51
|
Zhou P, Lu SL, Chang L, Liao B, Cheng M, Xu X, Sui X, Liu F, Zhang M, Wang Y, Yang R, Li R, Pan H, Zhang C. The pan-cancer landscape of abnormal DNA methylation and intratumor microorganisms. Neoplasia 2023; 37:100882. [PMID: 36791577 PMCID: PMC9958063 DOI: 10.1016/j.neo.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Microorganisms play very important roles in carcinogenesis, tumor progression, and resistance upon treatment. Due to the challenge of accurately acquiring samples and quantifying low-biomass tissue microorganisms, most studies have focused on the effect of gut microorganisms on cancer treatments, especially the efficacy of immunotherapy. Although recent publications reveal the potential interactions between intratumor microorganisms and the immune microenvironment, whether and to what extent the intratumor microorganism could affect progression and treatment outcome remain controversial. This study is aiming to evaluate the associations among intratumor microorganisms, DNA methylation cancer driver genes, immune response, and clinical outcomes from a pan-cancer perspective, using 6,876 TCGA samples across 21 cancer types. We revealed that tumor microorganism dysbiosis is closely associated with the abnormal tumor methylome and/or tumor microenvironment, which might serve to enhance the proliferation ability and fitness for the therapy of tumors. These findings shed the light on a better understanding of the interactions between tumor cells and carcinogens during and after tumor formation, as well as microorganism-associated methylation alterations that could further serve as biomarkers for clinical outcome assessment.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | | | - Liang Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Baoying Liao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ming Cheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaolin Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xin Sui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Mingshu Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yinxue Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Heng Pan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Chao Zhang
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
52
|
Doğan B, Ayar B, Pirim D. Investigation of putative roles of smoking-associated salivary microbiome alterations on carcinogenesis by integrative in silico analysis. Comput Biol Chem 2023; 102:107805. [PMID: 36587566 DOI: 10.1016/j.compbiolchem.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Growing evidence suggests that cigarette smoking alters the salivary microbiome composition and affects the risk of various complex diseases including cancer. However, the potential role of the smoking-associated microbiome in cancer development remains unexplained. Here, the putative roles of smoking-related microbiome alterations in carcinogenesis were investigated by in silico analysis and suggested evidence can be further explored by experimental methodologies. The Disbiome database was used to extract smoking-associated microbial taxa in saliva and taxon set enrichment analysis (TSEA) was conducted to identify the gene sets associated with extracted microbial taxa. We further analyzed the expression profiles of identified genes by using RNA-sequencing data from TCGA and GTEx projects. Associations of the genes with smoking-related phenotypes in cancer datasets were analyzed to prioritize genes for their interplay between smoking-related microbiome and carcinogenesis. Thirty-eight microbial taxa associated with smoking were included in the TSEA and this revealed sixteen genes that were significantly associated with smoking-associated microbial taxa. All genes were found to be differentially expressed in at least one cancer dataset, yet the ELF3 and CTSH were the most common differentially expressed genes giving significant results for several cancer types. Moreover, C2CD3, CTSH, DSC3, ELF3, RHOT2, and WSB2 showed statistically significant associations with smoking-related phenotypes in cancer datasets. This study provides in silico evidence for the potential roles of the salivary microbiome on carcinogenesis. The results shed light on the importance of smoking cessation strategies for cancer management and interventions to stratify smokers for their risk of smoking-induced carcinogenesis.
Collapse
Affiliation(s)
- Berkcan Doğan
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Faculty of Medicine, Department of Medical Genetics, 16059 Bursa, Turkey
| | - Berna Ayar
- Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey; Istinye University, Institute of Health Science, Department of Molecular Oncology, 34010 Istanbul, Turkey
| | - Dilek Pirim
- Bursa Uludag University, Institute of Health Science, Department of Translational Medicine, 16059 Bursa, Turkey; Bursa Uludag University, Department of Molecular Biology and Genetics, 16059 Bursa, Turkey.
| |
Collapse
|
53
|
Wang H, Chen K, Ning M, Wang X, Wang Z, Yue Y, Yuan Y, Yue T. Intake of Pro- and/or Prebiotics as a Promising Approach for Prevention and Treatment of Colorectal Cancer. Mol Nutr Food Res 2023; 67:e2200474. [PMID: 36349520 DOI: 10.1002/mnfr.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer, posing a serious threat to human life. It is widely believed that dietary factors may be crucial modifiers of CRC risk, with pro-and/or prebiotics being especially promising. In this review, a synthesis of CRC prevention and treatment of strategies relying on usage of pro- and/or prebiotics supplements is given, as well as discuss mechanisms underlying the contribution of pro-and/or prebiotics to the suppression of colonic carcinogenesis. Furthermore, a framework for personalizing such supplements according to the composition of an individual's gut microbiome is suggested. Various factors including diversity of one's intestinal microflora, integrity of their intestinal barrier, and the presence of mutagenic/carcinogenic/genotoxic and beneficial compounds are known to have a prominent influence on the development of CRC; thus, clarifying the role of pro- and/or prebiotics will yield valuable insight toward optimizing interventions for enhanced patient outcomes in the future.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an, 71000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
54
|
Stefania C, Angela B, Stefania C, Antonio C, Andrea AS, Gianrocco M, Tiziana S, Luca RB. Idiopathic pulmonary fibrosis and intestinal disorders: An observational study. Ann Diagn Pathol 2023; 62:152072. [PMID: 36529590 DOI: 10.1016/j.anndiagpath.2022.152072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by a progressive decline in lung function and a specific histopathologic pattern defined as usual interstitial pneumonia. Early diagnosis and new therapeutic protocols have contributed to a reduction in disease progression. Thus, some patients may develop extrapulmonary diseases including malignancies and chronic pathologies. The aim of this study was to investigate the frequency of intestinal disorders such as polyps, colorectal carcinoma (CRC), and chronic inflammatory bowel disease (IBD) in patients with IPF. METHODS From the database of 189 patients with IPF (148 males, 78.3 %; 41 females, 21.7 %) residing in the district of Modena, we identified 44 patients (36 males, 81.8 %; 8 females, 18.2 %) with a histologically confirmed intestinal disease. RESULTS Intestinal polyps were detected in 41 cases (93.2 %), of which 4 were associated with CRC and 1 with IBD; 1 patient had only CRC (2.3 %), and 2 patients had only IBD (4.5 %). Both males and females developed bowel disease, but males seemed to have a higher number of polyps and high-grade adenomas with a predisposition to malignant transformation. CONCLUSIONS As patients with IPF may present with intestinal diseases that can evolve into malignancies in some cases, they should undergo appropriate follow-up and targeted colorectal screening. Thus, colorectal pathologies should not take a back seat. These preliminary results encourage further research to select suitable patients for specific diagnostic and therapeutic procedures in order to prolong survival and improve the quality of life.
Collapse
Affiliation(s)
- Caramaschi Stefania
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Bertani Angela
- Department of Specialized Medicine, Gastroenterology Unit, University Hospital of Modena, Modena, Italy
| | - Cerri Stefania
- Center for Rare Lung Disease, Department of Specialized Medicine, Respiratory Disease Unit, University Hospital of Modena, Modena, Italy
| | - Colecchia Antonio
- Department of Specialized Medicine, Gastroenterology Unit, University Hospital of Modena, Modena, Italy
| | | | - Manco Gianrocco
- Department of Surgery, University Hospital of Modena, Modena, Italy
| | | | - Reggiani Bonetti Luca
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
55
|
Wang L, Yu KC, Hou YQ, Guo M, Yao F, Chen ZX. Gut microbiome in tumorigenesis and therapy of colorectal cancer. J Cell Physiol 2023; 238:94-108. [PMID: 36409765 DOI: 10.1002/jcp.30917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the malignant tumor with the highest incidence in the digestive system, and the gut microbiome plays a crucial role in CRC tumorigenesis and therapy. The gastrointestinal tract is the organ harboring most of the microbiota in humans. Changes in the gut microbiome in CRC patients suggest possible host-microbe interactions, thereby hinting the potential tumorigenesis, which provides new perspective for preventing, diagnosing, or treating CRC. In this review, we discuss the effects of gut microbiome dysbiosis on CRC, and reveal the mechanisms by which gut microbiome dysbiosis leads to CRC. Gut microbiome modulation with the aim to reverse the established gut microbial dysbiosis is a novel strategy for the prevention and treatment of CRC. In addition, this review summarizes that probiotic antagonize CRC tumorigenesis by protecting intestinal barrier function, inhibiting cancer cell proliferation, resisting oxidative stress, and enhancing host immunity. Finally, we highlight clinical applications of the gut microbiome, such as gut microbiome analysis-based biomarker screening and prediction, and microbe modulation-based CRC prevention, treatment enhancement, and treatment side effect reduction. This review provides the reference for the clinical application of gut microbiome in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Ling Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, People's Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, People's Republic of China
| | - Ke-Chun Yu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yun-Qing Hou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Min Guo
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhen-Xia Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, People's Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, People's Republic of China
| |
Collapse
|
56
|
Tang YL, Kong YH, Qin S, Merchant A, Shi JZ, Zhou XG, Li MW, Wang Q. Transcriptomic dissection of termite gut microbiota following entomopathogenic fungal infection. Front Physiol 2023; 14:1194370. [PMID: 37153226 PMCID: PMC10161392 DOI: 10.3389/fphys.2023.1194370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Termites are social insects that live in the soil or in decaying wood, where exposure to pathogens should be common. However, these pathogens rarely cause mortality in established colonies. In addition to social immunity, the gut symbionts of termites are expected to assist in protecting their hosts, though the specific contributions are unclear. In this study, we examined this hypothesis in Odontotermes formosanus, a fungus-growing termite in the family Termitidae, by 1) disrupting its gut microbiota with the antibiotic kanamycin, 2) challenging O. formosanus with the entomopathogenic fungus Metarhizium robertsii, and finally 3) sequencing the resultant gut transcriptomes. As a result, 142531 transcripts and 73608 unigenes were obtained, and unigenes were annotated following NR, NT, KO, Swiss-Prot, PFAM, GO, and KOG databases. Among them, a total of 3,814 differentially expressed genes (DEGs) were identified between M. robertsii infected termites with or without antibiotics treatment. Given the lack of annotated genes in O. formosanus transcriptomes, we examined the expression profiles of the top 20 most significantly differentially expressed genes using qRT-PCR. Several of these genes, including APOA2, Calpain-5, and Hsp70, were downregulated in termites exposed to both antibiotics and pathogen but upregulated in those exposed only to the pathogen, suggesting that gut microbiota might buffer/facilitate their hosts against infection by finetuning physiological and biochemical processes, including innate immunity, protein folding, and ATP synthesis. Overall, our combined results imply that stabilization of gut microbiota can assist termites in maintaining physiological and biochemical homeostasis when foreign pathogenic fungi invade.
Collapse
Affiliation(s)
- Ya-ling Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun-hui Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Ji-zhe Shi
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xu-guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Mu-wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| |
Collapse
|
57
|
Zhen J, Liu C, Liao F, Zhang J, Xie H, Tan C, Dong W. The global research of microbiota in colorectal cancer screening: a bibliometric and visualization analysis. Front Oncol 2023; 13:1169369. [PMID: 37213286 PMCID: PMC10196493 DOI: 10.3389/fonc.2023.1169369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Aims We conducted bibliometric and visualization analyses to evaluate the current research status, hotspots, and trends related to the human microbiota markers in colorectal cancer screening. Methods The related studies were acquired from the Web of Science Core Collection (WoSCC) database on 5 January 2023. Analyses of the co-occurrence and cooperation relationships between the cited authors, institutions, countries/regions, cited journals, cited articles, and keywords in the studies were carried out using CiteSpace 5.8.R3 software and the Online Analysis platform of Literature Metrology. Additionally, relevant knowledge graphs were drawn to perform visualization analyses; a keywords cluster analysis and a burst analysis were also conducted. Results After analyzing 700 relevant articles, this bibliometric analysis found that the annual publications showed an increasing trend from 1992 to 2022. Yu Jun from the Chinese University of Hong Kong had the highest cumulative number of publications, whereas Shanghai Jiao Tong University was the most productive institution. China and the USA have contributed the largest number of studies. The keywords frequency analysis demonstrated that "colorectal cancer," "gut microbiota," "Fusobacterium nucleatum," "risk," and "microbiota" were the most frequent keywords, and the keywords cluster analysis found that the current hotspots were as follows: (a) the precancerous lesions of colorectal cancer (CRC) that need to be screened, such as inflammatory bowel disease (IBD) and advanced adenoma, (b) the gut-derived microbiome for CRC screening, and (c) the early detection of CRC. The burst analysis further showed that the combination of microbiomics with metabolomics might be the future research trend in the field of CRC screening. Conclusion The findings of the current bibliometric analysis firstly provide an insight into the current research status, hotspots, and future trends in the field of CRC screening based on the microbiome; the research in this field is becoming more in-depth and diversified. Some human microbiota markers, especially "Fusobacterium nucleatum," are promising biomarkers in CRC screening, and a future hotspot might be the combined analysis of microbiomics and metabolomics for CRC risk screening.
Collapse
Affiliation(s)
- Junhai Zhen
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huabing Xie
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Weiguo Dong,
| |
Collapse
|
58
|
Chang Y, Ou Q, Zhou X, Liu J, Zhang S. Global research trends and focus on the link between colorectal cancer and gut flora: a bibliometric analysis from 2001 to 2021. Front Microbiol 2023; 14:1182006. [PMID: 37213508 PMCID: PMC10196369 DOI: 10.3389/fmicb.2023.1182006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Background Colorectal cancer (CRC) is a highly prevalent cancer, and the global healthcare system bears a significant burden due to its incidence. Modulating the gut microbiota is a promising approach to enhance the efficacy of CRC treatment and reduce its adverse effects. The causal relationship between specific microorganisms' presence and CRC development has been widely validated. However, few studies have investigated this relationship using bibliometric methods. Therefore, this study analyzed the research hotspots and trends in human gut microbiology and CRC over the last two decades from a bibliometric perspective. The study aims to provide novel insights into basic and clinical research in this field. Methods The articles and reviews on gut microbiota in CRC were obtained from the Web of Science Core Collection (WOSCC) on November 2, 2022. CiteSpace and VOSviewer were used to conduct the bibliometric and knowledge-map analysis. Results A total of 2,707 publications were obtained, with a rapid increase in the number of publications since 2015. The United States and China are the main contributors in this field and have established a network of partnerships in several countries. 414 academic journals have published articles on this topic. The author with the highest number of publications is Jun Yu from the Chinese University of Hong Kong. In addition to "intestinal flora" and "colorectal cancer," high frequency terms in the keyword co-occurrence network analysis included inflammatory bowel disease, Fusobacterium nucleatum, inflammation, long-chain fatty acids, ulcerative colitis, bile acids, and resistant starch. Analysis of keyword trends using burst testing revealed that biomarkers, abnormal crypt foci, bifidobacteria, β-glucuronidase, short-chain fatty acids, bile acids, and DNA methylation are at the forefront of research in this area. Conclusion The findings of this study provide a bibliometric analysis and visualization of the key research areas in gut microbiota and CRC over the past 20 years. The results suggest that the role of gut microbiota in CRC and its underlying mechanisms should be closely monitored, particularly in the areas of biomarkers, metabolic pathways, and DNA methylation, which may emerge as hot topics in this field.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Changsha, China
- *Correspondence: Sifang Zhang,
| |
Collapse
|
59
|
Oral Microbiota as Novel Biomarkers for Colorectal Cancer Screening. Cancers (Basel) 2022; 15:cancers15010192. [PMID: 36612188 PMCID: PMC9818409 DOI: 10.3390/cancers15010192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alterations of the gut microbiome in cases of colorectal cancer (CRC) hint at the involvement of host-microbe interactions in the onset and progression of CRC and also, possibly, provide novel ways to detect and prevent CRC early. The aim of the present study was to evaluate whether the oral and fecal microbiomes of an individual can be suitable for CRC screening. Oral and fecal samples (n = 80) were gathered in Taleghani hospital, affiliated with Shahid Beheshti University of Medical Sciences, Tehran-Iran, from CRC stage 0 and I patients and healthy controls (HCs), who were screened for the first time. Microbial metagenomics assays were performed for studying microbiota profiles in all oral and fecal samples gathered. An abundance of top bacterial genera from both types of specimens (fecal and saliva samples) revealed a distinction between CRC patients and HCs. In saliva samples, the α diversity index was different between the microbiome of HCs and CRC patients, while β diversity showed a densely clustered microbiome in the HCs but a more dispersed pattern in CRC cases. The α and β diversity of fecal microbiota between HCs and CRC patients showed no statistically significant differences. Bifidobacterium was identified as a potential bacterial biomarker in CRC saliva samples, while Fusobacterium, Dialister, Catonella, Tennerella, Eubacterium-brachy-group, and Fretibacterium were ideal to distinguish HCs from CRC patients. One of the reasons for the heterogeneity of CRC may be the gastrointestinal (GI) tract microbiota, which can also cause systematic resistance to CRC. Moreover, an evaluation of saliva microbiota might offer a suitable screening test for the early detection of this malignancy, providing more accurate results than its fecal counterpart.
Collapse
|
60
|
Liu J, Dong W, Zhao J, Wu J, Xia J, Xie S, Song X. Gut microbiota profiling variated during colorectal cancer development in mouse. BMC Genomics 2022; 23:848. [PMID: 36550412 PMCID: PMC9773433 DOI: 10.1186/s12864-022-09008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The imbalance of intestinal flora may promote the occurrence and development of colorectal cancer, changes of the intestinal flora during the development of colorectal cancer and the mechanism that promotes the colorectal cancer were discovered in this study. Deep sequencing of the microbial 16 s ribosomal RNA gene was used to investigate alterations in feces samples of mice at the early inflammation stage and fully developed stage of colorectal cancer. RESULTS According to PCoA analysis and ANOSIM test, we found the intestinal flora had significantly changed in mice with colorectal inflammation or colorectal cancer compared with healthy mice (p < 0.05). Using correlation analysis, we found that Muribaculaceae and Bacteroidaceae had strong excluding interactions. The functional changes of the gut microbiota include the up-regulation of the cancers pathway and the down-regulation of the replication and repair pathways. CONCLUSION Our study found the intestinal flora of mice suffering from colorectal inflammation and colorectal cancer has changed significantly, especially the decrease of Muribaculaceae and the increase of Bacteroidaceae. We suppose that these two floras may play an important role in development of colorectal cancer.
Collapse
Affiliation(s)
- Jingjing Liu
- grid.64938.300000 0000 9558 9911Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China ,grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere pharmaceutical Co., Ltd, Nanjing, 210016 China
| | - Wei Dong
- grid.64938.300000 0000 9558 9911Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| | - Jian Zhao
- grid.64938.300000 0000 9558 9911Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Jinqiang Xia
- grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere pharmaceutical Co., Ltd, Nanjing, 210016 China
| | - Shaofei Xie
- grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere pharmaceutical Co., Ltd, Nanjing, 210016 China
| | - Xiaofeng Song
- grid.64938.300000 0000 9558 9911Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| |
Collapse
|
61
|
Terrón-Camero LC, Gordillo-González F, Salas-Espejo E, Andrés-León E. Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice. Genes (Basel) 2022; 13:2280. [PMID: 36553546 PMCID: PMC9777648 DOI: 10.3390/genes13122280] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The study of microorganisms is a field of great interest due to their environmental (e.g., soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of revolutionary next-generation sequencing techniques, and their application to the hypervariable regions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of organisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) has boosted the enormous growth of these studies. As the cost of sequencing per sample has continuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and shotgun sequencing are technologies that enable the taxonomic classification of microorganisms from the DNA present in microbial communities. However, they are not capable of measuring what is actively expressed. Conversely, we advocate that metatranscriptomics is a "new" technology that makes the identification of the mRNAs of a microbial community possible, quantifying gene expression levels and active biological pathways. Furthermore, it can be also used to characterise symbiotic interactions between the host and its microbiome. In this manuscript, we examine the three technologies above, and discuss the implementation of different software and databases, which greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipelines leveraging Nextflow technology. These aim to provide everything required for an average user to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study using Kraken2/Bracken.
Collapse
Affiliation(s)
- Laura C. Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Fernando Gordillo-González
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| |
Collapse
|
62
|
Dubik M, Pilecki B, Moeller JB. Commensal Intestinal Protozoa-Underestimated Members of the Gut Microbial Community. BIOLOGY 2022; 11:1742. [PMID: 36552252 PMCID: PMC9774987 DOI: 10.3390/biology11121742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi. Through millennia of co-evolution, the host-microbiota interactions have shaped the immune system to both tolerate and maintain the symbiotic relationship with commensal microbiota, while exerting protective responses against invading pathogens. Microbiome research is dominated by studies describing the impact of prokaryotic bacteria on gut immunity with a limited understanding of their relationship with other integral microbiota constituents. However, converging evidence shows that eukaryotic organisms, such as commensal protozoa, can play an important role in modulating intestinal immune responses as well as influencing the overall health of the host. The presence of several protozoa species has recently been shown to be a common occurrence in healthy populations worldwide, suggesting that many of these are commensals rather than invading pathogens. This review aims to discuss the most recent, conflicting findings regarding the role of intestinal protozoa in gut homeostasis, interactions between intestinal protozoa and the bacterial microbiota, as well as potential immunological consequences of protozoa colonization.
Collapse
Affiliation(s)
- Magdalena Dubik
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Jesper Bonnet Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
63
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
|
64
|
Ham H, Park T. Combining p-values from various statistical methods for microbiome data. Front Microbiol 2022; 13:990870. [PMID: 36439799 PMCID: PMC9686280 DOI: 10.3389/fmicb.2022.990870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
MOTIVATION In the field of microbiome analysis, there exist various statistical methods that have been developed for identifying differentially expressed features, that account for the overdispersion and the high sparsity of microbiome data. However, due to the differences in statistical models or test formulations, it is quite often to have inconsistent significance results across statistical methods, that makes it difficult to determine the importance of microbiome taxa. Thus, it is practically important to have the integration of the result from all statistical methods to determine the importance of microbiome taxa. A standard meta-analysis is a powerful tool for integrative analysis and it provides a summary measure by combining p-values from various statistical methods. While there are many meta-analyses available, it is not easy to choose the best meta-analysis that is the most suitable for microbiome data. RESULTS In this study, we investigated which meta-analysis method most adequately represents the importance of microbiome taxa. We considered Fisher's method, minimum value of p method, Simes method, Stouffer's method, Kost method, and Cauchy combination test. Through simulation studies, we showed that Cauchy combination test provides the best combined value of p in the sense that it performed the best among the examined methods while controlling the type 1 error rates. Furthermore, it produced high rank similarity with the true ranks. Through the real data application of colorectal cancer microbiome data, we demonstrated that the most highly ranked microbiome taxa by Cauchy combination test have been reported to be associated with colorectal cancer.
Collapse
Affiliation(s)
- Hyeonjung Ham
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | - Taesung Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
- Departement of Statistics, Seoul National University, Seoul, South Korea
| |
Collapse
|
65
|
C3NA: correlation and consensus-based cross-taxonomy network analysis for compositional microbial data. BMC Bioinformatics 2022; 23:468. [DOI: 10.1186/s12859-022-05027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differential abundance analyses to reveal the disease-related taxa–taxa relationship. In addition, it is also necessary to tighten the co-occurrence network into smaller modules to increase the ability for functional annotation and interpretability of these taxa-taxa relationships. Also, it is critical to retain the phylogenetic relationship among the taxa to identify differential abundance patterns, which can be used to resolve contradicting functions reported by different studies.
Results
In this article, we present Correlation and Consensus-based Cross-taxonomy Network Analysis (C3NA), a user-friendly R package for investigating compositional microbial sequencing data to identify and compare co-occurrence patterns across different taxonomic levels. C3NA contains two interactive graphic user interfaces (Shiny applications), one of them dedicated to the comparison between two diagnoses, e.g., disease versus control. We used C3NA to analyze two well-studied diseases, colorectal cancer, and Crohn’s disease. We discovered clusters of study and disease-dependent taxa that overlap with known functional taxa studied by other discovery studies and differential abundance analyses.
Conclusion
C3NA offers a new microbial data analyses pipeline for refined and enriched taxa–taxa co-occurrence network analyses, and the usability was further expanded via the built-in Shiny applications for interactive investigation.
Collapse
|
66
|
Wang H, Hu J, Wu J, Ji P, Shang A, Li D. The Function and Molecular Mechanism of Commensal Microbiome in Promoting Malignant Progression of Lung Cancer. Cancers (Basel) 2022; 14:5394. [PMID: 36358812 PMCID: PMC9658664 DOI: 10.3390/cancers14215394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 02/03/2024] Open
Abstract
The human commensal microbiome existing in an internal environment is relatively consistent with that of the host. The presence of bacterial dysbiosis, on the other hand, promptly results in the termination of this symbiotic association. The altered microbial structure in the lung may be responsible for the development of lung cancer by controlling the host's inflammatory response and influencing a variety of immunological pathways. More and more studies have pointed to the fact that the commensal microbiota plays a vital role in both the development of tumors and the body's response to lung cancer treatment. Microbiome dysbiosis, genotoxicity, virulence effect, and epigenetic dysregulations are some of the potential mechanisms that may lie behind the process of tumorigenesis that is mediated by microbiome. Other potential mechanisms include regulating host immune activity through a variety of pathogenic factors, dysregulating host metabolism as a result of microbiome alterations, and microbiome dysbiosis. In this historical overview, we go through some of the more recent mechanistic discoveries into the biological processes that are involved in lung cancer that are caused by bacteria. Without a question, obtaining a greater knowledge of the dynamic link between the lung microbiome and lung cancer has the potential to inspire the development of innovative early detection and customized treatment methods for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Anquan Shang
- Department of Laboratory Medicine, Tongji Hospital of Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Dong Li
- Department of Laboratory Medicine, Tongji Hospital of Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| |
Collapse
|
67
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
68
|
Romero-Garmendia I, Garcia-Etxebarria K. Host Genetics and Microbiota Interactions in Colorectal Cancer: Shared or Independent Risk? Microorganisms 2022; 10:2129. [PMID: 36363721 PMCID: PMC9697093 DOI: 10.3390/microorganisms10112129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
The role of microbiota in colorectal cancer has been studied since alterations in its composition were observed. In addition, there are more and more pieces of evidence that microbiota could be implicated in colorectal cancer progression. Thus, the components of the microbiota could be biomarkers for the diagnosis and prognosis of colorectal cancer. In addition, it is important to address how the microbiota interacts with the host and how the host shapes the microbiota, in order to understand the biological pathways and mechanisms involved in their relationship and the consequences of their interactions in colorectal cancer. Thereby, it could be possible to find feasible measures and treatments to prevent or better diagnose colorectal cancer. In this review, we will try to summarize the role of the microbiota in colorectal cancer and its interactions with the host and the host genetics, coming to some conclusions that could be useful to find the gaps in our knowledge and propose future steps in this field.
Collapse
Affiliation(s)
- Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Koldo Garcia-Etxebarria
- Gastrointestinal Genetics Group, Biodonostia, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
69
|
Narabayashi H, Koma C, Nakata K, Ikegami M, Nakanishi Y, Ogihara J, Tsuda M, Hosono A, Hanazawa S, Takahashi K. Gut microbiota-dependent adaptor molecule recruits DNA methyltransferase to the TLR4 gene in colonic epithelial cells to suppress inflammatory reactions. Front Mol Biosci 2022; 9:1005136. [PMID: 36339704 PMCID: PMC9634067 DOI: 10.3389/fmolb.2022.1005136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The intestine is inhabited by a large number of commensal bacteria that are immunologically non-self, potentially causing inflammation. However, in a healthy intestine, inflammation is strictly controlled at low levels to maintain homeostasis. We previously reported that the gut microbiota induce DNA methylation of the gene encoding Toll-like receptor (TLR) 4, a pattern recognition receptor that recognizes lipopolysaccharides of gram-negative bacteria, in colonic epithelial cells, suggesting its role in controlling intestinal inflammation. However, there remains a question of how gut microbiota cause methylation of only specific genes including TLR4, despite the fact that DNA methyltransferase (DNMT) is common to all genes targeted for methylation. Here, we identified RBM14 as an adaptor molecule that recruits DNMT to the TLR4 gene. RBM14 was shown to bind DNMT3 and be expressed at significantly higher levels in an intestinal epithelial cell (IEC) line with hypermethylated TLR4 gene than in an IEC line with hypomethylated TLR4 gene. In addition, RBM14 interacted with DNA regions of the TLR4 gene, and knockdown of RBM14 suppressed DNA methylation of the TLR4 gene in IECs. Furthermore, RBM14 expression was higher in colonic epithelial cells of conventional mice than in those of germ-free mice. Collectively, these results indicate that the gut microbiota induce methylation of the TLR4 gene in colonic epithelial cells by upregulating RBM14, which can recruit DNMT3 to the gene. The regulation of adaptor molecules such as RBM14, which bind to specific target genes and recruit DNMT, can explain, at least in part, how gut microbiota contribute to the maintenance of intestinal homeostasis through epigenetic control of specific gene expression in IECs.
Collapse
Affiliation(s)
- Hikari Narabayashi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Chiharu Koma
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Kazuaki Nakata
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Mion Ikegami
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yusuke Nakanishi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jun Ogihara
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masato Tsuda
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Akira Hosono
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Kyoko Takahashi
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
- *Correspondence: Kyoko Takahashi,
| |
Collapse
|
70
|
Himbert C, Stephens WZ, Gigic B, Hardikar S, Holowatyj AN, Lin T, Ose J, Swanson E, Ashworth A, Warby CA, Peoples AR, Nix D, Jedrzkiewicz J, Bronner M, Pickron B, Scaife C, Cohan JN, Schrotz-King P, Habermann N, Boehm J, Hullar M, Figueiredo JC, Toriola AT, Siegel EM, Li CI, Ulrich AB, Shibata D, Boucher K, Huang LC, Schneider M, Round JL, Ulrich CM. Differences in the gut microbiome by physical activity and BMI among colorectal cancer patients. Am J Cancer Res 2022; 12:4789-4801. [PMID: 36381318 PMCID: PMC9641409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 02/22/2023] Open
Abstract
Associations of energy balance components, including physical activity and obesity, with colorectal cancer risk and mortality are well established. However, the gut microbiome has not been investigated as underlying mechanism. We investigated associations of physical activity, BMI, and combinations of physical activity/BMI with gut microbiome diversity and differential abundances among colorectal cancer patients. N=179 patients with colorectal cancer (stages I-IV) were included in the study. Pre-surgery stool samples were used to perform 16S rRNA gene sequencing (Illumina). Physical activity (MET hrs/wk) during the year before diagnosis was assessed by questionnaire and participants were classified as being active vs. inactive based on guidelines. BMI at baseline was abstracted from medical records. Patients were classified into four combinations of physical activity levels/BMI. Lower gut microbial diversity was observed among 'inactive' vs. 'active' patients (Shannon: P=0.01, Simpson: P=0.03), 'obese' vs. 'normal weight' patients (Shannon, Simpson, and Observed species: P=0.02, respectively), and 'overweight/obese/inactive' vs. 'normal weight/active' patients (Shannon: P=0.02, Observed species: P=0.04). Results differed by sex and tumor site. Two phyla and 12 genera (Actinobacteria and Fusobacteria, Adlercreutzia, Anaerococcus, Clostridium, Eubacterium, Mogibacteriaceae, Olsenella, Peptinophilus, Pyramidobacter, RFN20, Ruminococcus, Succinivibrio, Succiniclasticum) were differentially abundant across physical activity and BMI groups. This is the first evidence for associations of physical activity with gut microbiome diversity and abundances, directly among colorectal cancer patients. Our results indicate that physical activity may offset gut microbiome dysbiosis due to obesity. Alterations in gut microbiota may contribute mechanistically to the energy balance-colorectal cancer link and impact clinical outcomes.
Collapse
Affiliation(s)
- Caroline Himbert
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | | | | | - Sheetal Hardikar
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Andreana N Holowatyj
- University of UtahSalt Lake City, UT, USA
- Vanderbilt University Medical CenterNashville, TN, USA
| | - Tengda Lin
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Jennifer Ose
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | | | | | | | - Anita R Peoples
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - David Nix
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Jolanta Jedrzkiewicz
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Mary Bronner
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Bartley Pickron
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Courtney Scaife
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Jessica N Cohan
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Petra Schrotz-King
- National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ)Germany
| | | | | | | | | | | | - Erin M Siegel
- H. Lee Moffitt Cancer Center & Research InstituteTampa, FL, USA
| | | | | | - David Shibata
- University of Tennessee Health Science CenterMemphis, TN, USA
| | - Kenneth Boucher
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | - Lyen C Huang
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| | | | | | - Cornelia M Ulrich
- University of UtahSalt Lake City, UT, USA
- Huntsman Cancer InstituteSalt Lake City, UT, USA
| |
Collapse
|
71
|
Smoking-induced microbial dysbiosis in health and disease. Clin Sci (Lond) 2022; 136:1371-1387. [PMID: 36156126 PMCID: PMC9527826 DOI: 10.1042/cs20220175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Smoking is associated with an increased risk of cancer, pulmonary and cardiovascular diseases, but the precise mechanisms by which such risk is mediated remain poorly understood. Additionally, smoking can impact the oral, nasal, oropharyngeal, lung and gut microbiome composition, function, and secreted molecule repertoire. Microbiome changes induced by smoking can bear direct consequences on smoking-related illnesses. Moreover, smoking-associated dysbiosis may modulate weight gain development following smoking cessation. Here, we review the implications of cigarette smoking on microbiome community structure and function. In addition, we highlight the potential impacts of microbial dysbiosis on smoking-related diseases. We discuss challenges in studying host–microbiome interactions in the context of smoking, such as the correlations with smoking-related disease severity versus causation and mechanism. In all, understanding the microbiome’s role in the pathophysiology of smoking-related diseases may promote the development of rational therapies for smoking- and smoking cessation-related disorders, as well as assist in smoking abstinence.
Collapse
|
72
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
73
|
Bu F, Yao X, Lu Z, Yuan X, Chen C, Li L, Li Y, Jiang F, Zhu L, Shi G, Chen Y. Pathogenic or Therapeutic: The Mediating Role of Gut Microbiota in Non-Communicable Diseases. Front Cell Infect Microbiol 2022; 12:906349. [PMID: 35873168 PMCID: PMC9301375 DOI: 10.3389/fcimb.2022.906349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Noncommunicable diseases (NCDs) lead to 41 million deaths every year and account for 71% of all deaths worldwide. Increasing evidence indicates that gut microbiota disorders are closely linked to the occurrence and development of diseases. The gut microbiota, as a potential transmission medium, could play a key role in the transmission and treatment of diseases. The gut microbiota makes noncommunicable diseases communicable. New methods of the prevention and treatment of these diseases could be further explored through the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yugen Chen
- *Correspondence: Yugen Chen, ; Guoping Shi,
| |
Collapse
|
74
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
75
|
Dai W, Li C, Li T, Hu J, Zhang H. Super-taxon in human microbiome are identified to be associated with colorectal cancer. BMC Bioinformatics 2022; 23:243. [PMID: 35729515 PMCID: PMC9215102 DOI: 10.1186/s12859-022-04786-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/06/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Microbial communities in the human body, also known as human microbiota, impact human health, such as colorectal cancer (CRC). However, the different roles that microbial communities play in healthy and disease hosts remain largely unknown. The microbial communities are typically recorded through the taxa counts of operational taxonomic units (OTUs). The sparsity and high correlations among OTUs pose major challenges for understanding the microbiota-disease relation. Furthermore, the taxa data are structured in the sense that OTUs are related evolutionarily by a hierarchical structure. RESULTS In this study, we borrow the idea of super-variant from statistical genetics, and propose a new concept called super-taxon to exploit hierarchical structure of taxa for microbiome studies, which is essentially a combination of taxonomic units. Specifically, we model a genus which consists of a set of OTUs at low hierarchy and is designed to reflect both marginal and joint effects of OTUs associated with the risk of CRC to address these issues. We first demonstrate the power of super-taxon in detecting highly correlated OTUs. Then, we identify CRC-associated OTUs in two publicly available datasets via a discovery-validation procedure. Specifically, four species of two genera are found to be associated with CRC: Parvimonas micra, Parvimonas sp., Peptostreptococcus stomatis, and Peptostreptococcus anaerobius. More importantly, for the first time, we report the joint effect of Parvimonas micra and Parvimonas sp. (p = 0.0084) as well as that of Peptostrepto-coccus stomatis and Peptostreptococcus anaerobius (p = 8.21e-06) on CRC. The proposed approach provides a novel and useful tool for identifying disease-related microbes by taking the hierarchical structure of taxa into account and further sheds new lights on their potential joint effects as a community in disease development. CONCLUSIONS Our work shows that proposed approaches are effective to study the microbiota-disease relation taking into account for the sparsity, hierarchical and correlated structure among microbes.
Collapse
Affiliation(s)
- Wei Dai
- Department of Biostatistics, Yale University School of Public Health, 300 George Street, Ste 523, New Haven, CT, 06511, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ting Li
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianchang Hu
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, 300 George Street, Ste 523, New Haven, CT, 06511, USA.
| |
Collapse
|
76
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
77
|
Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat Microbiol 2022; 7:780-795. [PMID: 35577971 PMCID: PMC9159953 DOI: 10.1038/s41564-022-01121-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.
Collapse
Affiliation(s)
- Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Beth Adamowicz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
78
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
79
|
Yamaguchi K, Chen X, Oji A, Hiratani I, Defossez PA. Large-Scale Chromatin Rearrangements in Cancer. Cancers (Basel) 2022; 14:cancers14102384. [PMID: 35625988 PMCID: PMC9139990 DOI: 10.3390/cancers14102384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancers have many genetic mutations such as nucleotide changes, deletions, amplifications, and chromosome gains or losses. Some of these genetic alterations directly contribute to the initiation and progression of tumors. In parallel to these genetic changes, cancer cells acquire modifications to their chromatin landscape, i.e., to the marks that are carried by DNA and the histone proteins it is associated with. These “epimutations” have consequences for gene expression and genome stability, and also contribute to tumoral initiation and progression. Some of these chromatin changes are very local, affecting just one or a few genes. In contrast, some chromatin alterations observed in cancer are more widespread and affect a large part of the genome. In this review, we present different types of large-scale chromatin rearrangements in cancer, explain how they may occur, and why they are relevant for cancer diagnosis and treatment. Abstract Epigenetic abnormalities are extremely widespread in cancer. Some of them are mere consequences of transformation, but some actively contribute to cancer initiation and progression; they provide powerful new biological markers, as well as new targets for therapies. In this review, we examine the recent literature and focus on one particular aspect of epigenome deregulation: large-scale chromatin changes, causing global changes of DNA methylation or histone modifications. After a brief overview of the one-dimension (1D) and three-dimension (3D) epigenome in healthy cells and of its homeostasis mechanisms, we use selected examples to describe how many different events (mutations, changes in metabolism, and infections) can cause profound changes to the epigenome and fuel cancer. We then present the consequences for therapies and briefly discuss the role of single-cell approaches for the future progress of the field.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Xiaoying Chen
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
| | - Asami Oji
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe 650-0047, Japan; (A.O.); (I.H.)
| | - Pierre-Antoine Defossez
- UMR7216 Epigenetics and Cell Fate, Université Paris Cité, CNRS, F-75006 Paris, France; (K.Y.); (X.C.)
- Correspondence: ; Tel.: +33-157278916
| |
Collapse
|
80
|
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20:178. [PMID: 35449107 PMCID: PMC9022293 DOI: 10.1186/s12967-022-03378-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death and the third most frequently diagnosed cancer. Besides the lifestyle, genetic and epigenetic alterations, and environmental factors, gut microbiota also plays a vital role in CRC development. The interruption of the commensal relationship between gut microbiota and the host could lead to an imbalance in the bacteria population, in which the pathogenic bacteria become the predominant population in the gut. Different therapeutic strategies have been developed to modify the gut immune system, prevent pathogen colonization, and alter the activity and composition of gut microbiota, such as prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). Even though the employed strategies exhibit promising results, their translation into the clinic requires evaluating potential implications and risks, as well as assessment of their long-term effects. This study was set to review the gut microbiota imbalances and their relationship with CRC and their effects on CRC therapy, including chemotherapy and immunotherapy. More importantly, we reviewed the strategies that have been used to modulate gut microbiota, their impact on the treatment of CRC, and the challenges of each strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
81
|
TNFAIP8 protein functions as a tumor suppressor in inflammation-associated colorectal tumorigenesis. Cell Death Dis 2022; 13:311. [PMID: 35387985 PMCID: PMC8986800 DOI: 10.1038/s41419-022-04769-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8 or TIPE) is a member of the TNFAIP8 family. While TIPE was broadly considered to be pro-cancerous, its precise roles in carcinogenesis especially those of the intestinal tract are not clear. Here, we show that genetic deletion of TIPE in mice exacerbated chemical-induced colitis and colitis-associated colon cancer. Loss of TIPE exacerbated inflammatory responses and inflammation-associated dysbiosis, leading to the activation of NF-κB and STAT3, and it also accelerated dysplasia, DNA damage and proliferation of intestinal epithelial cells. We further show that colon microbiota were essential for increased tumor growth and progression in Tipe−/− mice. The tumor suppressive function of TIPE originated primarily from the non-hematopoietic compartment. Importantly, TIPE was downregulated in human colorectal cancers, and patients with low levels of Tipe mRNA were associated with reduced survival. These results indicate that TIPE serves as an important modulator of colitis and colitis-associated colon cancer.
Collapse
|
82
|
Lucia RM, Huang WL, Pathak KV, McGilvrey M, David-Dirgo V, Alvarez A, Goodman D, Masunaka I, Odegaard AO, Ziogas A, Pirrotte P, Norden-Krichmar TM, Park HL. Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47001. [PMID: 35377194 PMCID: PMC8978648 DOI: 10.1289/ehp10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide in the world and is purported to have a variety of health effects, including endocrine disruption and an elevated risk of several types of cancer. Blood DNA methylation has been shown to be associated with many other environmental exposures, but to our knowledge, no studies to date have examined the association between blood DNA methylation and glyphosate exposure. OBJECTIVE We conducted an epigenome-wide association study to identify DNA methylation loci associated with urinary glyphosate and its metabolite aminomethylphosphonic acid (AMPA) levels. Secondary goals were to determine the association of epigenetic age acceleration with glyphosate and AMPA and develop blood DNA methylation indices to predict urinary glyphosate and AMPA levels. METHODS For 392 postmenopausal women, white blood cell DNA methylation was measured using the Illumina Infinium MethylationEPIC BeadChip array. Glyphosate and AMPA were measured in two urine samples per participant using liquid chromatography-tandem mass spectrometry. Methylation differences at the probe and regional level associated with glyphosate and AMPA levels were assessed using a resampling-based approach. Probes and regions that had an false discovery rate q < 0.1 in ≥ 90 % of 1,000 subsamples of the study population were considered differentially methylated. Differentially methylated sites from the probe-specific analysis were combined into a methylation index. Epigenetic age acceleration from three epigenetic clocks and an epigenetic measure of pace of aging were examined for associations with glyphosate and AMPA. RESULTS We identified 24 CpG sites whose methylation level was associated with urinary glyphosate concentration and two associated with AMPA. Four regions, within the promoters of the MSH4, KCNA6, ABAT, and NDUFAF2/ERCC8 genes, were associated with glyphosate levels, along with an association between ESR1 promoter hypomethylation and AMPA. The methylation index accurately predicted glyphosate levels in an internal validation cohort. AMPA, but not glyphosate, was associated with greater epigenetic age acceleration. DISCUSSION Glyphosate and AMPA exposure were associated with DNA methylation differences that could promote the development of cancer and other diseases. Further studies are warranted to replicate our results, determine the functional impact of glyphosate- and AMPA-associated differential DNA methylation, and further explore whether DNA methylation could serve as a biomarker of glyphosate exposure. https://doi.org/10.1289/EHP10174.
Collapse
Affiliation(s)
- Rachel M. Lucia
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Wei-Lin Huang
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Khyatiben V. Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marissa McGilvrey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, California, USA
| | - Deborah Goodman
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, California, USA
| | - Andrew O. Odegaard
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, California, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Hannah Lui Park
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| |
Collapse
|
83
|
Périchon B, Lichtl-Häfele J, Bergsten E, Delage V, Trieu-Cuot P, Sansonetti P, Sobhani I, Dramsi S. Detection of Streptococcus gallolyticus and Four Other CRC-Associated Bacteria in Patient Stools Reveals a Potential "Driver" Role for Enterotoxigenic Bacteroides fragilis. Front Cell Infect Microbiol 2022; 12:794391. [PMID: 35360109 PMCID: PMC8963412 DOI: 10.3389/fcimb.2022.794391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Streptococcus gallolyticus subspecies gallolyticus (SGG) is an opportunistic pathogen causing invasive infections in the elderly often associated with colon neoplasia. The prevalence of SGG in the stools of patients with normal colonoscopy (control) was compared with patients with colorectal adenomas (CRA) or with carcinomas (CRC) from stages I to IV. The presence of the pks island encoding colibactin as well as other CRC-associated bacteria such as toxicogenic Bacteroides fragilis, Fusobacterium nucleatum, and Parvimonas micra was also investigated. Patients and Methods Fecal samples collected in France between 2011 and 2016 from patients with normal colonoscopy (n = 25), adenoma (n = 23), or colorectal cancer at different stages (n = 81) were tested by PCR for the presence of SGG, B. fragilis, F. nucleatum, P. micra, and the pks island. Relative quantification of SGG, F. nucleatum, and P. micra in stools was performed by qPCR. Results SGG prevalence was significantly increased in the CRC group. Our results also revealed i) a strong and significant increase of toxinogenic B. fragilis in patients with early-stage adenoma and of pks island at late-stage CRC and ii) increased levels of F. nucleatum and P. micra in the stools of CRC patients. Furthermore, the simultaneous detection of these five bacterial markers was only found in CRC patients. Conclusions Our results indicate that the prevalence or relative levels of CRC-associated bacteria vary during CRC development. Among them, B. fragilis (bft+) was singled out as the sole pathobiont detected at the early adenoma stage.
Collapse
Affiliation(s)
- Bruno Périchon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR6047, Paris, France
| | - Julian Lichtl-Häfele
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR6047, Paris, France
| | - Emma Bergsten
- Service de Gastroentérologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Vincent Delage
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR6047, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR6047, Paris, France
| | - Philippe Sansonetti
- Molecular Microbial Pathogenesis Unit, Institut Pasteur; Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shangaï, China
| | - Iradj Sobhani
- Service de Gastroentérologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS) UMR6047, Paris, France
| |
Collapse
|
84
|
Abstract
The gastrointestinal tract is continuously exposed to trillions of commensal microbes, collectively termed the microbiota, which are environmental stimuli that can direct health and disease within the host. In addition to well-established bacterial sensing pathways, microbial signals are also integrated through epigenetic modifications that calibrate the transcriptional program of host cells without altering the underlying genetic code. Microbiota-sensitive epigenetic changes include modifications to the DNA or histones, as well as regulation of non-coding RNAs. While microbiota-sensitive epigenetic mechanisms have been described in both local intestinal cells and as well in peripheral tissues, further research is required to fully decipher the complex relationship between the host and microbiota. This Review highlights current understandings of epigenetic regulation by gut microbiota and important implications of these findings in guiding therapeutic approaches to prevent or combat diseases driven by impaired microbiota-host interactions.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,CONTACT Theresa Alenghat Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
85
|
Wnt signaling pathway in cancer immunotherapy. Cancer Lett 2022; 525:84-96. [PMID: 34740608 DOI: 10.1016/j.canlet.2021.10.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling is a highly conserved pathway that regulates cell proliferation, differentiation, apoptosis, stem cell self-renewal, tissue homeostasis, and wound healing. Dysregulation of the Wnt pathway is intricately involved in almost all stages of tumorigenesis in various cancers. Through direct and/or indirect effects on effector T cells, T-regulatory cells, T-helper cells, dendritic cells, and other cytokine-expressing immune cells, abnormal activation of Wnt/β-catenin signaling benefits immune exclusion and hinders T-cell-mediated antitumor immune responses. Activation of Wnt signaling results in increased resistance to immunotherapies. In this review, we summarize the process by which Wnt signaling affects cancer and immune surveillance, and the potential for targeting the Wnt-signaling pathway via cancer immunotherapy.
Collapse
|
86
|
Wang M, Zhou B, Cong W, Zhang M, Li Z, Li Y, Liang S, Chen K, Yang D, Wu Z. Amelioration of AOM/DSS-Induced Murine Colitis-Associated Cancer by Evodiamine Intervention is Primarily Associated with Gut Microbiota-Metabolism-Inflammatory Signaling Axis. Front Pharmacol 2022; 12:797605. [PMID: 35002731 PMCID: PMC8740177 DOI: 10.3389/fphar.2021.797605] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Evodiamine (EVO), an indole alkaloid derived from Rutaceae plants Evodia rutaecarpa (Juss.) Benth.、Evodia rutaecarpa (Juss.) Benth. Var. bodinieri (Dode) Huang or Evodia rutaecarpa (Juss.) Benth. Var. officinalis (Dode) Huang, has anti-inflammatory and anti-tumor activities. Our previous study found that EVO attenuates colitis by regulating gut microbiota and metabolites. However, little is known about its effect on colitis-associated cancer (CAC). In this study, the protective effects of EVO on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis and tumor mice were observed, and the underlying potential mechanism was clarified. The results suggested that EVO ameliorated AOM/DSS-induced colitis by inhibiting the intestinal inflammation and improving mucosal barrier function. And EVO significantly reduced the number and size of AOM/DSS-induced colorectal tumors along with promoted apoptosis and inhibited proliferation of epithelial cell. Moreover, EVO promoted the enrichment of SCFAs-producing bacteria and reduced the levels of the pro-inflammatory bacteria, which contributes to the changes of microbiota metabolism, especially tryptophan metabolism. Furthermore, inflammatory response (like Wnt signaling pathway、Hippo signaling pathway and IL-17 signaling pathway) were effectively alleviated by EVO. Our study demonstrated that the protective therapeutic action of EVO on CAC is to inhibit the development of intestinal inflammation-cancer by regulating gut microbiota metabolites and signaling pathways of colon intestinal epithelial, which may represent a novel agent for colon cancer prevention via manipulation of gut microbiota.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Biqiang Zhou
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Weihong Cong
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Zhang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwen Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Yan Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Shaoyu Liang
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
87
|
Kim S, Shin YC, Kim TY, Kim Y, Lee YS, Lee SH, Kim MN, O E, Kim KS, Kweon MN. Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes 2022; 13:1-20. [PMID: 33678130 PMCID: PMC7946046 DOI: 10.1080/19490976.2021.1892441] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mucin-degrading bacteria are densely populated in the intestinal epithelium; however, their interaction with intestinal stem cells (ISCs) and their progeny have not been elucidated. To determine whether mucin-degrading bacteria play a role in gut homeostasis, mice were treated with Akkermansia muciniphila, a specialized species that degrades mucin. Administration of A. muciniphila for 4 weeks accelerated the proliferation of Lgr5+ ISCs and promoted the differentiation of Paneth cells and goblet cells in the small intestine (SI). We found similar effects of A. muciniphila in the colon. The levels of acetic and propionic acids were higher in the cecal contents of A. muciniphila-treated mice than in PBS-treated mice. SI organoids treated with cecal contents obtained from A. muciniphila-treated mice were larger and could be diminished by treatment with G protein-coupled receptor (Gpr) 41/43 antagonists. Pre-treatment of mice with A. muciniphila reduced gut damage caused by radiation and methotrexate. Further, a novel isotype of the A. muciniphila strain was isolated from heathy human feces that showed enhanced function in intestinal epithelial regeneration. These findings suggest that mucin-degrading bacteria (e.g., A. muciniphila) may play a crucial role in promoting ISC-mediated epithelial development and contribute to intestinal homeostasis maintenance.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun-Chan Shin
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeji Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju O
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea,CONTACT Mi-Na Kweon Department of Convergence Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
88
|
Sharma R. Emerging Interrelationship Between the Gut Microbiome and Cellular Senescence in the Context of Aging and Disease: Perspectives and Therapeutic Opportunities. Probiotics Antimicrob Proteins 2022; 14:648-663. [PMID: 34985682 PMCID: PMC8728710 DOI: 10.1007/s12602-021-09903-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
The significance of diversity, composition, and functional attributes of the gut microbiota in shaping human health is well recognized. Studies have shown that gut microbiota is closely linked to human aging, and changes in the gut microbiome can predict human survival and longevity. In addition, a causal relationship between gut microbiota dysbiosis and chronic age-related disorders is also becoming apparent. Recent advances in our understanding of the cellular and molecular aspects of biological aging have revealed a cellular senescence-centric view of the aging process. However, the association between the gut microbiome and cellular senescence is only beginning to be understood. The present review provides an integrative view of the evolving relationship between the gut microbiome and cellular senescence in aging and disease. Evidence relating to microbiome-mediated modulation of senescent cells, as well as senescent cells-mediated changes in intestinal homeostasis and diseases, have been discussed. Unanswered questions and future research directions have also been deliberated to truly ascertain the relationship between the gut microbiome and cellular senescence for developing microbiome-based age-delaying and longevity-promoting therapies.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
89
|
Fujiwara T, Wei X, Zhao J, Ma KL. Interactive Dimensionality Reduction for Comparative Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:758-768. [PMID: 34591765 DOI: 10.1109/tvcg.2021.3114807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Finding the similarities and differences between groups of datasets is a fundamental analysis task. For high-dimensional data, dimensionality reduction (DR) methods are often used to find the characteristics of each group. However, existing DR methods provide limited capability and flexibility for such comparative analysis as each method is designed only for a narrow analysis target, such as identifying factors that most differentiate groups. This paper presents an interactive DR framework where we integrate our new DR method, called ULCA (unified linear comparative analysis), with an interactive visual interface. ULCA unifies two DR schemes, discriminant analysis and contrastive learning, to support various comparative analysis tasks. To provide flexibility for comparative analysis, we develop an optimization algorithm that enables analysts to interactively refine ULCA results. Additionally, the interactive visualization interface facilitates interpretation and refinement of the ULCA results. We evaluate ULCA and the optimization algorithm to show their efficiency as well as present multiple case studies using real-world datasets to demonstrate the usefulness of this framework.
Collapse
|
90
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
91
|
Sobhani I. DNA Methylation Is a Main Key for Bacteria-Related Colon Carcinogenesis. Microorganisms 2021; 9:microorganisms9122574. [PMID: 34946175 PMCID: PMC8707774 DOI: 10.3390/microorganisms9122574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer deaths in men and women combined [...].
Collapse
Affiliation(s)
- Iradj Sobhani
- Department of Gastroenterology Henri Mondor Hospital APHP, 94010 Créteil, France;
- EC2M3-EA7375, Université Paris-Est Créteil, 94010 Créteil, France
| |
Collapse
|
92
|
Chen Z, He X. Application of third-generation sequencing in cancer research. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:150-171. [PMID: 37724303 PMCID: PMC10388785 DOI: 10.1515/mr-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 09/20/2023]
Abstract
In the past several years, nanopore sequencing technology from Oxford Nanopore Technologies (ONT) and single-molecule real-time (SMRT) sequencing technology from Pacific BioSciences (PacBio) have become available to researchers and are currently being tested for cancer research. These methods offer many advantages over most widely used high-throughput short-read sequencing approaches and allow the comprehensive analysis of transcriptomes by identifying full-length splice isoforms and several other posttranscriptional events. In addition, these platforms enable structural variation characterization at a previously unparalleled resolution and direct detection of epigenetic marks in native DNA and RNA. Here, we present a comprehensive summary of important applications of these technologies in cancer research, including the identification of complex structure variants, alternatively spliced isoforms, fusion transcript events, and exogenous RNA. Furthermore, we discuss the impact of the newly developed nanopore direct RNA sequencing (RNA-Seq) approach in advancing epitranscriptome research in cancer. Although the unique challenges still present for these new single-molecule long-read methods, they will unravel many aspects of cancer genome complexity in unprecedented ways and present an encouraging outlook for continued application in an increasing number of different cancer research settings.
Collapse
Affiliation(s)
- Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Wen C, Wei S, Zong X, Wang Y, Jin M. Microbiota-gut-brain axis and nutritional strategy under heat stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:1329-1336. [PMID: 34786505 PMCID: PMC8570956 DOI: 10.1016/j.aninu.2021.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Heat stress is a very universal stress event in recent years. Various lines of evidence in the past literatures indicate that gut microbiota composition is susceptible to variable temperature. A varied microbiota is necessary for optimal regulation of host signaling pathways and disrupting microbiota-host homeostasis that induces disease pathology. The microbiota–gut–brain axis involves an interactive mode of communication between the microbes colonizing the gut and brain function. This review summarizes the effects of heat stress on intestinal function and microbiota–gut–brain axis. Heat stress negatively affects intestinal immunity and barrier functions. Microbiota-gut-brain axis is involved in the homeostasis of the gut microbiota, at the same time, heat stress affects the metabolites of microbiota which could alter the function of microbiota–gut–brain axis. We aim to bridge the evidence that the microbiota is adapted to survive and thrive in an extreme environment. Additionally, nutritional strategies for alleviating intestinal heat stress are introduced.
Collapse
Affiliation(s)
- Chaoyue Wen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyu Wei
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Zong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
94
|
Liu Q, Lu Y, Xiao Y, Yuan L, Hu D, Hao Y, Han R, Peng J, Qian Z. Effects of Docetaxel Injection and Docetaxel Micelles on the Intestinal Barrier and Intestinal Microbiota. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102952. [PMID: 34713626 PMCID: PMC8693036 DOI: 10.1002/advs.202102952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/08/2021] [Indexed: 02/05/2023]
Abstract
Increasing evidence has suggested that chemotherapeutics affect the integrity of the intestinal barrier and alter the intestinal microbiota, thus limiting the therapeutic outcomes of cancer chemotherapy. Docetaxel (DTX) is used for breast cancer treatment and has gastrointestinal side effects, but the influence of DTX formulations on the intestinal barrier and intestinal microbiota remains unknown. Therefore, in this work, the influence of DTX injection (free DTX, commercial formulation) and DTX/methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA) (DTX micelles, nanoformulation) on the integrity of the intestinal barrier and the intestinal microbiota is investigated. It is found that the free DTX causes significantly greater intestinal barrier damage than the DTX micelles. The diversity of the intestinal microbiota, and the relative abundance of Akkermansia muciniphila and Ruminococcus gnavus in the DTX micelle-treated group is significantly higher than that in the free DTX-treated group. Moreover, the tumor growth rate is elevated in antibiotic mixture-pretreated mice, demonstrating that the diversity and composition of the intestinal microbiota may be associated with tumor progression. This work demonstrates that different formulations of chemotherapeutics have different effects on the integrity of the intestinal barrier and the intestinal microbiota.
Collapse
Affiliation(s)
- Qingya Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Yi Lu
- West China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Liping Yuan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041P. R. China
| |
Collapse
|
95
|
Abstract
Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.
Collapse
|
96
|
Sobhani I, Bergsten E, Charpy C, Chamaillard M, Mestivier D. Virulent Bacteria as Inflammatory and Immune Co-Factor in Colon Carcinogenesis: Evidence From Two Monozygotic Patients and Validation in CRC Patient and Healthy Cohorts. Front Cell Infect Microbiol 2021; 11:749750. [PMID: 34804993 PMCID: PMC8600479 DOI: 10.3389/fcimb.2021.749750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common disease, the incidence of which is increasing according to Western lifestyle; it remains to have a poor prognosis. Western nutriments are presumed to induce mild inflammation within the colonic mucosa, resulting in the accumulation of DNA alterations in colonocytes through a multistage carcinogenesis process. This suggests that most CRCs are related to the environment. Of interest, fecal microbiota composition has been shown yielding a novel approach regarding how environment changes may impact health and disease. Here, we compare whole shotgun metagenomic gut microbiota of two monozygotic twin sisters, one of whom is suffering from an advance colorectal tumor with a profound disequilibrium of the composition of the gut microbiota due to the overexpression of virulent bacteria such as E. coli, Shigella, and Clostridium species in the colon cancer patient’s feces contrasting with low levels of bacterial species such as Faecalibacterium and Akkermansia usually enriched in the healthy adults’ microbial flora. The disequilibrium in microbiota of the CRC patient’s feces as compared to her monozygotic twin sister is linked to inflammatory and immune cell infiltrates in the patient’s colonic tissue. We speculate on the role of microbiota disequilibrium on the immune-tolerant cell infiltrate within CRCs.
Collapse
Affiliation(s)
- Iradj Sobhani
- EC2M3-EA7375, Research Team, Université Paris Est Creteil-UPEC, Paris and Creteil, France.,Department of Gastroenterology, Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris and Creteil, France.,Oncomix, Bacterial Toxins Unit Department of Microbiology- Institut Pasteur de Paris-France, Paris and Creteil, France
| | - Emma Bergsten
- EC2M3-EA7375, Research Team, Université Paris Est Creteil-UPEC, Paris and Creteil, France
| | - Cecile Charpy
- Department of Pathology Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris and Creteil, France
| | | | - Denis Mestivier
- EC2M3-EA7375, Research Team, Université Paris Est Creteil-UPEC, Paris and Creteil, France.,Bioinformatic Platform Institut de Recherche, Créteil, France
| |
Collapse
|
97
|
Yeoh Y, Low TY, Abu N, Lee PY. Regulation of signal transduction pathways in colorectal cancer: implications for therapeutic resistance. PeerJ 2021; 9:e12338. [PMID: 34733591 PMCID: PMC8544255 DOI: 10.7717/peerj.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer treatments is a critical and widespread health issue that has brought serious impacts on lives, the economy and public policies. Mounting research has suggested that a selected spectrum of patients with advanced colorectal cancer (CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner, rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple factors have been associated with drug resistance. The most well-established factors are the emergence of cancer stem cell-like properties and overexpression of ABC transporters that mediate drug efflux. Besides, there is emerging evidence that signalling pathways that modulate cell survival and drug metabolism play major roles in the maintenance of multidrug resistance in CRC. This article reviews drug resistance in CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch pathways.
Collapse
Affiliation(s)
- Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
98
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
99
|
Zou J, Xiao Z, Wu Y, Yang J, Cui N. Noninvasive fecal testing for colorectal cancer. Clin Chim Acta 2021; 524:123-131. [PMID: 34756863 DOI: 10.1016/j.cca.2021.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common malignancy worldwide, with the second highest mortality rate among all malignancies. In this review, we describe the current utility of stool diagnostic biomarkers for CRC. METHODS We reviewed stool-related tests and biomarker candidates for the diagnosis of CRC. The guaiac-based fecal occult blood test (gFOBT), fecal immunochemical test (FIT), and multitarget stool DNA test (MT-sDNA) have been used as clinical CRC screening tools. Although microRNAs, protein biomarkers, and microbiota have not yet been used in clinical CRC screening, there is growing evidence that they have the potential to function as CRC screening tools. RESULTS According to the literature, the sensitivity of MT-sDNA for detecting CRC was 87.0-100%, 32.7-82.0% for advanced adenomas, and the specificity was 86.1-95.2%. The sensitivity of individual biomarkers of fecal microRNAs for detecting CRC was 34.2-88.2%, 73.0% for advanced adenomas, and the specificity was 68-100%. The sensitivity of fecal protein markers for detecting CRC was 63.6-93.0%, 47.7-69.4% for advanced adenomas, and the specificity was 38.3-97.5%. The sensitivity of fecal microbiota for detecting CRC was 54.0-100.0%, 32.0-48.3% for advanced adenomas, and the specificity was 61.3-90.0%. CONCLUSION MT-sDNA is the most sensitive CRC screening test, and its sensitivity is the highest for advanced adenomas; however, its detection cost is high. MT-sDNA was more sensitive to CRC and advanced precancerous lesions than FIT, but compared to three years of MT-sDNA, annual FIT as the first non-invasive screening test for CRC seemed to be more effective.
Collapse
Affiliation(s)
- Jianhua Zou
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Zhanshuo Xiao
- China Academy of Chinese Medical Sciences Guanganmen Hospital, Beijing, China
| | - Yu Wu
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China.
| | - Jingyan Yang
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Ning Cui
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
100
|
Appunni S, Rubens M, Ramamoorthy V, Tonse R, Saxena A, McGranaghan P, Kaiser A, Kotecha R. Emerging Evidence on the Effects of Dietary Factors on the Gut Microbiome in Colorectal Cancer. Front Nutr 2021; 8:718389. [PMID: 34708063 PMCID: PMC8542705 DOI: 10.3389/fnut.2021.718389] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Dietary factors have important role in modulating the gut microbiome, which in-turn regulates the molecular events in colonic mucosa. The composition and resulting metabolism of the gut microbiome are decisive factors in colorectal cancer (CRC) tumorigenesis. Altered gut microbiome is associated with impaired immune response, and the release of carcinogenic or genotoxic substances which are the major microbiome-induced mechanisms implicated in CRC pathogenesis. Diets low in dietary fibers and phytomolecules as well as high in red meat are important dietary changes which predispose to CRC. Dietary fibers which reach the colon in an undigested form are further metabolized by the gut microbiome into enterocyte friendly metabolites such as short chain fatty acid (SCFA) which provide anti-inflammatory and anti-proliferative effects. Healthy microbiome supported by dietary fibers and phytomolecules could decrease cell proliferation by regulating the epigenetic events which activate proto-oncogenes and oncogenic pathways. Emerging evidence show that predominance of microbes such as Fusobacterium nucleatum can predispose the colonic mucosa to malignant transformation. Dietary and lifestyle modifications have been demonstrated to restrict the growth of potentially harmful opportunistic organisms. Synbiotics can protect the intestinal mucosa by improving immune response and decreasing the production of toxic metabolites, oxidative stress and cell proliferation. In this narrative review, we aim to update the emerging evidence on how diet could modulate the gut microbial composition and revive colonic epithelium. This review highlights the importance of healthy plant-based diet and related supplements in CRC prevention by improving the gut microbiome.
Collapse
Affiliation(s)
- Sandeep Appunni
- Government Medical College, Kozhikode, India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | | | - Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Anshul Saxena
- Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Peter McGranaghan
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| |
Collapse
|