. [DOI: 10.1038/s41929-020-00512-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
71
|
Gunathunge CM, Li J, Li X, Waegele MM. Surface-Adsorbed CO as an Infrared Probe of Electrocatalytic Interfaces. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charuni M. Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M. Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
72
|
Pennathur AK, Voegtle MJ, Menachekanian S, Dawlaty JM. Strong Propensity of Ionic Liquids in Their Aqueous Solutions for an Organic-Modified Metal Surface. J Phys Chem B 2020; 124:7500-7507. [PMID: 32786711 DOI: 10.1021/acs.jpcb.0c04665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding ionic structure and electrostatic environments near a surface has both fundamental and practical value. In electrochemistry, especially when room temperature ionic liquids (ILs) are involved, the complex ionic structure near the interface is expected to crucially influence reactions. Here we report evidence that even in dilute aqueous solutions of several ILs, the ions aggregate near the surface in ways that are qualitatively different from simple electrolytes. We have used a vibrational probe molecule, 4-mercaptobenzonitrile (MBN), tethered to a metal surface to monitor the behavior of the ionic layers. The characteristic nitrile vibrational frequency of this molecule has distinct values in the presence of pure water (∼2232 cm-1) and pure IL (for example, ∼2226 cm-1 for ethylmethylimidazolium tetrafluoroborate, [EMIM][BF4]). This difference reflects the local electrostatic field and the hydrogen-bonding variations between these two limiting cases. We tracked this frequency shift as a function of IL concentration in water all the way from pure water to pure IL. We report two important findings. First, only one nitrile peak is observed for the entire concentration range, indicating that at least on the length scale of the probe molecule water and ILs do not phase separate within the interface, and no heterogeneously distinct electrostatic environments are formed. Second, and more importantly, we find that even up to a significant mole fraction of bulk water (x ∼ 0.95), the nitrile frequency does not change from that indicative of a pure IL for [EMIM][BF4], indicating preferential aggregation of the ions near the surface. Because this behavior is very similar to surfactants, we chose an imidazolium cation with a longer side chain which resulted in behavior expected from a surfactant, with a preferential layer of the ions on the surface even in dilute water solutions (x ∼ 0.995). This observation indicates that even those ILs that are not nominally categorized as surfactants have a strong tendency to aggregate at the surface. Because ILs serve as electrolytes in a range of electrochemical reactions, including those requiring water, our results are likely useful for mechanistic understanding and tuning of such reactions.
Collapse
Affiliation(s)
- Anuj K Pennathur
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Matthew J Voegtle
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Sevan Menachekanian
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| |
Collapse
|
73
|
Banerjee S, Zhang ZQ, Hall AS, Thoi VS. Surfactant Perturbation of Cation Interactions at the Electrode–Electrolyte Interface in Carbon Dioxide Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02387] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Soumyodip Banerjee
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhuo-Qun Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Shoji Hall
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V. Sara Thoi
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
74
|
Tao Z, Wu Z, Wu Y, Wang H. Activating Copper for Electrocatalytic CO2 Reduction to Formate via Molecular Interactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02237] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zixu Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zishan Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
75
|
Zhang ZQ, Banerjee S, Thoi VS, Shoji Hall A. Reorganization of Interfacial Water by an Amphiphilic Cationic Surfactant Promotes CO 2 Reduction. J Phys Chem Lett 2020; 11:5457-5463. [PMID: 32524821 DOI: 10.1021/acs.jpclett.0c01334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The presence of cetyltrimethylammonium bromide (CTAB) near the surface of a Cu electrode promotes the electrochemical reduction of CO2 to fuels. CTAB increases the CO2 reduction rate by as much as 10× and decreased the HER rate by 4×, leading to ∼75% selectivity toward the reduction of CO2. Surface enhanced infrared absorption spectroscopy (SEIRAS) was used to probe the effects of CTAB adsorption on the structure of interfacial water and CO2 reduction intermediates. HER suppression was found to arise from the displacement of interfacial water molecules from CTAB adsorption within the double layer. The enhanced CO2 reduction rate can be correlated to an increased population of atop-bound CO and the emergence of a low frequency atop-CO band. These results unravel the role of additives in improving CO2-to-fuels electrocatalysis and establishing this as a powerful methodology for directing product selectivity.
Collapse
Affiliation(s)
- Zhuo-Qun Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Soumyodip Banerjee
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V Sara Thoi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Shoji Hall
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
76
|
Gunathunge CM, Li J, Li X, Hong JJ, Waegele MM. Revealing the Predominant Surface Facets of Rough Cu Electrodes under Electrochemical Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Charuni M. Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Julie J. Hong
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M. Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
77
|
Li J, Wu D, Malkani AS, Chang X, Cheng M, Xu B, Lu Q. Hydroxide Is Not a Promoter of C
2+
Product Formation in the Electrochemical Reduction of CO on Copper. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Donghuan Wu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Arnav S. Malkani
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of Delaware Newark DE 19716 USA
| | - Xiaoxia Chang
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of Delaware Newark DE 19716 USA
| | - Mu‐Jeng Cheng
- Department of ChemistryNational Cheng Kung University Tainan 701 Taiwan
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of Delaware Newark DE 19716 USA
| | - Qi Lu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| |
Collapse
|
78
|
Li J, Wu D, Malkani AS, Chang X, Cheng MJ, Xu B, Lu Q. Hydroxide Is Not a Promoter of C 2+ Product Formation in the Electrochemical Reduction of CO on Copper. Angew Chem Int Ed Engl 2020; 59:4464-4469. [PMID: 31814246 DOI: 10.1002/anie.201912412] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 01/08/2023]
Abstract
Highly alkaline electrolytes have been shown to improve the formation rate of C2+ products in the electrochemical reduction of carbon dioxide (CO2 ) and carbon monoxide (CO) on copper surfaces, with the assumption that higher OH- concentrations promote the C-C coupling chemistry. Herein, by systematically varying the concentration of Na+ and OH- at the same absolute electrode potential, we demonstrate that higher concentrations of cations (Na+ ), rather than OH- , exert the main promotional effect on the production of C2+ products. The impact of the nature and the concentration of cations on the electrochemical reduction of CO is supported by experiments in which a fraction or all of Na+ is chelated by a crown ether. Chelation of Na+ leads to drastic decrease in the formation rate of C2+ products. The promotional effect of OH- determined at the same potential on the reversible hydrogen electrode scale is likely caused by larger overpotentials at higher electrolyte pH.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Donghuan Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Arnav S Malkani
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xiaoxia Chang
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
79
|
Li J, Zhang Y, Kornienko N. Heterogeneous electrocatalytic reduction of CO2 promoted by secondary coordination sphere effects. NEW J CHEM 2020. [DOI: 10.1039/c9nj05892c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The incorporation of secondary coordination sphere effects to rationally modulate electrochemical CO2 reduction on heterogeneous catalysts is reviewed.
Collapse
Affiliation(s)
- Junnan Li
- Department of Chemistry
- Université de Montreal
- Roger-Gaudry Building
- Montreal
- Canada
| | - Yuxuan Zhang
- Department of Chemistry
- Université de Montreal
- Roger-Gaudry Building
- Montreal
- Canada
| | - Nikolay Kornienko
- Department of Chemistry
- Université de Montreal
- Roger-Gaudry Building
- Montreal
- Canada
| |
Collapse
|
80
|
How cations determine the interfacial potential profile: Relevance for the CO2 reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
81
|
Dong Q, Zhang X, He D, Lang C, Wang D. Role of H 2O in CO 2 Electrochemical Reduction As Studied in a Water-in-Salt System. ACS CENTRAL SCIENCE 2019; 5:1461-1467. [PMID: 31482129 PMCID: PMC6716197 DOI: 10.1021/acscentsci.9b00519] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 05/29/2023]
Abstract
CO2 electrochemical reduction is of great interest not only for its technological implications but also for the scientific challenges it represents. How to suppress the kinetically favored hydrogen evolution in the presence of H2O, for instance, has attracted significant attention. Here we report a new way of achieving such a goal. Our strategy involves a unique water-in-salt electrolyte system, where the H2O concentration can be greatly suppressed due to the strong solvation of the high-concentration salt. More importantly, the water-in-salt electrolyte offers an opportunity to tune the H2O concentration for electrokinetic studies of CO2 reduction, a parameter of critical importance to the understanding of the detailed mechanisms but difficult to vary previously. Using Au as a model catalyst platform, we observed a zeroth-order dependence of the reaction rate on the H2O concentration, strongly suggesting that electron transfer, rather than concerted proton electron transfer, from the electrode to the adsorbed CO2 is the rate-determining step. The results shed new light on the mechanistic understanding of CO2 electrochemical reduction. Our approach is expected to be applicable to other catalyst systems, as well, which will offer a new dimension to mechanistic studies by tuning H2O concentrations.
Collapse
Affiliation(s)
- Qi Dong
- Chemistry
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xizi Zhang
- Chemistry
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Da He
- Chemistry
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaochao Lang
- Chemistry
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Dunwei Wang
- Chemistry
Department, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|