51
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
52
|
Merchant K, Zanos S, Datta-Chaudhuri T, Deutschman CS, Sethna CB. Transcutaneous auricular vagus nerve stimulation (taVNS) for the treatment of pediatric nephrotic syndrome: a pilot study. Bioelectron Med 2022; 8:1. [PMID: 35078538 PMCID: PMC8790887 DOI: 10.1186/s42234-021-00084-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Children with frequently relapsing nephrotic syndrome (FRNS) and steroid resistant nephrotic syndrome (SRNS) are exposed to immunosuppressant medications with adverse side effects and variable efficacy. Transcutaneous auricular vagus nerve stimulation (taVNS) modulates the immune system via the inflammatory reflex and has become a therapy of interest for treating immune-mediated illnesses. METHODS An open-label, pilot study of tavNS for five minutes daily for 26 weeks via a TENS 7000 unit was conducted. RESULTS Three FRNS participants and 4 SRNS participants had a mean age of 9.5±4.2 years (range 4 to 17). Those with FRNS remained relapse-free during the study period; two participants continued treatment and remained in remission for 15 and 21 months, respectively. Three SRNS participants experienced a reduction in first morning UPC (mean of 42%, range 25-76%). Although UPC decreased (13.7%) in one SRNS participant with congenital nephrotic syndrome, UPC remained in nephrotic range. All but one participant (non-compliant with treatment) experienced a reduction in TNF (7.33pg/mL vs. 5.46pg/mL, p=0.03). No adverse events or side effects were reported. CONCLUSIONS taVNS was associated with clinical remission in FRNS and moderately reduced proteinuria in non-congenital SRNS. Further study of taVNS as a treatment for nephrotic syndrome in children is warranted. ClinicalTrials.gov Identifier: NCT04169776, Registered November 20, 2019, https://clinicaltrials.gov/ct2/show/NCT04169776 .
Collapse
Affiliation(s)
- Kumail Merchant
- Cohen Children's Medical Center of New York, New Hyde Park, United States, NY
| | - Stavros Zanos
- The Feinstein Institutes for Medical Research, Manhasset, United States, NY
| | | | - Clifford S Deutschman
- Cohen Children's Medical Center of New York, New Hyde Park, United States, NY
- The Feinstein Institutes for Medical Research, Manhasset, United States, NY
| | - Christine B Sethna
- Cohen Children's Medical Center of New York, New Hyde Park, United States, NY.
- The Feinstein Institutes for Medical Research, Manhasset, United States, NY.
| |
Collapse
|
53
|
Herrlich A. Interorgan crosstalk mechanisms in disease: the case of acute kidney injury-induced remote lung injury. FEBS Lett 2021; 596:620-637. [PMID: 34932216 DOI: 10.1002/1873-3468.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Homeostasis and health of multicellular organisms with multiple organs depends on interorgan communication. Tissue injury in one organ disturbs this homeostasis and can lead to disease in multiple organs, or multiorgan failure. Many routes of interorgan crosstalk during homeostasis are relatively well known, but interorgan crosstalk in disease still lacks understanding. In particular, how tissue injury in one organ can drive injury at remote sites and trigger multiorgan failure with high mortality is poorly understood. As examples, acute kidney injury can trigger acute lung injury and cardiovascular dysfunction; pneumonia, sepsis or liver failure conversely can cause kidney failure; lung transplantation very frequently triggers acute kidney injury. Mechanistically, interorgan crosstalk after tissue injury could involve soluble mediators and their target receptors, cellular mediators, in particular immune cells, as well as newly identified neuro-immune connections. In this review, I will focus the discussion of deleterious interorgan crosstalk and its mechanistic concepts on one example, acute kidney injury-induced remote lung injury.
Collapse
Affiliation(s)
- Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
54
|
Murray EC, Nosalski R, MacRitchie N, Tomaszewski M, Maffia P, Harrison DG, Guzik TJ. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc Res 2021; 117:2589-2609. [PMID: 34698811 PMCID: PMC9825256 DOI: 10.1093/cvr/cvab330] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Both animal models and human observational and genetic studies have shown that immune and inflammatory mechanisms play a key role in hypertension and its complications. We review the effects of immunomodulatory interventions on blood pressure, target organ damage, and cardiovascular risk in humans. In experimental and small clinical studies, both non-specific immunomodulatory approaches, such as mycophenolate mofetil and methotrexate, and medications targeting T and B lymphocytes, such as tacrolimus, cyclosporine, everolimus, and rituximab, lower blood pressure and reduce organ damage. Mechanistically targeted immune interventions include isolevuglandin scavengers to prevent neo-antigen formation, co-stimulation blockade (abatacept, belatacept), and anti-cytokine therapies (e.g. secukinumab, tocilizumab, canakinumab, TNF-α inhibitors). In many studies, trial designs have been complicated by a lack of blood pressure-related endpoints, inclusion of largely normotensive study populations, polypharmacy, and established comorbidities. Among a wide range of interventions reviewed, TNF-α inhibitors have provided the most robust evidence of blood pressure lowering. Treatment of periodontitis also appears to deliver non-pharmacological anti-hypertensive effects. Evidence of immunomodulatory drugs influencing hypertension-mediated organ damage are also discussed. The reviewed animal models, observational studies, and trial data in humans, support the therapeutic potential of immune-targeted therapies in blood pressure lowering and in hypertension-mediated organ damage. Targeted studies are now needed to address their effects on blood pressure in hypertensive individuals.
Collapse
Affiliation(s)
- Eleanor C Murray
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Internal Medicine, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, M13 9PL Manchester, UK,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, M13 9WL Manchester, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbildt University Medical Centre, Nashville, 37232 TN, USA
| | - Tomasz J Guzik
- Corresponding author. Tel: +44 141 3307590; fax: +44 141 3307590, E-mail:
| |
Collapse
|
55
|
Muñoz AI, Vallejo-Castillo L, Fragozo A, Vázquez-Leyva S, Pavón L, Pérez-Sánchez G, Soria-Castro R, Mellado-Sánchez G, Cobos-Marin L, Pérez-Tapia SM. Increased survival in puppies affected by Canine Parvovirus type II using an immunomodulator as a therapeutic aid. Sci Rep 2021; 11:19864. [PMID: 34615970 PMCID: PMC8494837 DOI: 10.1038/s41598-021-99357-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Canine parvovirus type II (CPV-2) infection induces canine parvoviral enteritis (CPE), which in turn promotes sepsis and systemic inflammatory response syndrome (SIRS). Mortality in this disease is usually registered within 48-72 h post-hospitalization, the critical period of the illness. It has been recently described that the use of an immunomodulator, whose major component is monomeric ubiquitin (mUb) without the last two glycine residues (Ub∆GG), in pediatric human patients with sepsis augments survival. It is known that CXCR4 is the cell receptor of extracellular ubiquitin in humans. This work aimed to explore the effect of one immunomodulator (human Dialyzable Leukocyte Extract-hDLE) as a therapeutic auxiliary in puppies with sepsis and SIRS induced by CPE. We studied two groups of puppies with CPV-2 infection confirmed by polymerase chain reaction. The first group received conventional treatment (CT) and vehicle (V), while the second group received CT plus the immunomodulator (I). We assessed both groups' survival, clinical condition, number of erythrocytes, neutrophils, and lymphocytes during the hospitalization period. In addition, hematocrit, hemoglobin, plasma proteins and cortisol values, as well as norepinephrine/epinephrine and serotonin concentration were determined. Puppies treated with CT + I showed 81% survival, mild clinical signs, and a significant decrease in circulating neutrophils and lymphocytes in the critical period of the treatment. In contrast, the CT + V group presented a survival of 42%, severe clinical status, and no improvement of the parameters evaluated in the critical period of the disease. We determined in silico that human Ub∆GG can bind to dog CXCR4. In conclusion, the administration of a human immunomodulator (0.5 mg/day × 5 days) to puppies with CPE under six months of age reduces the severity of clinical signs, increases survival, and modulates inflammatory cell parameters. Further studies are necessary to take full advantage of these clinical findings, which might be mediated by the human Ub∆GG to canine CXCR4 interaction.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Biomarkers
- Dog Diseases/drug therapy
- Dog Diseases/mortality
- Dog Diseases/virology
- Dogs
- Drug Synergism
- Host-Pathogen Interactions
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Parvoviridae Infections/veterinary
- Parvovirus, Canine/physiology
- Prognosis
- Protein Binding
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Structure-Activity Relationship
- Treatment Outcome
Collapse
Affiliation(s)
- Adriana I Muñoz
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Alcaldía Tlalpan, 14370, CDMX, México.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Alcaldía Tlalpan, 14370, CDMX, México
| | - Rodolfo Soria-Castro
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Laura Cobos-Marin
- Laboratorio de Virología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México, 04510, CDMX, México
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México.
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México.
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México.
| |
Collapse
|
56
|
Goggins E, Tanaka S. EXPLORing exosomes for the treatment of acute kidney injury. Kidney Int 2021; 100:508-510. [PMID: 34420658 DOI: 10.1016/j.kint.2021.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Exosomes are emerging as a novel drug delivery system for the treatment of numerous diseases, including acute kidney injury. In this issue of Kidney International, Kim et al. use a novel optogenetically engineered exosome technology, "EXPLOR," to deliver the exosomal repressor of nuclear factor-κB into mice before and after renal ischemia-reperfusion. They report that these exosomes downregulated renal nuclear factor-κB signaling and ameliorated acute kidney injury. This study deserves attention for its significant scientific and potential clinical value in acute kidney injury.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
57
|
Kuwabara S, Goggins E, Tanaka S. Neuroimmune Circuits Activated by Vagus Nerve Stimulation. Nephron Clin Pract 2021; 146:286-290. [PMID: 34515167 DOI: 10.1159/000518176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
The interaction between the nervous system and the immune system has recently been well-recognized. Vagus nerve stimulation (VNS) presents potential as an anti-inflammatory therapy through activation of neuroimmune pathways. Detailed understanding of the neuroimmune pathways VNS evokes is critical in order to successfully use it in the clinic for the treatment of acute kidney injury, in which inflammation plays an important role. In this review, we describe recent findings regarding VNS-induced neuroimmune pathways responsible for anti-inflammation and tissue protection.
Collapse
Affiliation(s)
- Shuhei Kuwabara
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
58
|
Cholinesterase activity in serum during general anesthesia in patients with or without vascular disease. Sci Rep 2021; 11:16687. [PMID: 34404888 PMCID: PMC8371088 DOI: 10.1038/s41598-021-96251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
Maintaining hemodynamic stability during the induction and maintenance of anesthesia is one of the challenges of the anesthesiologist. Patients with vascular disease are at increased risk of instability due to imbalance between the sympathetic and parasympathetic parts of the autonomic nervous system, a balance accessible by serum cholinesterase activity. We aim to characterize the dynamics of cholinesterase activity in patients undergoing general anesthesia (GA) and surgery. This was a prospective study of 57 patients undergoing ambulatory or vascular surgery under GA. Cholinesterase activity was measured before the induction of anesthesia, after 15 min and at the end of surgery by calculating the capacity of serum acetylcholinesterase (AChE) and butyrylcholinesterase to hydrolyze AcetylThioCholine. Data on atherosclerotic disease, anesthesia management were analyzed. Both AChE and total cholinergic status (CS) decreased significantly after GA induction at 15 min and even more so by the end of surgery. Vascular surgery patients had lower baseline cholinesterase activity compared to ambulatory surgery patients. Patients requiring intraoperative administration of phenylephrine for hemodynamic support (21.1%) had a significantly lower level of AChE and CS compared to untreated patients. Our findings serve as a mirror to the sympathetic/parasympathetic imbalance during GA, with a marked decrease in the parasympathetic tone. The data of a subgroup analysis show a correlation between low cholinesterase activity and an increase in the need for hemodynamic support.
Collapse
|
59
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|