51
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
52
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
53
|
Niu L, Ye C, Sun Y, Peng T, Yang S, Wang W, Li H. Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease. Cell Biosci 2018; 8:41. [PMID: 30002810 PMCID: PMC6033216 DOI: 10.1186/s13578-018-0239-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background Iron accumulation in basal ganglia accompanies neuronal loss in Huntington’s disease (HD) patients and mouse disease models. Disruption of HD brain iron homeostasis occurs before the onset of clinical signs. Therefore, investigating the mechanism of iron accumulation is essential to understanding its role in disease pathogenesis. Methods N171-82Q HD transgenic mice brain iron was detected by using Diaminobenzidine-enhanced Perls’ stain. Iron homeostatic proteins including iron response protein 1 (IRP1), transferrin (Tf), ferritin and transferrin receptor (TfR) were determined by using western blotting and immunohistochemistry, and their relative expression levels of RNA were measured by RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing N-terminal of huntingtin. Results Iron was increased in striatum and cortex of N171-82Q HD transgenic mice. Analysis of iron homeostatic proteins revealed increased expression of IRP1, Tf, ferritin and TfR in N171-82Q mice striatum and cortex. The same results were obtained in HEK293 cells expressing N-terminal of mutant huntingtin containing 160 CAG repeats. Conclusion We conclude that mutant huntingtin may cause abnormal iron homeostatic pathways by increasing IRP1 expression in Huntington’s disease, suggesting potential therapeutic target.
Collapse
Affiliation(s)
- Li Niu
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Cuifang Ye
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Yun Sun
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Ting Peng
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Shiming Yang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Weixi Wang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - He Li
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| |
Collapse
|
54
|
Tang BL. Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells 2018; 7:59. [PMID: 29904030 PMCID: PMC6025013 DOI: 10.3390/cells7060059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanism of intercellular transmission of pathological agents in neurodegenerative diseases has received much recent attention. Huntington's disease (HD) is caused by a monogenic mutation in the gene encoding Huntingtin (HTT). Mutant HTT (mHTT) harbors a CAG repeat extension which encodes an abnormally long polyglutamine (polyQ) repeat at HTT's N-terminus. Neuronal pathology in HD is largely due to the toxic gain-of-function by mHTT and its proteolytic products, which forms both nuclear and cytoplasmic aggregates that perturb nuclear gene transcription, RNA splicing and transport as well cellular membrane dynamics. The neuropathological effects of mHTT have been conventionally thought to be cell-autonomous in nature. Recent findings have, however, indicated that mHTT could be secreted by neurons, or transmitted from one neuronal cell to another via different modes of unconventional secretion, as well as via tunneling nanotubes (TNTs). These modes of transmission allow the intercellular spread of mHTT and its aggregates, thus plausibly promoting neuropathology within proximal neuronal populations and between neurons that are connected within neural circuits. Here, the various possible modes for mHTT's neuronal cell exit and intercellular transmission are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, 117597 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, 117456 Singapore, Singapore.
| |
Collapse
|
55
|
Khoshnan A, Sabbaugh A, Calamini B, Marinero SA, Dunn DE, Yoo JH, Ko J, Lo DC, Patterson PH. IKKβ and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD. Hum Mol Genet 2018; 26:4267-4277. [PMID: 28973132 DOI: 10.1093/hmg/ddx315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 01/04/2023] Open
Abstract
Neuronal interleukin-34 (IL-34) promotes the expansion of microglia in the central nervous system-microglial activation and expansion are in turn implicated in the pathogenesis of Huntington's disease (HD). We thus examined whether the accumulation of an amyloidogenic exon-1 fragment of mutant huntingtin (mHTTx1) modulates the expression of IL-34 in dopaminergic neurons derived from a human embryonic stem cell line. We found that mHTTx1 aggregates induce IL-34 production selectively in post-mitotic neurons. Exposure of neurons to DNA damaging agents or the excitotoxin NMDA elicited similar results suggesting that IL-34 induction may be a general response to neuronal stress including the accumulation of misfolded mHTTx1. We further determined that knockdown or blocking the activity of IκB kinase beta (IKKβ) prevented the aggregation of mHTTx1 and subsequent IL-34 production. While elevated IL-34 itself had no effect on the aggregation or the toxicity of mHTTx1 in neuronal culture, IL-34 expression in a rodent brain slice model with intact neuron-microglial networks exacerbated mHTTx1-induced degeneration of striatal medium-sized spiny neurons. Conversely, an inhibitor of the IL-34 receptor reduced microglial numbers and ameliorated mHTTx1-mediated neurodegeneration. Together, these findings uncover a novel function for IKKβ/mHTTx1 interactions in regulating IL-34 production, and implicate a role for IL-34 in non-cell-autonomous, microglial-dependent neurodegeneration in HD.
Collapse
Affiliation(s)
- Ali Khoshnan
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adam Sabbaugh
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Steven A Marinero
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Denise E Dunn
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Ko
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Donald C Lo
- Department of Neurobiology and Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul H Patterson
- Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
56
|
Miniarikova J, Evers MM, Konstantinova P. Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Mol Ther 2018; 26:947-962. [PMID: 29503201 DOI: 10.1016/j.ymthe.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. In this review, we briefly describe short-term and long-term HTT-lowering strategies targeting HTT transcripts. One of the most advanced HTT-lowering strategies is a microRNA (miRNA)-based gene therapy delivered by a single administration of an adeno-associated viral (AAV) vector to the HD patient. We outline the outcome measures for the miRNA-based HTT-lowering therapy in the context of preclinical evaluation in HD animal and cell models. We highlight the strengths and ongoing queries of the HTT-lowering gene therapy as an HD intervention with a potential disease-modifying effect. This review provides a perspective on the fast-developing HTT-lowering therapies for HD and their translation to the clinic based on existing knowledge in preclinical models.
Collapse
Affiliation(s)
- Jana Miniarikova
- Department of Research and Development, uniQure, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure, Amsterdam, the Netherlands
| | | |
Collapse
|
57
|
Chaibva M, Gao X, Jain P, Campbell WA, Frey SL, Legleiter J. Sphingomyelin and GM1 Influence Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. ACS OMEGA 2018; 3:273-285. [PMID: 29399649 PMCID: PMC5793032 DOI: 10.1021/acsomega.7b01472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/25/2017] [Indexed: 05/09/2023]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease caused by the expansion beyond a critical threshold of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ promotes the formation of a variety of oligomeric and fibrillar aggregates of htt that accumulate into the hallmark proteinaceous inclusion bodies associated with HD. htt is also highly associated with numerous cellular and subcellular membranes that contain a variety of lipids. As lipid homeostasis and metabolism abnormalities are observed in HD patients, we investigated how varying both the sphingomyelin (SM) and ganglioside (GM1) contents modifies the interactions between htt and lipid membranes. SM composition is altered in HD, and GM1 has been shown to have protective effects in animal models of HD. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy (AFM) were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added SM or GM1. The addition of either SM or GM1 decreased htt insertion into the lipid monolayers. However, TBLE vesicles with an increased SM content were more susceptible to htt-induced permeabilization, whereas GM1 had no effect on permeablization. Pure TBLE bilayers and TBLE bilayers enriched with GM1 developed regions of roughened, granular morphologies upon exposure to htt-exon1, but plateau-like domains with a smoother appearance formed in bilayers enriched with SM. Oligomeric aggregates were observed on all bilayer systems regardless of induced morphology. Collectively, these observations suggest that the lipid composition and its subsequent effects on membrane material properties strongly influence htt binding and aggregation on lipid membranes.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Xiang Gao
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Pranav Jain
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
| | - Warren A. Campbell
- Department
of Chemistry, Gettysburg College, 300 N. Washington Avenue, Campus Box 0393, Gettysburg, Pennsylvania 17325, United States
| | - Shelli L. Frey
- Department
of Chemistry, Gettysburg College, 300 N. Washington Avenue, Campus Box 0393, Gettysburg, Pennsylvania 17325, United States
- E-mail: . Phone: 717-337-6259 (S.L.F.)
| | - Justin Legleiter
- The
C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26505, United States
- Blanchette
Rockefeller Neurosciences Institutes, West
Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, West Virginia 26505, United States
- E-mail: . Phone: 304-293-0175 (J.L.)
| |
Collapse
|
58
|
Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:349-367. [PMID: 29427113 DOI: 10.1007/978-3-319-71779-1_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machado-Joseph disease (MJD) is a dominantly inherited disorder originally described in people of Portuguese descent, and associated with the expansion of a CAG tract in the coding region of the causative gene MJD1/ATX3. The CAG repeats range from 10 to 51 in the normal population and from 55 to 87 in SCA3/MJD patients. MJD1 encodes ataxin-3, a protein whose physiological function has been linked to ubiquitin-mediated proteolysis. Despite the identification of the causative mutation, the pathogenic process leading to the neurodegeneration observed in the disease is not yet completely understood. In the past years, several studies identified different molecular mechanisms and cellular pathways as being impaired or deregulated in MJD. Autophagy, proteolysis or post-translational modifications, among other processes, were implicated in MJD pathogenesis. From these studies it was possible to identify new targets for therapeutic intervention, which in some cases proved successful in models of disease.
Collapse
|
59
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
60
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
61
|
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024240. [PMID: 27940602 DOI: 10.1101/cshperspect.a024240] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a late-onset neurodegenerative disease caused by a CAG trinucleotide repeat in the gene encoding the huntingtin protein. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Finally, we outline some of the therapeutic strategies that are currently being pursued to slow down the disease.
Collapse
Affiliation(s)
- Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Floriana Licitra
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Benjamin R Underwood
- Department of Old Age Psychiatry, Beechcroft, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
62
|
Burra G, Thakur AK. Inhibition of polyglutamine aggregation by SIMILAR huntingtin N-terminal sequences: Prospective molecules for preclinical evaluation in Huntington's disease. Biopolymers 2017; 108. [DOI: 10.1002/bip.23021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Gunasekhar Burra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur; Kanpur 208016 India
| |
Collapse
|
63
|
Chaibva M, Jawahery S, Pilkington AW, Arndt JR, Sarver O, Valentine S, Matysiak S, Legleiter J. Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding. Biophys J 2017; 111:349-362. [PMID: 27463137 DOI: 10.1016/j.bpj.2016.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ leads to htt aggregation. The first 17 amino acids (Nt(17)) in htt comprise a lipid-binding domain that undergoes a number of posttranslational modifications that can modulate htt toxicity and subcellular localization. As there are three lysines within Nt(17), we evaluated the impact of lysine acetylation on htt aggregation in solution and on model lipid bilayers. Acetylation of htt-exon1(51Q) and synthetic truncated htt-exon 1 mimicking peptides (Nt(17)-Q35-P10-KK) was achieved using a selective covalent label, sulfo-N-hydroxysuccinimide (NHSA). With this treatment, all three lysine residues (K6, K9, and K15) in Nt(17) were significantly acetylated. N-terminal htt acetylation retarded fibril formation in solution and promoted the formation of larger globular aggregates. Acetylated htt also bound lipid membranes and disrupted the lipid bilayer morphology less aggressively compared with the wild-type. Computational studies provided mechanistic insights into how acetylation alters the interaction of Nt(17) with lipid membranes. Our results highlight that N-terminal acetylation influences the aggregation of htt and its interaction with lipid bilayers.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Sudi Jawahery
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - James R Arndt
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Olivia Sarver
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Stephen Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Biophysics Program, Institute for Physical Chemistry and Technology, University of Maryland, College Park, Maryland.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia; NanoSAFE, West Virginia University, Morgantown, West Virginia; Center for Neurosciences, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
64
|
Sambataro F, Pennuto M. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases. Front Mol Neurosci 2017; 10:82. [PMID: 28408866 PMCID: PMC5374214 DOI: 10.3389/fnmol.2017.00082] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of UdineUdine, Italy
| | - Maria Pennuto
- Centre for Integrative Biology, Dulbecco Telethon Institute, University of TrentoTrento, Italy
| |
Collapse
|
65
|
Liot G, Valette J, Pépin J, Flament J, Brouillet E. Energy defects in Huntington's disease: Why “in vivo” evidence matters. Biochem Biophys Res Commun 2017; 483:1084-1095. [DOI: 10.1016/j.bbrc.2016.09.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023]
|
66
|
Chen MZ, Mok SA, Ormsby AR, Muchowski PJ, Hatters DM. N-Terminal Fragments of Huntingtin Longer than Residue 170 form Visible Aggregates Independently to Polyglutamine Expansion. J Huntingtons Dis 2017; 6:79-91. [PMID: 28339398 DOI: 10.3233/jhd-160207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND A hallmark of Huntington's disease is the progressive aggregation of full length and N-terminal fragments of polyglutamine (polyQ)-expanded Huntingtin (Htt) into intracellular inclusions. The production of N-terminal fragments appears important for enabling pathology and aggregation; and hence the direct expression of a variety of N-terminal fragments are commonly used to model HD in animal and cellular models. OBJECTIVE It remains unclear how the length of the N-terminal fragments relates to polyQ - mediated aggregation. We investigated the fundamental intracellular aggregation process of eight different-length N-terminal fragments of Htt in both short (25Q) and long polyQ (97Q). METHODS N-terminal fragments were fused to fluorescent proteins and transiently expressed in mammalian cell culture models. These included the classic exon 1 fragment (90 amino acids) and longer forms of 105, 117, 171, 513, 536, 552, and 586 amino acids based on wild-type Htt (of 23Q) sequence length nomenclature. RESULTS N-terminal fragments of less than 171 amino acids only formed inclusions in polyQ-expanded form. By contrast the longer fragments formed inclusions irrespective of Q-length, with Q-length playing a negligible role in extent of aggregation. The inclusions could be classified into 3 distinct morphological categories. One type (Type A) was universally associated with polyQ expansions whereas the other two types (Types B and C) formed independently of polyQ length expansion. CONCLUSIONS PolyQ-expansion was only required for fragments of less than 171 amino acids to aggregate. Longer fragments aggregated predominately through a non-polyQ mechanism, involving at least one, and probably more distinct clustering mechanisms.
Collapse
Affiliation(s)
- Moore Z Chen
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | - Sue-Ann Mok
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Angelique R Ormsby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| | | | - Danny M Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, Australia
| |
Collapse
|
67
|
Manta AK, Papadopoulou D, Polyzos AP, Fragopoulou AF, Skouroliakou AS, Thanos D, Stravopodis DJ, Margaritis LH. Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly (Austin) 2016; 11:75-95. [PMID: 27960592 DOI: 10.1080/19336934.2016.1270487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.
Collapse
Affiliation(s)
- Areti K Manta
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Deppie Papadopoulou
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Alexander P Polyzos
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Adamantia F Fragopoulou
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Aikaterini S Skouroliakou
- c Department of Energy Technology Engineering , Technological Educational Institute of Athens , Athens , Greece
| | - Dimitris Thanos
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Dimitrios J Stravopodis
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Lukas H Margaritis
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
68
|
Binette V, Côté S, Mousseau N. Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution. Biophys J 2016; 110:1075-88. [PMID: 26958885 DOI: 10.1016/j.bpj.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 01/17/2023] Open
Abstract
The first exon of Huntingtin-a protein with multiple biological functions whose misfolding is related to Huntington's disease-modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin's function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin's amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein.
Collapse
Affiliation(s)
- Vincent Binette
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada
| | - Sébastien Côté
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM), Université de Montréal, succursale Centre-ville, Montréal, Québec, Canada.
| |
Collapse
|
69
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
70
|
Lokhande S, Patra BN, Ray A. A link between chromatin condensation mechanisms and Huntington's disease: connecting the dots. MOLECULAR BIOSYSTEMS 2016; 12:3515-3529. [PMID: 27714015 DOI: 10.1039/c6mb00598e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Huntington's disease is a rare neurodegenerative disorder whose complex pathophysiology exhibits system-wide changes in the body, with striking and debilitating clinical features targeting the central nervous system. Among the various molecular functions affected in this disease, mitochondrial dysfunction and transcriptional dysregulation are some of the most studied aspects of this disease. However, there is evidence of the involvement of a mutant Huntingtin protein in the processes of DNA damage, chromosome condensation and DNA repair. This review attempts to briefly recapitulate the clinical features, model systems used to study the disease, major molecular processes affected, and, more importantly, examines recent evidence for the involvement of the mutant Huntingtin protein in the processes regulating chromosome condensation, leading to DNA damage response and neuronal death.
Collapse
Affiliation(s)
- Sonali Lokhande
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Biranchi N Patra
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Animesh Ray
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| |
Collapse
|
71
|
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast 2016; 2016:2701526. [PMID: 27630777 PMCID: PMC5007376 DOI: 10.1155/2016/2701526] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca(2+) influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca(2+) homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases.
Collapse
|
72
|
Malagrino PA, Venturini G, Yogi PS, Dariolli R, Padilha K, Kiers B, Gois TC, Motta-Leal-Filho JM, Takimura CK, Girardi ACC, Carnevale FC, Canevarolo R, Malheiros DMAC, de Mattos Zeri AC, Krieger JE, Pereira AC. Metabolomic characterization of renal ischemia and reperfusion in a swine model. Life Sci 2016; 156:57-67. [DOI: 10.1016/j.lfs.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
|
73
|
Krench M, Cho RW, Littleton JT. A Drosophila model of Huntington disease-like 2 exhibits nuclear toxicity and distinct pathogenic mechanisms from Huntington disease. Hum Mol Genet 2016; 25:3164-3177. [PMID: 27288455 DOI: 10.1093/hmg/ddw166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/22/2016] [Accepted: 05/20/2016] [Indexed: 12/23/2022] Open
Abstract
Huntington disease-like 2 (HDL2) and Huntington disease (HD) are adult-onset neurodegenerative diseases characterized by movement disorders, psychiatric disturbances and cognitive decline. Brain tissue from HD and HDL2 patients shows degeneration of the striatum and ubiquitinated inclusions immunoreactive for polyglutamine (polyQ) antibodies. Despite these similarities, the diseases result from different genetic mutations. HD is caused by a CAG repeat expansion in the huntingtin (HTT) gene, while HDL2 results from an expansion at the junctophilin 3 (JPH3) locus. Recent evidence indicates that the HDL2 expansion may give rise to a toxic polyQ protein translated from an antisense mRNA derived from the JPH3 locus. To investigate this hypothesis, we generated and characterized a Drosophila HDL2 model and compared it with a previously established HD model. We find that neuronal expression of HDL2-Q15 is not toxic, while the expression of an expanded HDL2-Q138 protein is lethal. HDL2-Q138 forms large nuclear aggregates, with only smaller puncta observed in the cytoplasm. This is in contrast to what is observed in a Drosophila model of HD, where polyQ aggregates localize exclusively to the cytoplasm. Altering localization of HLD2 with the addition of a nuclear localization or nuclear export sequence demonstrates that nuclear accumulation is required for toxicity in the Drosophila HDL2 model. Directing HDL2-Q138 to the nucleus exacerbates toxicity in multiple tissue types, while confining HDL2-Q138 to the cytoplasm restores viability to control levels. We conclude that while HD and HDL2 have similar clinical profiles, distinct pathogenic mechanisms are likely to drive toxicity in Drosophila models of these disorders.
Collapse
Affiliation(s)
- Megan Krench
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences
| | - Richard W Cho
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
74
|
Arndt JR, Chaibva M, Legleiter J. The emerging role of the first 17 amino acids of huntingtin in Huntington's disease. Biomol Concepts 2016; 6:33-46. [PMID: 25741791 DOI: 10.1515/bmc-2015-0001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine (polyQ) domain that is expanded beyond a critical threshold near the N-terminus of the huntingtin (htt) protein, directly leading to htt aggregation. While full-length htt is a large (on the order of ∼350 kDa) protein, it is proteolyzed into a variety of N-terminal fragments that accumulate in oligomers, fibrils, and larger aggregates. It is clear that polyQ length is a key determinant of htt aggregation and toxicity. However, the flanking sequences around the polyQ domain, such as the first 17 amino acids on the N terminus (Nt17), influence aggregation, aggregate stability, influence other important biochemical properties of the protein and ultimately its role in pathogenesis. Here, we review the impact of Nt17 on htt aggregation mechanisms and kinetics, structural properties of Nt17 in both monomeric and aggregate forms, the potential role of posttranslational modifications (PTMs) that occur in Nt17 in HD, and the function of Nt17 as a membrane targeting domain.
Collapse
|
75
|
|
76
|
Côté S, Binette V, Salnikov ES, Bechinger B, Mousseau N. Probing the Huntingtin 1-17 membrane anchor on a phospholipid bilayer by using all-atom simulations. Biophys J 2016; 108:1187-98. [PMID: 25762330 DOI: 10.1016/j.bpj.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/18/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
Mislocalization and aggregation of the huntingtin protein are related to Huntington's disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin's activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada.
| | - Vincent Binette
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada
| | - Evgeniy S Salnikov
- Université de Strasbourg/Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/Centre National de la Recherche Scientifique, UMR7177, Institut de Chimie, Strasbourg, France
| | - Normand Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
77
|
Sethi R, Patel V, Saleh AA, Roy I. Cellular toxicity of yeast prion protein Rnq1 can be modulated by N-terminal wild type huntingtin. Arch Biochem Biophys 2016; 590:82-89. [DOI: 10.1016/j.abb.2015.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 01/07/2023]
|
78
|
Gao X, Campbell WA, Chaibva M, Jain P, Leslie AE, Frey SL, Legleiter J. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. Biochemistry 2015; 55:92-102. [PMID: 26652744 DOI: 10.1021/acs.biochem.5b00900] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by abnormally long CAG-repeats in the huntingtin gene that encode an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ domains are directly correlated to disease-related htt aggregation. Htt is found highly associated with a variety of cellular and subcellular membranes that are predominantly comprised of lipids. Since cholesterol homeostasis is altered in HD, we investigated how varying cholesterol content modifies the interactions between htt and lipid membranes. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added cholesterol. As the cholesterol content of the membrane increased, the extent of htt insertion decreased. Vesicles containing extra cholesterol were resistant to htt-induced permeabilization. Morphological and mechanical changes in the bilayer associated with exposure to htt were also drastically altered by the presence of cholesterol. Disrupted regions of pure TBLE bilayers were grainy in appearance and associated with a large number of globular aggregates. In contrast, morphological changes induced by htt in bilayers enriched in cholesterol were plateau-like with a smooth appearance. Collectively, these observations suggest that the presence and amount of cholesterol in lipid membranes play a critical role in htt binding and aggregation on lipid membranes.
Collapse
Affiliation(s)
- Xiang Gao
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Warren A Campbell
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Pranav Jain
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Ashley E Leslie
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Shelli L Frey
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States.,NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States.,The Center for Neurosciences, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
79
|
Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model. Sci Rep 2015; 5:16887. [PMID: 26586297 PMCID: PMC4653614 DOI: 10.1038/srep16887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/16/2015] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin (mHtt) aggregation in the nucleus is the most readily apparent phenotype and cause of neuronal death in Huntington’s disease (HD). Inhibiting mHtt aggregation reduces cell death in the brain and is thus a promising therapeutic approach. The results of the present study demonstrated that mHtt aggregation in the nucleus was altered by the activity of multidrug resistance protein 1 (MDR1), which was experimentally modulated by verapamil, siRNA and an expression vector. MDR1 detoxifies drugs and metabolites through its excretory functions in the membrane compartment, thereby protecting cells against death or senescence. When they were treated with verapamil, R6/2 mice showed a progressive decline in rotarod performance and increased mHtt aggregation in the brain. Using neuronal stem cells from R6/2 mice, we developed an in vitro HD model to test mHtt accumulation in the nuclei of neurons. When MDR1 activity in cells was decreased by verapamil or siRNA, mHtt aggregation in the nuclei increased, whereas the induction of MDR1 resulted in a decrease in mHtt aggregation. Thus, our data provide evidence that MDR1 plays an important role in the clearance of mHtt aggregation and may thus be a potential target for improving the survival of neurons in Huntington’s disease.
Collapse
|
80
|
Xu Z, Tito AJ, Rui YN, Zhang S. Studying polyglutamine diseases in Drosophila. Exp Neurol 2015; 274:25-41. [PMID: 26257024 DOI: 10.1016/j.expneurol.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases.
Collapse
Affiliation(s)
- Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Antonio Joel Tito
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Yan-Ning Rui
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Department of Neurobiology and Anatomy, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States.
| |
Collapse
|
81
|
El-Daher MT, Hangen E, Bruyère J, Poizat G, Al-Ramahi I, Pardo R, Bourg N, Souquere S, Mayet C, Pierron G, Lévêque-Fort S, Botas J, Humbert S, Saudou F. Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J 2015; 34:2255-71. [PMID: 26165689 DOI: 10.15252/embj.201490808] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
Cleavage of mutant huntingtin (HTT) is an essential process in Huntington's disease (HD), an inherited neurodegenerative disorder. Cleavage generates N-ter fragments that contain the polyQ stretch and whose nuclear toxicity is well established. However, the functional defects induced by cleavage of full-length HTT remain elusive. Moreover, the contribution of non-polyQ C-terminal fragments is unknown. Using time- and site-specific control of full-length HTT proteolysis, we show that specific cleavages are required to disrupt intramolecular interactions within HTT and to cause toxicity in cells and flies. Surprisingly, in addition to the canonical pathogenic N-ter fragments, the C-ter fragments generated, that do not contain the polyQ stretch, induced toxicity via dilation of the endoplasmic reticulum (ER) and increased ER stress. C-ter HTT bound to dynamin 1 and subsequently impaired its activity at ER membranes. Our findings support a role for HTT on dynamin 1 function and ER homoeostasis. Proteolysis-induced alteration of this function may be relevant to disease.
Collapse
Affiliation(s)
| | - Emilie Hangen
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | - Julie Bruyère
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Inserm U836, Grenoble, France Grenoble Institut des Neurosciences, GIN University of Grenoble Alpes, Grenoble, France
| | - Ghislaine Poizat
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Raul Pardo
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | - Nicolas Bourg
- ISMO, CNRS UMR8214 University of Paris Sud, Orsay, France CPBM FR2764 University of Paris Sud, Orsay, France
| | - Sylvie Souquere
- CNRS UMR8122, Villejuif, France Institut Gustave Roussy, Villejuif, France
| | - Céline Mayet
- ISMO, CNRS UMR8214 University of Paris Sud, Orsay, France CPBM FR2764 University of Paris Sud, Orsay, France
| | - Gérard Pierron
- CNRS UMR8122, Villejuif, France Institut Gustave Roussy, Villejuif, France
| | - Sandrine Lévêque-Fort
- ISMO, CNRS UMR8214 University of Paris Sud, Orsay, France CPBM FR2764 University of Paris Sud, Orsay, France
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sandrine Humbert
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Inserm U836, Grenoble, France Grenoble Institut des Neurosciences, GIN University of Grenoble Alpes, Grenoble, France
| | - Frédéric Saudou
- Institut Curie, Orsay, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Inserm U836, Grenoble, France Grenoble Institut des Neurosciences, GIN University of Grenoble Alpes, Grenoble, France CHU de Grenoble, Grenoble, France
| |
Collapse
|
82
|
Primary cilia and autophagic dysfunction in Huntington's disease. Cell Death Differ 2015; 22:1413-24. [PMID: 26160070 DOI: 10.1038/cdd.2015.80] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD, suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic mechanisms and future directions for the field.
Collapse
|
83
|
Khan S, Ahmad K, Alshammari EMA, Adnan M, Baig MH, Lohani M, Somvanshi P, Haque S. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds. BIOMED RESEARCH INTERNATIONAL 2015; 2015:379817. [PMID: 26064904 PMCID: PMC4434175 DOI: 10.1155/2015/379817] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/27/2022]
Abstract
Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads) mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Saif Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Khurshid Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Eyad M. A. Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mohd Hassan Baig
- School of Biotechnology, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Mohtashim Lohani
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI University, New Delhi 110070, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
84
|
Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2179-88. [PMID: 25931812 PMCID: PMC4404937 DOI: 10.2147/dddt.s58470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huntington’s disease (HD) is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner.
Collapse
Affiliation(s)
- Renbao Chang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xudong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China ; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
85
|
Wong BKY, Ehrnhoefer DE, Graham RK, Martin DDO, Ladha S, Uribe V, Stanek LM, Franciosi S, Qiu X, Deng Y, Kovalik V, Zhang W, Pouladi MA, Shihabuddin LS, Hayden MR. Partial rescue of some features of Huntington Disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiol Dis 2015; 76:24-36. [PMID: 25583186 DOI: 10.1016/j.nbd.2014.12.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/13/2022] Open
Abstract
Huntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif. Activation of Casp6 occurs presymptomatically in human HD patients and the inhibition of mHTT proteolysis at aa586 in the YAC128 mouse model results in the full rescue of HD-like phenotypes. Surprisingly, Casp6 ablation in two different HD mouse models did not completely prevent the generation of this fragment, and therapeutic benefits were limited, questioning the role of Casp6 in the disease. We have evaluated the impact of the loss of Casp6 in the YAC128 mouse model of HD. Levels of the mHTT-586 fragment are reduced but not absent in the absence of Casp6 and we identify caspase 8 as an alternate enzyme that can generate this fragment. In vivo, the ablation of Casp6 results in a partial rescue of body weight gain, normalized IGF-1 levels, a reversal of the depression-like phenotype and decreased HTT levels. In the YAC128/Casp6-/- striatum there is a concomitant reduction in p62 levels, a marker of autophagic activity, suggesting increased autophagic clearance. These results implicate the HTT-586 fragment as a key contributor to certain features of HD, irrespective of the enzyme involved in its generation.
Collapse
Affiliation(s)
- Bibiana K Y Wong
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rona K Graham
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Research Center on Aging, Department of Physiology and Biophysics, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Safia Ladha
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Valeria Uribe
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lisa M Stanek
- Genzyme, a Sanofi Company, Framingham, MA 01701, USA
| | - Sonia Franciosi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Xiaofan Qiu
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yu Deng
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Vlad Kovalik
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Weining Zhang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Mahmoud A Pouladi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, 138648, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 138648, Singapore
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
86
|
Figiel M, Krzyzosiak WJ, Switonski PM, Szlachcic WJ. Mouse Models of SCA3 and Other Polyglutamine Repeat Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
87
|
Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington's disease. Sci Signal 2014; 7:ra103. [DOI: 10.1126/scisignal.2005633] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
88
|
Hoffner G, Djian P. Polyglutamine Aggregation in Huntington Disease: Does Structure Determine Toxicity? Mol Neurobiol 2014; 52:1297-1314. [PMID: 25336039 DOI: 10.1007/s12035-014-8932-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/09/2014] [Indexed: 01/14/2023]
Abstract
Huntington disease is a dominantly inherited disease of the central nervous system. The mutational expansion of polyglutamine beyond a critical length produces a toxic gain of function in huntingtin and results in neuronal death. In the course of the disease, expanded huntingtin is proteolyzed, becomes abnormally folded, and accumulates in oligomers, fibrils, and microscopic inclusions. The aggregated forms of the expanded protein are structurally diverse. Structural heterogeneity may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective. When defined, the toxic structures could then specifically be targeted by prophylactic or therapeutic drugs aimed at inhibiting polyglutamine aggregation.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France
| | - Philippe Djian
- Laboratoire de Physiologie Cérébrale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006, Paris, France.
| |
Collapse
|
89
|
Barbaro BA, Lukacsovich T, Agrawal N, Burke J, Bornemann DJ, Purcell JM, Worthge SA, Caricasole A, Weiss A, Song W, Morozova OA, Colby DW, Marsh JL. Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington's disease. Hum Mol Genet 2014; 24:913-25. [PMID: 25305076 DOI: 10.1093/hmg/ddu504] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although Huntington's disease is caused by the expansion of a CAG triplet repeat within the context of the 3144-amino acid huntingtin protein (HTT), studies reveal that N-terminal fragments of HTT containing the expanded PolyQ region can be produced by proteolytic processing and/or aberrant splicing. N-terminal HTT fragments are also prevalent in postmortem tissue, and expression of some of these fragments in model organisms can cause pathology. This has led to the hypothesis that N-terminal peptides may be critical modulators of disease pathology, raising the possibility that targeting aberrant splicing or proteolytic processing may present attractive therapeutic targets. However, many factors can contribute to pathology, including genetic background and differential expression of transgenes, in addition to intrinsic differences between fragments and their cellular effects. We have used Drosophila as a model system to determine the relative toxicities of different naturally occurring huntingtin fragments in a system in which genetic background, transgene expression levels and post-translational proteolytic processing can be controlled. These studies reveal that among the naturally occurring N-terminal HTT peptides, the exon 1 peptide is exceptionally pathogenic and exhibits unique structural and biophysical behaviors that do not appear to be incremental changes compared with other fragments. If this proves correct, efforts to specifically reduce the levels of exon 1 peptides or to target toxicity-influencing post-translational modifications that occur with the exon 1 context are likely to have the greatest impact on pathology.
Collapse
Affiliation(s)
- Brett A Barbaro
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | - Tamas Lukacsovich
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | - Namita Agrawal
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA, Department of Zoology, University of Delhi, Delhi 110007, India
| | - John Burke
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | - Doug J Bornemann
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | - Judith M Purcell
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | - Shane A Worthge
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | | | | | - Wan Song
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA
| | - Olga A Morozova
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - David W Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine 92697, USA,
| |
Collapse
|
90
|
From pathways to targets: understanding the mechanisms behind polyglutamine disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:701758. [PMID: 25309920 PMCID: PMC4189765 DOI: 10.1155/2014/701758] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/03/2014] [Indexed: 12/27/2022]
Abstract
The history of polyglutamine diseases dates back approximately 20 years to the discovery of a polyglutamine repeat in the androgen receptor of SBMA followed by the identification of similar expansion mutations in Huntington's disease, SCA1, DRPLA, and the other spinocerebellar ataxias. This common molecular feature of polyglutamine diseases suggests shared mechanisms in disease pathology and neurodegeneration of disease specific brain regions. In this review, we discuss the main pathogenic pathways including proteolytic processing, nuclear shuttling and aggregation, mitochondrial dysfunction, and clearance of misfolded polyglutamine proteins and point out possible targets for treatment.
Collapse
|
91
|
Li X, Wang J. Maintenance of chaperone-mediated autophagy activity in cultured cells expressing mutant huntingtin. Biomed Rep 2014; 2:529-532. [PMID: 24944802 DOI: 10.3892/br.2014.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by mutant huntingtin (Htt) with an expanded polyglutamine tract. It has been reported that Htt regulates autophagy. However, it remains unclear whether mutant Htt affects chaperone-mediated autophagy (CMA). Our study aimed to investigate the effect of mutant Htt on CMA activity in cultured HEK293T cells. A HEK293T cell model of HD was produced by transient transfection of wild-type (20Q) or mutant (120Q) Htt plasmids. The effect of mutant Htt on two CMA components, lysosomal-associated membrane protein 2a (Lamp2a) and heat-shock cognate protein 70 (Hsc70), was determined by western blotting and immunofluorescent staining. We observed that mutant Htt did not significantly alter the expression of Lamp2a and Hsc70 when compared to normal Htt. These findings suggest that mutant Htt does not reduce CMA activity and that enhancing CMA activity to clear mutant Htt may be a novel strategy for the management of HD.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medical Genetics and Cell Biology, Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330046, P.R. China ; Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jianbin Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
92
|
Evers MM, Toonen LJA, van Roon-Mom WMC. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 2014; 49:1513-31. [PMID: 24293103 PMCID: PMC4012159 DOI: 10.1007/s12035-013-8596-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023]
Abstract
Ataxin-3 is a ubiquitously expressed deubiqutinating enzyme with important functions in the proteasomal protein degradation pathway and regulation of transcription. The C-terminus of the ataxin-3 protein contains a polyglutamine (PolyQ) region that, when mutationally expanded to over 52 glutamines, causes the neurodegenerative disease spinocerebellar ataxia 3 (SCA3). In spite of extensive research, the molecular mechanisms underlying the cellular toxicity resulting from mutant ataxin-3 remain elusive and no preventive treatment is currently available. It has become clear over the last decade that the hallmark intracellular ataxin-3 aggregates are likely not the main toxic entity in SCA3. Instead, the soluble PolyQ containing fragments arising from proteolytic cleavage of ataxin-3 by caspases and calpains are now regarded to be of greater influence in pathogenesis. In addition, recent evidence suggests potential involvement of a RNA toxicity component in SCA3 and other PolyQ expansion disorders, increasing the pathogenic complexity. Herein, we review the functioning of ataxin-3 and the involvement of known protein and RNA toxicity mechanisms of mutant ataxin-3 that have been discovered, as well as future opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Melvin M. Evers
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Lodewijk J. A. Toonen
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Willeke M. C. van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
93
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
94
|
Chaibva M, Burke KA, Legleiter J. Curvature enhances binding and aggregation of huntingtin at lipid membranes. Biochemistry 2014; 53:2355-65. [PMID: 24670006 DOI: 10.1021/bi401619q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Huntington disease (HD) is a genetic neurodegenerative disease caused by an expanded polyglutamine (polyQ) domain in the first exon of the huntingtin (Htt) protein, facilitating its aggregation. Htt interacts with a variety of membraneous structures within the cell, and the first 17 amino acids (Nt17) of Htt directly flanking the polyQ domain comprise an amphiphathic α-helix (AH) lipid-binding domain. AHs are also known to detect membrane curvature. To determine if Htt exon 1 preferentially binds curved membranes, in situ atomic force microscopy (AFM) studies were performed. Supported lipid bilayers are commonly used as model membranes for AFM studies of protein aggregation. However, these supported bilayers usually lack curvature. By forming a bilayer on top of silica nanobeads (50 ± 10 nm) deposited on a silicon substrate, model supported lipid bilayers with flat and curved regions were developed for AFM studies. The presence of the bilayer over the beads was validated by continual imaging of the formation of the bilayer, height measurements, and spatially resolved mechanical measurements of the resulting bilayer using scanning probe acceleration microscopy. Interpretation of this data was facilitated by numerical simulations of the entire imaging process. The curved supported bilayers associated with the beads were found to be more compliant than flat supported bilayers, consistent with the altered packing density of lipids caused by the induced curvature. This model bilayer system was exposed to a synthetic truncated Htt exon 1 peptide (Nt17Q35P10KK), and this peptide preferentially accumulated on curved membranes, consistent with the ability of AHs to sense membrane curvature.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26505, United States
| | | | | |
Collapse
|
95
|
Gladding CM, Fan J, Zhang LYJ, Wang L, Xu J, Li EHY, Lombroso PJ, Raymond LA. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem 2014; 130:145-59. [PMID: 24588402 DOI: 10.1111/jnc.12700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 01/29/2023]
Abstract
Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre-symptomatic (excitotoxin-sensitive) transgenic mice expressing full-length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex-NMDAR) localization and signaling. Furthermore, Ex-NMDAR stimulation facilitates excitotoxicity in wild-type cortical neurons via calpain-mediated cleavage of STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen-activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain-mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal-regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6-week-old, excitotoxin-sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA-induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR-post-synaptic density protein-95 (PSD-95) binding but not by calpain inhibition. In 1-year-old excitotoxin-resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR-PSD-95 interactions contributes to elevated p38 signaling in early, excitotoxin-sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin-resistant stages. The YAC128 Huntington's disease mouse model shows early, enhanced susceptibility to NMDA receptor-mediated striatal apoptosis, progressing to late-stage excitotoxicity resistance. This study shows that elevated NMDA receptor-PSD-95 interactions as well as decreased extrasynaptic STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) activation may contribute to early enhanced apoptotic signaling. In late-stage YAC128 mice, reduced STEP61 levels and activity correlate with elevated MAPK signaling, consistent with excitotoxicity resistance. Solid and dotted arrows indicate conclusions drawn from the current study and other literature, respectively.
Collapse
Affiliation(s)
- Clare M Gladding
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Identification of Novel Alternative Splicing Events in the Huntingtin Gene and Assessment of the Functional Consequences Using Structural Protein Homology Modelling. J Mol Biol 2014; 426:1428-38. [DOI: 10.1016/j.jmb.2013.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 11/20/2022]
|
97
|
Kim S, Kim KT. Therapeutic Approaches for Inhibition of Protein Aggregation in Huntington's Disease. Exp Neurobiol 2014; 23:36-44. [PMID: 24737938 PMCID: PMC3984955 DOI: 10.5607/en.2014.23.1.36] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease (HD) is a late-onset and progressive neurodegenerative disorder that is caused by aggregation of mutant huntingtin protein which contains expanded-polyglutamine. The molecular chaperones modulate the aggregation in early stage and known for the most potent protector of neurodegeneration in animal models of HD. Over the past decades, a number of studies have demonstrated molecular chaperones alleviate the pathogenic symptoms by polyQ-mediated toxicity. Moreover, chaperone-inducible drugs and anti-aggregation drugs have beneficial effects on symptoms of disease. Here, we focus on the function of molecular chaperone in animal models of HD, and review the recent therapeutic approaches to modulate expression and turn-over of molecular chaperone and to develop anti-aggregation drugs.
Collapse
Affiliation(s)
- Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea. ; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
98
|
Liman J, Deeg S, Voigt A, Voßfeldt H, Dohm CP, Karch A, Weishaupt J, Schulz JB, Bähr M, Kermer P. CDK5 protects from caspase-induced Ataxin-3 cleavage and neurodegeneration. J Neurochem 2014; 129:1013-23. [PMID: 24548080 DOI: 10.1111/jnc.12684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is one of at least nine inherited neurodegenerative diseases caused by an expansion of a polyglutamine tract within corresponding disease-specific proteins. In case of SCA3, mutation of Ataxin-3 results in aggregation of misfolded protein, formation of intranuclear as well as cytosolic inclusion bodies and cell death in distinct neuronal populations. Since cyclin-dependent kinase-5 (CDK5) has been shown to exert beneficial effects on aggregate formation and cell death in various polyglutamine diseases, we tested its therapeutic potential for SCA3. Our data show increased caspase-dependent Ataxin-3 cleavage, aggregation, and neurodegeneration in the absence of sufficient CDK5 activity. This disease-propagating effect could be reversed by mutation of the caspase cleavage site in Ataxin-3. Moreover, reduction of CDK5 expression levels by RNAi in vivo enhances SCA3 toxicity as assayed in a Drosophila model for SCA3. In summary, we present CDK5 as a potent neuroprotectant, regulating cleavage and thereby toxicity of Ataxin-3 and other polyglutamine proteins. We propose that increased caspase-dependent cleavage of mutated Ataxin-3, because of missing CDK5 shielding, leads to aggregation and cell death. Moreover, reduction of CDK5 expression levels by RNAi in vivo enhances SCA3 toxicity as assayed in a Drosophila model for SCA3. We think that CDK5 functions as a shield against cleavage-induced toxification and thereby is an interesting target for therapeutic intervention in polyQ disease in general.
Collapse
Affiliation(s)
- Jan Liman
- Department of Neurology, University of Göttingen, Göttingen, Germany; Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Hoffner G, Djian P. Monomeric, oligomeric and polymeric proteins in huntington disease and other diseases of polyglutamine expansion. Brain Sci 2014; 4:91-122. [PMID: 24961702 PMCID: PMC4066239 DOI: 10.3390/brainsci4010091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 01/03/2023] Open
Abstract
Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causative protein is proteolyzed, becomes abnormally folded and accumulates in oligomers and larger aggregates. The aggregated and possibly the monomeric expanded polyglutamine are likely to play a critical role in the pathogenesis and there is increasing evidence that the secondary structure of the protein influences its toxicity. We describe here, with special attention to huntingtin, the mechanisms of polyglutamine aggregation and the modulation of aggregation by the sequences flanking the polyglutamine. We give a comprehensive picture of the characteristics of monomeric and aggregated polyglutamine, including morphology, composition, seeding ability, secondary structure, and toxicity. The structural heterogeneity of aggregated polyglutamine may explain why polyglutamine-containing aggregates could paradoxically be either toxic or neuroprotective.
Collapse
Affiliation(s)
- Guylaine Hoffner
- Génétique moléculaire et défense antivirale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| | - Philippe Djian
- Génétique moléculaire et défense antivirale, Centre National de la Recherche Scientifique, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
100
|
Dau A, Gladding CM, Sepers MD, Raymond LA. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis 2014; 62:533-42. [DOI: 10.1016/j.nbd.2013.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022] Open
|