51
|
Castillo-Hair SM, Baerman EA, Fujita M, Igoshin OA, Tabor JJ. Optogenetic control of Bacillus subtilis gene expression. Nat Commun 2019; 10:3099. [PMID: 31308373 PMCID: PMC6629627 DOI: 10.1038/s41467-019-10906-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.
Collapse
Affiliation(s)
| | - Elliot A Baerman
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd., Houston, TX, 77004, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Theoretical Biophysics, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA.
| |
Collapse
|
52
|
Bizimana LA, Farfan CA, Brazard J, Turner DB. E to Z Photoisomerization of Phytochrome Cph1Δ Exceeds the Born-Oppenheimer Adiabatic Limit. J Phys Chem Lett 2019; 10:3550-3556. [PMID: 31181167 DOI: 10.1021/acs.jpclett.9b01137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Born-Oppenheimer adiabatic limit applies broadly in chemistry because most reactions occur on the ground electronic state. Photochemical reactions involve two or more electronic states and need not be subject to this adiabatic limit. The spectroscopic signatures of nonadiabatic processes are subtle, and therefore, experimental investigations have been limited to the few systems dominated by single photochemical outcomes. Systems with branched excited-state pathways have been neglected, despite their potential to reveal insights into photochemical reactivity. Here we present experimental evidence from coherent three-dimensional electronic spectroscopy that the E to Z photoisomerization of phytochrome Cph1 is strongly nonadiabatic, and the simulations reproduce the measured features only when the photoisomerization proceeds nonadiabatically near, but not through, a conical intersection. The results broaden the general understanding of photoisomerization mechanisms and motivate future studies of nonadiabatic processes with multiple outcomes arising from branching on excited-state potential energy surfaces.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Camille A Farfan
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Johanna Brazard
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Daniel B Turner
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| |
Collapse
|
53
|
Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnol Adv 2019; 37:340-353. [DOI: 10.1016/j.biotechadv.2019.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
|
54
|
Qian Y, Piatkevich KD, Mc Larney B, Abdelfattah AS, Mehta S, Murdock MH, Gottschalk S, Molina RS, Zhang W, Chen Y, Wu J, Drobizhev M, Hughes TE, Zhang J, Schreiter ER, Shoham S, Razansky D, Boyden ES, Campbell RE. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat Methods 2019; 16:171-174. [PMID: 30664778 PMCID: PMC6393164 DOI: 10.1038/s41592-018-0294-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022]
Abstract
We report an intensiometric, near-infrared fluorescent, genetically encoded calcium ion (Ca2+) indicator (GECI) with excitation and emission maxima at 678 and 704 nm, respectively. This GECI, designated NIR-GECO1, enables imaging of Ca2+ transients in cultured mammalian cells and brain tissue with sensitivity comparable to that of currently available visible-wavelength GECIs. We demonstrate that NIR-GECO1 opens up new vistas for multicolor Ca2+ imaging in combination with other optogenetic indicators and actuators.
Collapse
Affiliation(s)
- Yong Qian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kiryl D Piatkevich
- Media Lab and McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Benedict Mc Larney
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
| | | | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Mitchell H Murdock
- Media Lab and McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Rosana S Molina
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA
| | - Wei Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yingche Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiahui Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shy Shoham
- Departments of Ophthalmology and of Neuroscience and Physiology, New York University Langone Health, New York City, NY, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Department of Information Technology and Electrical Engineering and Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Edward S Boyden
- Media Lab and McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
55
|
Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 2018; 115:E12378-E12387. [PMID: 30552139 DOI: 10.1073/pnas.1812871115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.
Collapse
|
56
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
57
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
58
|
Ameryckx A, Thabault L, Pochet L, Leimanis S, Poupaert JH, Wouters J, Joris B, Van Bambeke F, Frédérick R. 1-(2-Hydroxybenzoyl)-thiosemicarbazides are promising antimicrobial agents targeting d-alanine-d-alanine ligase in bacterio. Eur J Med Chem 2018; 159:324-338. [DOI: 10.1016/j.ejmech.2018.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/09/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
|
59
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
60
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
61
|
Park E, Kim Y, Choi G. Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses across a Wide Range of Light Conditions. THE PLANT CELL 2018; 30:1277-1292. [PMID: 29764986 PMCID: PMC6048787 DOI: 10.1105/tpc.17.00913] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 05/04/2023]
Abstract
Phytochrome B (phyB) inhibits the function of phytochrome-interacting factors (PIFs) by inducing their degradation and sequestration, but the relative physiological importance of these two phyB activities is unclear. In an analysis of published Arabidopsis thaliana phyB mutations, we identified a point mutation in the N-terminal half of phyB (phyBG111D) that abolishes its PIF sequestration activity without affecting its PIF degradation activity. We also identified a point mutation in the phyB C-terminal domain, which, when combined with a deletion of the C-terminal end (phyB990G767R), does the opposite; it blocks PIF degradation without affecting PIF sequestration. The resulting phyB proteins, phyB990G767R and phyBG111D, are equally capable of inducing light responses under continuous red light. However, phyBG111D, which exhibits only the PIF degradation activity, induces stronger light responses than phyB990G767R under white light with prolonged dark periods (i.e., diurnal cycles). In contrast, phyB990G767R, which exhibits only the PIF sequestration activity, induces stronger light responses in flickering light (a condition that mimics sunflecks). Together, our results indicate that both of these separable phyB activities are required for light responses in varying light conditions.
Collapse
Affiliation(s)
- Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
62
|
Iijima E, Gleeson MP, Unno M, Mori S. QM/MM Investigation for Protonation States in a Bilin Reductase PcyA-Biliverdin IXα Complex. Chemphyschem 2018; 19:1809-1813. [PMID: 29732737 DOI: 10.1002/cphc.201800031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 02/28/2024]
Abstract
Herein we report quantum mechanical/molecular mechanical (QM/MM) studies to investigate the most probable protonation states of active site amino acids and bound substrate based on a recently reported neutron diffraction structure of phycocyanobilin:ferredoxin oxidoreductase (PcyA) by Unno et al. This structure was considered to be bound in its initial state of biliverdin IXα (BV), which has the C-pyrrole ring in the deprotonated state. The protonation state of BV suggested by neutron and spectroscopic studies is a stable, two-electron reduced complex with a bound hydronium ion. Several ambiguities in the neutron structure were observed which prompted a further theoretical analysis of the structure. This structural investigation provides new understanding of the PcyA and BV protonation states not previously reported in the literature. Our calculations suggest that the hydronium ion (H3 O+ ) is energetically unfavorable, preferentially protonating the neighboring His88 residue and that the C-ring of BV is not protonated.
Collapse
Affiliation(s)
- Eri Iijima
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512 and Hitachi 316-8511, Ibaraki, Japan
| | - M Paul Gleeson
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's institute of Technology Ladkrabang, Thailand
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10903, Thailand
| | - Masaki Unno
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512 and Hitachi 316-8511, Ibaraki, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka, 319-1106, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512 and Hitachi 316-8511, Ibaraki, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Naka, 319-1106, Japan
| |
Collapse
|
63
|
Blain-Hartung M, Rockwell NC, Moreno MV, Martin SS, Gan F, Bryant DA, Lagarias JC. Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. J Biol Chem 2018; 293:8473-8483. [PMID: 29632072 DOI: 10.1074/jbc.ra118.002258] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C Rockwell
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Marcus V Moreno
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Shelley S Martin
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Fei Gan
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Donald A Bryant
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - J Clark Lagarias
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616,
| |
Collapse
|
64
|
Ong NT, Tabor JJ. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range. Chembiochem 2018; 19:1255-1258. [PMID: 29420866 DOI: 10.1002/cbic.201800007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 12/16/2022]
Abstract
Genetically engineered photoreceptors enable unrivaled control over gene expression. Previously, we ported the Synechocystis PCC 6803 CcaSR two-component system, which is activated by green light and deactivated by red, into Escherichia coli, resulting in a sensor with a sixfold dynamic range. Later, we optimized pathway protein expression levels and the output promoter sequence to decrease transcriptional leakiness and to increase the dynamic range to approximately 120-fold. These CcaSR v 1.0 and v 2.0 systems have been used for precise quantitative, temporal, and spatial control of gene expression for a variety of applications. Recently, other workers deleted two PAS domains of unknown function from the CcaS sensor histidine kinase in a system similar to CcaSR v 1.0. Here we apply these deletions to CcaSR v 2.0, resulting in a v 3.0 light sensor with an output four times less leaky and a dynamic range of nearly 600-fold. We demonstrate that the PAS domain deletions have no deleterious effect on CcaSR green light sensitivity or response dynamics. CcaSR v 3.0 is the best-performing engineered bacterial green light sensor available, and should have broad applications in fundamental and synthetic biology studies.
Collapse
Affiliation(s)
- Nicholas T Ong
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.,Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
65
|
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523061 DOI: 10.1134/s000629791713003x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes - the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the "energy funnel" principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a significant change in its structure and spectral characteristics. Such conformational changes open the possibility for protein-protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluorescence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein-protein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.
Collapse
Affiliation(s)
- N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
66
|
Kyriakakis P, Catanho M, Hoffner N, Thavarajah W, Hu VJ, Chao SS, Hsu A, Pham V, Naghavian L, Dozier LE, Patrick GN, Coleman TP. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP + Reductase Systems Enables Genetically Encoded PhyB Optogenetics. ACS Synth Biol 2018; 7:706-717. [PMID: 29301067 PMCID: PMC5820651 DOI: 10.1021/acssynbio.7b00413] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
Collapse
Affiliation(s)
- Phillip Kyriakakis
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Marianne Catanho
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Nicole Hoffner
- Neurosciences
Graduate Program, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Walter Thavarajah
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Vincent J. Hu
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Syh-Shiuan Chao
- Frank
H. Better School of Medicine, Quinnipiac University, 370 Bassett Road, North Haven, Connecticut 06473, United States
| | - Athena Hsu
- School
of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Vivian Pham
- Roy J. and
Lucille A. Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, United States
| | - Ladan Naghavian
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Lara E. Dozier
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Gentry N. Patrick
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Todd P. Coleman
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| |
Collapse
|
67
|
Blain-Hartung M, Rockwell NC, Lagarias JC. Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization. Biochemistry 2017; 56:6145-6154. [PMID: 29072834 DOI: 10.1021/acs.biochem.7b00734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phytochromes and cyanobacteriochromes (CBCRs) use double-bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit photocycles that are much more diverse than those of phytochromes and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multidomain extension at its N-terminus. To probe the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, circular dichroism spectroscopy and size exclusion chromatography data do not support formation of stable dimers in either the blue-absorbing 15ZPb dark state or the green-absorbing 15EPg photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. On the basis of these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytically competent dimers.
Collapse
Affiliation(s)
- Matthew Blain-Hartung
- Department of Molecular and Cellular Biology, University of California , Davis, California 95616, United States
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California , Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California , Davis, California 95616, United States
| |
Collapse
|
68
|
Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proc Natl Acad Sci U S A 2017; 114:11962-11967. [PMID: 29078307 DOI: 10.1073/pnas.1707190114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
Collapse
|
69
|
|
70
|
Burgie ES, Bussell AN, Lye SH, Wang T, Hu W, McLoughlin KE, Weber EL, Li H, Vierstra RD. Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor. Sci Rep 2017; 7:13648. [PMID: 29057954 PMCID: PMC5651913 DOI: 10.1038/s41598-017-14037-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream of an N-terminal Period/Arnt/Sim (PAS) domain, which upon removal dramatically accelerates thermal reversion. We also discovered that the nature of the bilin strongly influences Pfr stability. Whereas incorporation of the native bilin phytochromobilin into PhyB confers robust Pfr → Pr thermal reversion, that assembled with the cyanobacterial version phycocyanobilin, often used for optogenetics, has a dramatically stabilized Pfr state. Taken together, we conclude that Pfr acquisition and stability are impacted by a collection of opposing allosteric features that inhibit or promote photoconversion and reversion of Pfr back to Pr, thus allowing Phys to dynamically measure light, temperature, and possibly time.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Adam N Bussell
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shu-Hui Lye
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Tong Wang
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,CUNY Advanced Science Research Center, The City University of New York, New York, New York, 10031, USA
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Katrice E McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Erin L Weber
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Huilin Li
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA. .,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
71
|
Hochrein L, Machens F, Messerschmidt K, Mueller-Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res 2017; 45:9193-9205. [PMID: 28911120 PMCID: PMC5587811 DOI: 10.1093/nar/gkx610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
Collapse
Affiliation(s)
- Lena Hochrein
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Katrin Messerschmidt
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.,Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
72
|
Fernandez-Rodriguez J, Moser F, Song M, Voigt CA. Engineering RGB color vision into Escherichia coli. Nat Chem Biol 2017; 13:706-708. [PMID: 28530708 DOI: 10.1038/nchembio.2390] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/03/2017] [Indexed: 11/09/2022]
Abstract
Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.
Collapse
Affiliation(s)
- Jesus Fernandez-Rodriguez
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Felix Moser
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Miryoung Song
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
73
|
Rockwell NC, Martin SS, Lagarias JC. There and Back Again: Loss and Reacquisition of Two‐Cys Photocycles in Cyanobacteriochromes. Photochem Photobiol 2017; 93:741-754. [DOI: 10.1111/php.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology University of California Davis CA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology University of California Davis CA
| | - John Clark Lagarias
- Department of Molecular and Cellular Biology University of California Davis CA
| |
Collapse
|
74
|
Lu L, Zhao BQ, Miao D, Ding WL, Zhou M, Scheer H, Zhao KH. A Simple Preparation Method for Phytochromobilin. Photochem Photobiol 2017; 93:675-680. [DOI: 10.1111/php.12710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Lu Lu
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Dan Miao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| | - Hugo Scheer
- Department Biologie I; Universität München; München Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
75
|
Rockwell NC, Martin SS, Li FW, Mathews S, Lagarias JC. The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. THE NEW PHYTOLOGIST 2017; 214:1145-1157. [PMID: 28106912 PMCID: PMC5388591 DOI: 10.1111/nph.14422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/04/2016] [Indexed: 05/11/2023]
Abstract
Land plant phytochromes perceive red and far-red light to control growth and development, using the linear tetrapyrrole (bilin) chromophore phytochromobilin (PΦB). Phytochromes from streptophyte algae, sister species to land plants, instead use phycocyanobilin (PCB). PCB and PΦB are synthesized by different ferredoxin-dependent bilin reductases (FDBRs): PΦB is synthesized by HY2, whereas PCB is synthesized by PcyA. The pathway for PCB biosynthesis in streptophyte algae is unknown. We used phylogenetic analysis and heterologous reconstitution of bilin biosynthesis to investigate bilin biosynthesis in streptophyte algae. Phylogenetic results suggest that PcyA is present in chlorophytes and prasinophytes but absent in streptophytes. A system reconstituting bilin biosynthesis in Escherichia coli was modified to utilize HY2 from the streptophyte alga Klebsormidium flaccidum (KflaHY2). The resulting bilin was incorporated into model cyanobacterial photoreceptors and into phytochrome from the early-diverging streptophyte alga Mesostigma viride (MvirPHY1). All photoreceptors tested incorporate PCB rather than PΦB, indicating that KflaHY2 is sufficient for PCB synthesis without any other algal protein. MvirPHY1 exhibits a red-far-red photocycle similar to those seen in other streptophyte algal phytochromes. These results demonstrate that streptophyte algae use HY2 to synthesize PCB, consistent with the hypothesis that PΦB synthesis arose late in HY2 evolution.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
76
|
Bizimana LA, Epstein J, Brazard J, Turner DB. Conformational Homogeneity in the P r Isomer of Phytochrome Cph1. J Phys Chem B 2017; 121:2622-2630. [PMID: 28282147 DOI: 10.1021/acs.jpcb.7b02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous time-resolved studies of the Pr to Pfr photoisomerization in phytochrome Cph1 have revealed multiphasic excited-state decay kinetics. It remains unclear whether these kinetics arise from multiple ground-state conformational subpopulations or from a single ground-state conformation that undergoes an excited-state photoisomerization process-either branching on the excited state or relaxing through multiple sequential intermediates. Many studies have attempted to resolve this debate by fitting the measured dynamics to proposed kinetic models, arriving at different conclusions. Here we probe spectral signatures of ground-state heterogeneity of Pr. Two-dimensional electronic spectra display negligible inhomogeneous line broadening, and vibrational coherence spectra extracted from transient absorption measurements do not contain nodes and phase shifts at the fluorescence maximum. These spectroscopic results support the homogeneous model, in which the primary photochemical transformation of Pr to Lumi-R occurs adiabatically on the excited-state potential energy surface.
Collapse
Affiliation(s)
- Laurie A Bizimana
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Jordan Epstein
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Johanna Brazard
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
77
|
Hydrophobic Residues near the Bilin Chromophore-Binding Pocket Modulate Spectral Tuning of Insert-Cys Subfamily Cyanobacteriochromes. Sci Rep 2017; 7:40576. [PMID: 28094296 PMCID: PMC5240096 DOI: 10.1038/srep40576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are a subfamily of phytochrome photoreceptors found exclusively in photosynthetic cyanobacteria. Four CBCRs containing a second Cys in the insert region (insert-Cys) have been identified from the nonheterocystous cyanobacterium Microcoleus B353 (Mbr3854g4 and Mbl3738g2) and the nitrogen fixing, heterocystous cyanobacterium Nostoc punctiforme (NpF2164g3 and NpR1597g2). These insert-Cys CBCRs can sense light in the near-UV to orange range, but key residues responsible for tuning their colour sensitivity have not been reported. In the present study, near-UV/Green (UG) photosensors Mbr3854g4 (UG1) and Mbl3738g2 (UG2) were chosen for further spectroscopic analysis of their spectral sensitivity and tuning. Consistent with most dual-Cys CBCRs, both UGs formed a second thioether linkage to the phycocyanobilin (PCB) chromophore via the insert-Cys. This bond is subject to breakage and relinkage during forward and reverse photoconversions. Variations in residues equivalent to Phe that are in close contact with the PCB chromophore D-ring in canonical red/green CBCRs are responsible for tuning the light absorption peaks of both dark and photoproducts. This is the first time these key residues that govern light absorption in insert-Cys family CBCRs have been identified and characterised.
Collapse
|
78
|
Fushimi K, Rockwell NC, Enomoto G, Ni-Ni-Win, Martin SS, Gan F, Bryant DA, Ikeuchi M, Lagarias JC, Narikawa R. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry 2016; 55:6981-6995. [PMID: 27935696 DOI: 10.1021/acs.biochem.6b00940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that sense near-ultraviolet to far-red light. Like the distantly related phytochromes, all CBCRs reported to date have a conserved Cys residue (the "canonical Cys" or "first Cys") that forms a thioether linkage to C31 of the linear tetrapyrrole (bilin) chromophore. Detection of ultraviolet, violet, and blue light is performed by at least three subfamilies of two-Cys CBCRs that require both the first Cys and a second Cys that forms a second covalent linkage to C10 of the bilin. In the well-characterized DXCF subfamily, the second Cys is part of a conserved Asp-Xaa-Cys-Phe motif. We here report novel CBCRs lacking the first Cys but retaining the DXCF Cys as part of a conserved Asp-Xaa-Cys-Ile-Pro (DXCIP) motif. Phylogenetic analysis demonstrates that DXCIP CBCRs are a sister to a lineage of DXCF CBCR domains from phototaxis sensors. Three such DXCIP CBCR domains (cce_4193g1, Cyan8802_2776g1, and JSC1_24240) were characterized after recombinant expression in Escherichia coli engineered to produce phycocyanobilin. All three covalently bound bilin and showed unidirectional photoconversion in response to green light. Spectra of acid-denatured proteins in the dark-adapted state do not correspond to those of known bilins. One DXCIP CBCR, cce_4193g1, exhibited very rapid dark reversion consistent with a function as a power sensor. However, Cyan8802_2776g1 exhibited slower dark reversion and would not have such a function. The full-length cce_4193 protein also possesses a DXCF CBCR GAF domain (cce_4193g2) with a covalently bound phycoviolobilin chromophore and a blue/green photocycle. Our studies indicate that CBCRs need not contain the canonical Cys residue to function as photochromic light sensors and that phototaxis proteins containing DXCIP CBCRs may potentially perceive both light quality and light intensity.
Collapse
Affiliation(s)
- Keiji Fushimi
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Gen Enomoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ni-Ni-Win
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Fei Gan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802 United States.,Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717 United States
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo , Komaba, Meguro, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California , Davis California 95616, United States
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University , Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
79
|
Rodriguez EA, Tran GN, Gross LA, Crisp JL, Shu X, Lin JY, Tsien RY. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat Methods 2016; 13:763-9. [PMID: 27479328 PMCID: PMC5007177 DOI: 10.1038/nmeth.3935] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/01/2016] [Indexed: 12/23/2022]
Abstract
Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because with these molecules less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow, and orange FPs. We developed a new class of FP from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, which we named small ultra-red FP (smURFP), covalently attaches a biliverdin (BV) chromophore without a lyase, and has 642/670-nm excitation-emission peaks, a large extinction coefficient (180,000 M(-1)cm(-1)) and quantum yield (18%), and photostability comparable to that of eGFP. smURFP has significantly greater BV incorporation rate and protein stability than the bacteriophytochrome (BPH) FPs. Moreover, BV supply is limited by membrane permeability, and smURFPs (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence comparable to that of FPs from jellyfish or coral. A far-red and near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP.
Collapse
Affiliation(s)
- Erik A Rodriguez
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Geraldine N Tran
- School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Larry A Gross
- Howard Hughes Medical Institute, La Jolla, California, USA
| | - Jessica L Crisp
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Roger Y Tsien
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
| |
Collapse
|
80
|
Sigala PA, Morante K, Tsumoto K, Caaveiro JMM, Goldberg DE. In-Cell Enzymology To Probe His-Heme Ligation in Heme Oxygenase Catalysis. Biochemistry 2016; 55:4836-49. [PMID: 27490825 DOI: 10.1021/acs.biochem.6b00562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heme oxygenase (HO) is a ubiquitous enzyme with key roles in inflammation, cell signaling, heme disposal, and iron acquisition. HO catalyzes the oxidative conversion of heme to biliverdin (BV) using a conserved histidine to coordinate the iron atom of bound heme. This His-heme interaction has been regarded as being essential for enzyme activity, because His-to-Ala mutants fail to convert heme to biliverdin in vitro. We probed a panel of proximal His mutants of cyanobacterial, human, and plant HO enzymes using a live-cell activity assay based on heterologous co-expression in Escherichia coli of each HO mutant and a fluorescent biliverdin biosensor. In contrast to in vitro studies with purified proteins, we observed that multiple HO mutants retained significant activity within the intracellular environment of bacteria. X-ray crystallographic structures of human HO1 H25R with bound heme and additional functional studies suggest that HO mutant activity inside these cells does not involve heme ligation by a proximal amino acid. Our study reveals unexpected plasticity in the active site binding interactions with heme that can support HO activity within cells, suggests important contributions by the surrounding active site environment to HO catalysis, and can guide efforts to understand the evolution and divergence of HO function.
Collapse
Affiliation(s)
- Paul A Sigala
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Koldo Morante
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo 113-8654, Japan.,Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo , Minato-ku, Tokyo 108-8639, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Tokyo 113-8654, Japan
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
81
|
Jeong AR, Lee SS, Han YJ, Shin AY, Baek A, Ahn T, Kim MG, Kim YS, Lee KW, Nagatani A, Kim JI. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity. PLANT PHYSIOLOGY 2016; 171:2826-40. [PMID: 27325667 PMCID: PMC4972268 DOI: 10.1104/pp.16.00342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/17/2016] [Indexed: 05/22/2023]
Abstract
Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation.
Collapse
Affiliation(s)
- A-Reum Jeong
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Si-Seok Lee
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Ah-Young Shin
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Ayoung Baek
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Taeho Ahn
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Min-Gon Kim
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Young Soon Kim
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Keun Woo Lee
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Akira Nagatani
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory (A.-R.J., S.-S.L., Y.-J.H., A.-Y.S., M.-G.K., Y.S.K., J.-I.K.) and College of Veterinary Medicine (T.A.), Chonnam National University, Gwangju 61186, Republic of Korea;Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea (A.B., K.W.L.); andGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan (A.N.)
| |
Collapse
|
82
|
Rockwell NC, Martin SS, Lagarias JC. Identification of Cyanobacteriochromes Detecting Far-Red Light. Biochemistry 2016; 55:3907-19. [DOI: 10.1021/acs.biochem.6b00299] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular and
Cellular Biology, University of California, Davis, California 95616, United States
| |
Collapse
|
83
|
Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 2016; 7:11545. [PMID: 27173885 PMCID: PMC4869175 DOI: 10.1038/ncomms11545] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/07/2016] [Indexed: 11/15/2022] Open
Abstract
It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. Phytochromes regulate plant responses to environmental light conditions but despite extensive research the initial events in phytochrome signaling remain uncertain. Here, Shin et al. provide evidence that phytochrome phosphorylates target proteins via kinase activity in the N-terminal core domain.
Collapse
|
84
|
Yu Q, Lim S, Rockwell NC, Martin SS, Clark Lagarias J, Ames JB. 1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpR6012g4 in the red-absorbing dark state. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:139-142. [PMID: 26482922 PMCID: PMC4789077 DOI: 10.1007/s12104-015-9653-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteriochrome (CBCR) photosensory proteins are phytochrome homologs using bilin chromophores for light sensing across the visible spectrum. NpR6012g4 is a CBCR from Nostoc punctiforme that serves as a model for a widespread CBCR subfamily with red/green photocycles. We report NMR chemical shift assignments for both the protein backbone and side-chain resonances of the red-absorbing dark state of NpR6012g4 (BMRB no. 26582).
Collapse
Affiliation(s)
- Qinhong Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
85
|
Lim S, Yu Q, Rockwell NC, Martin SS, Lagarias JC, Ames JB. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:157-161. [PMID: 26537963 PMCID: PMC6422171 DOI: 10.1007/s12104-015-9657-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
86
|
Nakajima M, Abe K, Ferri S, Sode K. Development of a light-regulated cell-recovery system for non-photosynthetic bacteria. Microb Cell Fact 2016; 15:31. [PMID: 26875863 PMCID: PMC4753666 DOI: 10.1186/s12934-016-0426-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/19/2016] [Indexed: 12/02/2022] Open
Abstract
Background Recent advances in the understanding of photosensing in biological systems have enabled the use of photoreceptors as novel genetic tools. Exploiting various photoreceptors that cyanobacteria possess, a green light-inducible gene expression system was previously developed for the regulation of gene expression in cyanobacteria.
However, the applications of cyanobacterial photoreceptors are not limited to these bacteria but are also available for non-photosynthetic microorganisms by the coexpression of a cyanobacterial chromophore with a cyanobacteria-derived photosensing system. An Escherichia coli-derived self-aggregation system based on Antigen 43 (Ag43) has been shown to induce cell self-aggregation of various bacteria by exogenous introduction of the Ag43 gene. Results An E. coli transformant harboring a plasmid encoding the Ag43 structural gene under a green light-regulated gene expression system derived from the cyanobacterium Synechocystis sp. PCC6803 was constructed. Ag43 was inserted downstream of the cpcG2 promoter PcpcG2, and its expression was regulated by green light induction, which was achieved by the functional expression of cyanobacterial CcaS/CcaR by coexpressing its chromophore synthesis gene cassette in E. coli. E. coli transformants harboring this designed system self-aggregated under green light exposure and precipitated, whereas transformants lacking the green light induction system did not. The green light induction system effectively functioned before the cell culture entered the stationary growth phase, and approximately 80 % of the cell culture was recovered by simple decantation. Conclusion This study demonstrated the construction of a cell recovery system for non-photosynthetic microorganisms induced by exposure of cells to green light. The system was regulated by a two-component regulatory system from cyanobacteria, and cell precipitation was mediated by an autotransporter protein, Ag43. Although further strict control and an increase of cell recovery efficiency are necessary, the system represents a novel tool for future bioprocessing with reduced energy and labor required for cell recovery.
Collapse
Affiliation(s)
- Mitsuharu Nakajima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Koichi Abe
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Stefano Ferri
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
87
|
Stepanenko OV, Baloban M, Bublikov GS, Shcherbakova DM, Stepanenko OV, Turoverov KK, Kuznetsova IM, Verkhusha VV. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes. Sci Rep 2016; 6:18750. [PMID: 26725513 PMCID: PMC4698714 DOI: 10.1038/srep18750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/02/2023] Open
Abstract
Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Grigory S Bublikov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation.,Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russian Federation
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
88
|
Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence. Sci Rep 2015; 5:18348. [PMID: 26679720 PMCID: PMC4683375 DOI: 10.1038/srep18348] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.
Collapse
|
89
|
Shcherbakova DM, Baloban M, Pletnev S, Malashkevich VN, Xiao H, Dauter Z, Verkhusha VV. Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins. CHEMISTRY & BIOLOGY 2015; 22:1540-1551. [PMID: 26590639 PMCID: PMC4667795 DOI: 10.1016/j.chembiol.2015.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are the probes of choice for deep-tissue imaging. Detection of several processes requires spectrally distinct NIR FPs. We developed an NIR FP, BphP1-FP, which has the most blue-shifted spectra and the highest fluorescence quantum yield among BphP-derived FPs. We found that these properties result from the binding of the biliverdin chromophore to a cysteine residue in the GAF domain, unlike natural BphPs and other BphP-based FPs. To elucidate the molecular basis of the spectral shift, we applied biochemical, structural and mass spectrometry analyses and revealed the formation of unique chromophore species. Mutagenesis of NIR FPs of different origins indicated that the mechanism of the spectral shift is general and can be used to design multicolor NIR FPs from other BphPs. We applied pairs of spectrally distinct point cysteine mutants to multicolor cell labeling and demonstrated that they perform well in model deep-tissue imaging.
Collapse
Affiliation(s)
- Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergei Pletnev
- Macromolecular Crystallography Laboratory, Basic Research Program, National Cancer Institute and Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | | | - Hui Xiao
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zbigniew Dauter
- Macromolecular Crystallography Laboratory, Basic Research Program, National Cancer Institute and Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00029, Finland.
| |
Collapse
|
90
|
Cho SM, Jeoung SC, Song JY, Kupriyanova EV, Pronina NA, Lee BW, Jo SW, Park BS, Choi SB, Song JJ, Park YI. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353. J Biol Chem 2015; 290:28502-28514. [PMID: 26405033 DOI: 10.1074/jbc.m115.669150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.
Collapse
Affiliation(s)
- Sung Mi Cho
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Sae Chae Jeoung
- Center for Advanced Measurement and Instrumentation, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea
| | - Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Natalia A Pronina
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | | | | | - Beom-Seok Park
- The Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851, Korea.
| | - Sang-Bong Choi
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, Korea
| |
Collapse
|
91
|
Rockwell NC, Martin SS, Lim S, Lagarias JC, Ames JB. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Biochemistry 2015; 54:3772-83. [DOI: 10.1021/acs.biochem.5b00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sunghyuk Lim
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - James B. Ames
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
92
|
Zlobovskaya OA, Sarkisyan KS, Lukyanov KA. [Infrared Fluorescent Protein iRFP as an Acceptor for Förster Resonance Energy Transfer]. BIOORGANICHESKAIA KHIMIIA 2015; 41:299-304. [PMID: 26502606 DOI: 10.1134/s1068162015030139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacteriophytochrome-based infrared fluorescent protein iRFP was tested as an acceptor for F6rster resonance energy transfer (FRET). Far-red GFP-like fluorescent proteins mKate2, eqFP650, and eqFP670 were used as donors; Bacterial expression vectors encoding donor and acceptor proteins fused by a 17-amino acid linker were.constructed. FRET for purified proteins in vitro was, estimated from increase of the donor emission after digestion of the linker. Among the three constructs tested, the most efficient FRET (approximately 30%) was detected for the eqFP650-iRFP pair.
Collapse
|
93
|
Gottlieb SM, Kim PW, Chang CW, Hanke SJ, Hayer RJ, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes. Biochemistry 2015; 54:1028-42. [DOI: 10.1021/bi5012755] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sean M. Gottlieb
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W. Kim
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J. Hanke
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J. Hayer
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Nathan C. Rockwell
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S. Larsen
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
94
|
Rockwell NC, Martin SS, Gan F, Bryant DA, Lagarias JC. NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochem Photobiol Sci 2015; 14:258-69. [DOI: 10.1039/c4pp00336e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report chromophore–protein interactions used by cyanobacteriochrome NpR3784 and related proteins for spectral tuning of the green-absorbing photoproduct state. These interactions are distinct from those used by canonical red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| | - Shelley S. Martin
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| | - Fei Gan
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- University Park
- USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- University Park
- USA
- Department of Chemistry and Biochemistry
| | - J. Clark Lagarias
- Department of Molecular and Cell Biology
- University of California at Davis
- Davis
- USA
| |
Collapse
|
95
|
Rockwell NC, Martin SS, Lagarias JC. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochem Photobiol Sci 2015; 14:929-41. [DOI: 10.1039/c4pp00486h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two specialized subgroups of cyanobacteriochromes with predictable green/blue and blue/orange photocycles are defined by these studies.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology
- University of California at Davis
- Davis
- USA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology
- University of California at Davis
- Davis
- USA
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology
- University of California at Davis
- Davis
- USA
| |
Collapse
|
96
|
Burgie ES, Vierstra RD. Phytochromes: an atomic perspective on photoactivation and signaling. THE PLANT CELL 2014; 26:4568-83. [PMID: 25480369 PMCID: PMC4311201 DOI: 10.1105/tpc.114.131623] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 05/19/2023]
Abstract
The superfamily of phytochrome (Phy) photoreceptors regulates a wide array of light responses in plants and microorganisms through their unique ability to reversibly switch between stable dark-adapted and photoactivated end states. Whereas the downstream signaling cascades and biological consequences have been described, the initial events that underpin photochemistry of the coupled bilin chromophore and the ensuing conformational changes needed to propagate the light signal are only now being understood. Especially informative has been the rapidly expanding collection of 3D models developed by x-ray crystallographic, NMR, and single-particle electron microscopic methods from a remarkably diverse array of bacterial Phys. These structures have revealed how the modular architecture of these dimeric photoreceptors engages the buried chromophore through distinctive knot, hairpin, and helical spine features. When collectively viewed, these 3D structures reveal complex structural alterations whereby photoisomerization of the bilin drives nanometer-scale movements within the Phy dimer through bilin sliding, hairpin reconfiguration, and spine deformation that ultimately impinge upon the paired signal output domains. When integrated with the recently described structure of the photosensory module from Arabidopsis thaliana PhyB, new opportunities emerge for the rational redesign of plant Phys with novel photochemistries and signaling properties potentially beneficial to agriculture and their exploitation as optogenetic reagents.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
97
|
Schmidl SR, Sheth RU, Wu A, Tabor JJ. Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 2014; 3:820-31. [PMID: 25250630 DOI: 10.1021/sb500273n] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light-switchable proteins enable unparalleled control of molecular biological processes in live organisms. Previously, we have engineered red/far-red and green/red photoreversible two-component signal transduction systems (TCSs) with transcriptional outputs in E. coli and used them to characterize and control synthetic gene circuits with exceptional quantitative, temporal, and spatial precision. However, the broad utility of these light sensors is limited by bulky DNA encoding, incompatibility with commonly used ligand-responsive transcription factors, leaky output in deactivating light, and less than 10-fold dynamic range. Here, we compress the four genes required for each TCS onto two streamlined plasmids and replace all chemically inducible and evolved promoters with constitutive, engineered versions. Additionally, we systematically optimize the expression of each sensor histidine kinase and response regulator, and redesign both pathway output promoters, resulting in low leakiness and 72- and 117-fold dynamic range, respectively. These second-generation light sensors can be used to program the expression of more genes over a wider range and can be more easily combined with additional plasmids or moved to different host strains. This work demonstrates that bacterial TCSs can be optimized to function as high-performance sensors for scientific and engineering applications.
Collapse
Affiliation(s)
- Sebastian R. Schmidl
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ravi U. Sheth
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Andrew Wu
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey J. Tabor
- Department of Bioengineering and ‡Department of
Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
98
|
Kong W, Celik V, Liao C, Hua Q, Lu T. Programming the group behaviors of bacterial communities with synthetic cellular communication. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0024-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Synthetic biology is a newly emerged research discipline that focuses on the engineering of novel cellular behaviors and functionalities through the creation of artificial gene circuits. One important class of synthetic circuits currently under active development concerns the programming of bacterial cellular communication and collective population-scale behaviors. Because of the ubiquity of cell-cell interactions within bacterial communities, having an ability of engineering these circuits is vital to programming robust cellular behaviors. Here, we highlight recent advances in communication-based synthetic gene circuits by first discussing natural communication systems and then surveying various functional engineered circuits, including those for population density control, temporal synchronization, spatial organization, and ecosystem formation. We conclude by summarizing recent advances, outlining existing challenges, and discussing potential applications and future opportunities.
Collapse
|
99
|
Abstract
The light-based control of ion channels has been transformative for the neurosciences, but the optogenetic toolkit does not stop there. An expanding number of proteins and cellular functions have been shown to be controlled by light, and the practical considerations in deciding between reversible optogenetic systems (such as systems that use light-oxygen-voltage domains, phytochrome proteins, cryptochrome proteins and the fluorescent protein Dronpa) are well defined. The field is moving beyond proof of concept to answering real biological questions, such as how cell signalling is regulated in space and time, that were difficult or impossible to address with previous tools.
Collapse
|
100
|
Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS. Heterogeneous photodynamics of the pfr state in the cyanobacterial phytochrome Cph1. Biochemistry 2014; 53:4601-11. [PMID: 24940993 PMCID: PMC4184438 DOI: 10.1021/bi5005359] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Femtosecond
photodynamics of the Pfr form of the red/far-red
phytochrome N-terminal PAS-GAF-PHY photosensory core module of the
cyanobacterial phytochrome Cph1 (termed Cph1Δ) from Synechocystis were resolved with visible broadband transient
absorption spectroscopy. Multiphasic generation dynamics via global
target analysis revealed parallel evolution of two pathways with distinct
excited- and ground-state kinetics. These measurements resolved two
subpopulations: a majority subpopulation with fast excited-state decay
and slower ground-state dynamics, corresponding to previous descriptions
of Pfr dynamics, and a minority subpopulation with slower
excited-state decay and faster ground-state primary dynamics. Both
excited-state subpopulations generated the isomerized, red-shifted
Lumi-Ff photoproduct (715 nm); subsequent ground-state
evolution to a blue-shifted Meta-Fr population (635 nm)
proceeded on 3 ps and 1.5 ns time scales for the two subpopulations.
Meta-Fr was spectrally similar to a recently described
photoinactive fluorescent subpopulation of Pr (FluorPr). Thus, the reverse Pfr to Pr photoconversion of Cph1Δ involves minor structural deformation
of Meta-Fr to generate the fluorescent, photochemically
refractory form of Pr, with slower subsequent equilibration
with the photoactive Pr subpopulation (PhotoPr).
Collapse
Affiliation(s)
- Peter W Kim
- Department of Chemistry and ‡Department of Molecular and Cell Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|