51
|
DAVEREY AMITA, MYTTY AUSTINC, KIDAMBI SRIVATSAN. TOPOGRAPHY MEDIATED REGULATION OF HER-2 EXPRESSION IN BREAST CANCER CELLS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984412410097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This article demonstrates that the surface micro-topography regulates the biology of breast cancer cells, including the expression of HER-2 gene and protein. The breast tumor microenvironment is made up of heterogenous mixture of pores, ridges and collagen fibers with well defined topographical features. Although, significant progress has been achieved towards elucidating the biochemical and molecular mechanisms that underlie breast cancer progression, quantitative characterization of the associated mechanical/topographical properties and their role in breast tumor progression remains largely unexplored. Therefore, the aim of this study is to investigate the effect of topography on the adhesion and biology of breast cancer cells in in vitro cultures. Polydimethylsiloxane (PDMS) surfaces containing different topographies were coated with polyelectrolyte multilayers (PEMs) to improve cell adhesion and maintain cell culture. HER-2 expressing breast cancer cells, BT-474 and SKBr3, were cultured on these PDMS surfaces. We demonstrate that micro-topography affects the cell adhesion and distribution depending on the topography on the PDMS surfaces. We also report for the first time that surface topography down-regulates the HER-2 gene transcription and protein expression in breast cancer cells when cultured on PDMS surfaces with micro-topographies compared to the tissue culture polystyrene surface (TCPS) control. Results from this study indicate that micro-topography modulates morphology of cells, their distribution and expression of HER-2 gene and protein in breast cancer cells. This study provides a novel platform for studying the role of native topography in the progression of breast cancer and has immense potential for understanding the breast cancer biology.
Collapse
Affiliation(s)
- AMITA DAVEREY
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE-68588-0643, United States
| | - AUSTIN C. MYTTY
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE-68588-0643, United States
| | - SRIVATSAN KIDAMBI
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE-68588-0643, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE-68512, United States
| |
Collapse
|
52
|
Lee SJ, Yang S. Micro glass ball embedded gels to study cell mechanobiological responses to substrate curvatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:094302. [PMID: 23020396 DOI: 10.1063/1.4751869] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effects of substrate stiffness on cell behaviors have been extensively studied; however, the effects of substrate curvature are not well documented. The curvature of the surface to which cells adhere can have profound effects on cell behaviors. To reveal these cell mechanobiological responses to substrate curvatures, here we introduce a novel, unique, simple, and flexible class of substrates, polyacrylamide gels embedded with micro glass balls ranging in diameter from 5 μm to 2 mm, to culture cells. NIH-3T3 fibroblasts were cultured on these glass ball embedded gels. Morphologies of cells growing on glass balls were analyzed by using an optical microscope and a 3D confocal laser scanning microscope. The cell behaviors on micro cylindrical glass tubes having similar diameters to the glass balls were also compared. It is observed that the fibroblasts were sensitive to the curvatures of the glass balls. Significant differences in cell attachment rate, migration speed, and morphology were noted for cells cultured on glass balls of diameters at or below 500 μm, compared to those on glass balls of larger diameters. Cell spread area increased as a function of the ball diameter with three different slopes in the three distinct regions depending on the ball diameter. To the best of our knowledge, this is the first experimental attempt to study cell responses to spherically shaped substrates. These cell culture experiments imply that this class of substrates, micro glass ball embedded gels, can be useful tools to study cell mechanobiological responses to substrate curvatures, related cell and tissue engineering researches, and biomedical applications.
Collapse
Affiliation(s)
- Sang Joo Lee
- Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA
| | | |
Collapse
|
53
|
Isaeva VV, Kasyanov NV, Presnov EV. Topological singularities and symmetry breaking in development. Biosystems 2012; 109:280-98. [PMID: 22609746 DOI: 10.1016/j.biosystems.2012.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 11/18/2022]
Abstract
The review presents a topological interpretation of some morphogenetic events through the use of well-known mathematical concepts and theorems. Spatial organization of the biological fields is analyzable in topological terms. Topological singularities inevitably emerging in biological morphogenesis are retained and transformed during pattern formation. It is the topological language that can provide strict and adequate description of various phenomena in developmental and evolutionary transformations. The relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. A topological inevitability of some developmental events through the use of classical topological concepts is discussed. This methodology reveals a topological imperative as a certain set of topological rules that constrains and directs embryogenesis. A breaking of spatial symmetry of preexisting pattern plays a critical role in biological morphogenesis in development and evolution.
Collapse
Affiliation(s)
- Valeria V Isaeva
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Science, 119071 Moscow, Russia.
| | | | | |
Collapse
|
54
|
Vernerey FJ, Foucard L, Farsad M. Bridging the Scales to Explore Cellular Adaptation and Remodeling. BIONANOSCIENCE 2011. [DOI: 10.1007/s12668-011-0013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Calzado-Martín A, Méndez-Vilas A, Multigner M, Saldaña L, González-Carrasco JL, González-Martín ML, Vilaboa N. On the role of RhoA/ROCK signaling in contact guidance of bone-forming cells on anisotropic Ti6Al4V surfaces. Acta Biomater 2011; 7:1890-901. [PMID: 21115140 DOI: 10.1016/j.actbio.2010.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 12/13/2022]
Abstract
Patterned surfaces direct cell spatial dynamics, yielding cells oriented along the surface geometry, in a process known as contact guidance. The Rho family of GTPases controls the assembly of focal adhesions and cytoskeleton dynamics, but its role in modulating bone-cell alignment on patterned surfaces remains unknown. This article describes the interactions of two human cell types involved in osseointegration, specifically mesenchymal stem cells and osteoblasts, with submicron- or nano-scale Ti6Al4V grooved surfaces generated by mechanical abrasion. The surface chemistry of the alloy was not affected by grinding, ensuring that the differences found in cellular responses were exclusively due to changes in topography. Patterned surfaces supported cell growth and stimulated mesenchymal stem cell viability. Anisotropic surfaces promoted cell orientation and elongation along the grates. Both cell types oriented on nanometric surfaces with grooves of 150 nm depth and 2 μm width. The number of aligned cells increased by approximately 30% on submicrometric grooves with sizes of about 1 μm depth and 10 μm width. Cells were treated with drugs that attenuate the activities of the GTPase RhoA and one of its downstream effectors, Rho-associated kinase (ROCK), and contact guidance of treated cells on the grooved surfaces was investigated. The data indicate that the RhoA/ROCK pathway is a key modulator of both mesenchymal stem cell and osteoblast orientation on nanometric surface features. RhoA and its effector participate in the alignment of mesenchymal stem cells on submicrometric grooves, but not of osteoblasts. These findings show that RhoA/ROCK signaling is involved in contact guidance of bone-related cells on metallic substrates, although to a varying extent depending on the specific cell type and the dimensions of the pattern.
Collapse
|
56
|
Abstract
The responses of cells to chemical signals are relatively well characterized and understood. Cells also respond to mechanical signals in the form of externally applied force and forces generated by cell-matrix and cell-cell contacts. Many features of cell function that are generally considered to be under the control of chemical stimuli, such as motility, proliferation, differentiation and survival, can also be altered by changes in the stiffness of the substrate to which the cells are adhered, even when their chemical environment remains unchanged. Many examples from clinical and whole animal studies have shown that changes in tissue stiffness are related to specific disease characteristics and that efforts to restore normal tissue mechanics have the potential to reverse or prevent cell dysfunction and disease. How cells detect stiffness is largely unknown, but the cellular structures that measure stiffness and the general principles by which they work are beginning to be revealed. This Commentary highlights selected recent reports of mechanical signaling during disease development, discusses open questions regarding the physical mechanisms by which cells sense stiffness, and examines the relationship between studies in vitro on flat substrates and the more complex three-dimensional setting in vivo.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, PA 19104, USA.
| | | |
Collapse
|
57
|
Azeloglu EU, Costa KD. Atomic force microscopy in mechanobiology: measuring microelastic heterogeneity of living cells. Methods Mol Biol 2011; 736:303-29. [PMID: 21660735 DOI: 10.1007/978-1-61779-105-5_19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent findings clearly demonstrate that cells feel mechanical forces, and respond by altering their -phenotype and modulating their mechanical environment. Atomic force microscope (AFM) indentation can be used to mechanically stimulate cells and quantitatively characterize their elastic properties, providing critical information for understanding their mechanobiological behavior. This review focuses on the experimental and computational aspects of AFM indentation in relation to cell biomechanics and pathophysiology. Key aspects of the indentation protocol (including preparation of substrates, selection of indentation parameters, methods for contact point detection, and further post-processing of data) are covered. Historical perspectives on AFM as a mechanical testing tool as well as studies of cell mechanics and physiology are also highlighted.
Collapse
Affiliation(s)
- Evren U Azeloglu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
58
|
Ambravaneswaran V, Wong IY, Aranyosi AJ, Toner M, Irimia D. Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr Biol (Camb) 2010; 2:639-47. [PMID: 20676444 PMCID: PMC3001269 DOI: 10.1039/c0ib00011f] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The directional migration of human neutrophils in classical chemotaxis assays is often described as a "biased random walk" implying significant randomness in speed and directionality. However, these experiments are inconsistent with in vivo observations, where neutrophils can navigate effectively through complex tissue microenvironments towards their targets. Here, we demonstrate a novel biomimetic assay for neutrophil chemotaxis using enclosed microfluidic channels. Remarkably, under these enclosed conditions, neutrophils recapitulate the highly robust and efficient navigation observed in vivo. In straight channels, neutrophils undergo sustained, unidirectional motion towards a chemoattractant source. In more complex maze-like geometries, neutrophils are able to select the most direct route over 90% of the time. Finally, at symmetric bifurcations, neutrophils split their leading edge into two sections and a "tug of war" ensues. The competition between the two new leading edges is ultimately resolved by stochastic, symmetry-breaking behavior. This behavior is suggestive of directional decision-making localized at the leading edge and a signaling role played by the cellular cytoskeleton.
Collapse
Affiliation(s)
- Vijayakrishnan Ambravaneswaran
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Ian Y Wong
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Alexander J Aranyosi
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| | - Daniel Irimia
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02129
| |
Collapse
|
59
|
|
60
|
Bayless KJ, Kwak HI, Su SC. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat Protoc 2009; 4:1888-98. [DOI: 10.1038/nprot.2009.221] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
61
|
Abstract
Cells are mechanical as well as chemical machines, and much of the energy they consume is used to apply forces to each other and to the extracellular matrix around them. The cytoskeleton, the cell membrane, and the macromolecules composing the extracellular matrix form networks that in concert with the forces generated by the cell create dynamic materials with viscoelastic properties unique to each tissue. Numerous recent studies suggest that the forces that cells create and are subjected to, as well as the mechanical properties of the materials to which they adhere, can have large effects on cell structure and function that can act in concert with or override signals from soluble stimuli. This brief review summarizes recent studies of the effects of substrate mechanics on cell motility, differentiation, and proliferation, and discusses possible mechanisms by which a cell can probe the stiffness of its surroundings. Cell Motil. Cytoskeleton, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
62
|
Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 2009; 10:538-49. [PMID: 19603038 DOI: 10.1038/nrm2729] [Citation(s) in RCA: 699] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Directional migration is an important component of cell motility. Although the basic mechanisms of random cell movement are well characterized, no single model explains the complex regulation of directional migration. Multiple factors operate at each step of cell migration to stabilize lamellipodia and maintain directional migration. Factors such as the topography of the extracellular matrix, the cellular polarity machinery, receptor signalling, integrin trafficking, integrin co-receptors and actomyosin contraction converge on regulation of the Rho family of GTPases and the control of lamellipodial protrusions to promote directional migration.
Collapse
Affiliation(s)
- Ryan J Petrie
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA. e-mails:
| | | | | |
Collapse
|
63
|
Doyle AD, Wang FW, Matsumoto K, Yamada KM. One-dimensional topography underlies three-dimensional fibrillar cell migration. ACTA ACUST UNITED AC 2009; 184:481-90. [PMID: 19221195 PMCID: PMC2654121 DOI: 10.1083/jcb.200810041] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current concepts of cell migration were established in regular two-dimensional (2D) cell culture, but the roles of topography are poorly understood for cells migrating in an oriented 3D fibrillar extracellular matrix (ECM). We use a novel micropatterning technique termed microphotopatterning (μPP) to identify functions for 1D fibrillar patterns in 3D cell migration. In striking contrast to 2D, cell migration in both 1D and 3D is rapid, uniaxial, independent of ECM ligand density, and dependent on myosin II contractility and microtubules (MTs). 1D and 3D migration are also characterized by an anterior MT bundle with a posterior centrosome. We propose that cells migrate rapidly through 3D fibrillar matrices by a 1D migratory mechanism not mimicked by 2D matrices.
Collapse
Affiliation(s)
- Andrew D Doyle
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
64
|
Bray MA, Sheehy SP, Parker KK. Sarcomere alignment is regulated by myocyte shape. ACTA ACUST UNITED AC 2008; 65:641-51. [PMID: 18561184 DOI: 10.1002/cm.20290] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiac organogenesis and pathogenesis are both characterized by changes in myocyte shape, cytoskeletal architecture, and the extracellular matrix (ECM). However, the mechanisms by which the ECM influences myocyte shape and myofibrillar patterning are unknown. We hypothesized that geometric cues in the ECM align sarcomeres by directing the actin network orientation. To test our hypothesis, we cultured neonatal rat ventricular myocytes on islands of micro-patterned ECM to measure how they remodeled their cytoskeleton in response to extracellular cues. Myocytes spread and assumed the shape of circular and rectangular islands and reorganized their cytoskeletons and myofibrillar arrays with respect to the ECM boundary conditions. Circular myocytes did not assemble predictable actin networks nor organized sarcomere arrays. In contrast, myocytes cultured on rectangular ECM patterns with aspect ratios ranging from 1:1 to 7:1 aligned their sarcomeres in predictable and repeatable patterns based on highly localized focal adhesion complexes. Examination of averaged alpha-actinin images revealed invariant sarcomeric registration irrespective of myocyte aspect ratio. Since the sarcomere sub-units possess a fixed length, this observation indicates that cytoskeleton configuration is length-limited by the extracellular boundary conditions. These results indicate that modification of the extracellular microenvironment induces dynamic reconfiguring of the myocyte shape and intracellular architecture. Furthermore, geometric boundaries such as corners induce localized myofibrillar anisotropy that becomes global as the myocyte aspect ratio increases.
Collapse
Affiliation(s)
- Mark-Anthony Bray
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
65
|
Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, Oreffo ROC. Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J R Soc Interface 2008; 5:1055-65. [PMID: 18270147 PMCID: PMC2607434 DOI: 10.1098/rsif.2008.0016] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The understanding of cellular response to the shape of their environment would be of benefit in the development of artificial extracellular environments for potential use in the production of biomimetic surfaces. Specifically, the understanding of how cues from the extracellular environment can be used to understand stem cell differentiation would be of special interest in regenerative medicine. In this paper, the genetic profile of mesenchymal stem cells cultured on two osteogenic nanoscale topographies (pitted surface versus raised islands) are compared with cells treated with dexamethasone, a corticosteroid routinely used to stimulate bone formation in culture from mesenchymal stem cells, using 19k gene microarrays as well as 101 gene arrays specific for osteoblast and endothelial biology. The current studies show that by altering the shape of the matrix a cell response (genomic profile) similar to that achieved with chemical stimulation can be elicited. Here, we show that bone formation can be achieved with efficiency similar to that of dexamethasone with the added benefit that endothelial cell development is not inhibited. We further show that the mechanism of action of the topographies and dexamethasone differs. This could have an implication for tissue engineering in which a simultaneous, targeted, development of a tissue, such as bone, without the suppression of angiogenesis to supply nutrients to the new tissue is required. The results further demonstrate that perhaps the shape of the extracellular matrix is critical to tissue development.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
66
|
Dalby MJ, Gadegaard N, Wilkinson CDW. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J Biomed Mater Res A 2008; 84:973-9. [PMID: 17647239 DOI: 10.1002/jbm.a.31409] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been known for many years that cells will react to the shape of their microenvironment. It is more recently becoming clear that cells can alter their morphology, adhesions, and cytoskeleton in response to their nanoenvironment. A few studies have gone further and measured cellular response to high-adhesion nanomaterials. There have, however, been practical difficulties associated with genomic studies focusing on low-adhesion nanotopographies. Because of advancement in fabrication techniques allowing the production of large area of structure and the ability to amplify mRNA prior to microarray hybridization, these difficulties can be overcome. Here, electron beam lithography has been used to fabricate arrays of pits with 120 nm diameters, 100 nm depth and 300 nm center to center spacing in hexagonal arrangement. Electron and fluorescent microscopies have been used to observe morphological changes in fibroblasts cultured on the pits. 1.7k gene microarray was used to gauge genomic response to the pits. The results show reduction in cellular adhesion, decrease in spreading, and a broad genomic down-regulation. Also noted was an increase in endocytotic activity in cells on the pits.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom.
| | | | | |
Collapse
|
67
|
Tymchenko N, Wallentin J, Petronis S, Bjursten LM, Kasemo B, Gold J. A novel cell force sensor for quantification of traction during cell spreading and contact guidance. Biophys J 2007; 93:335-45. [PMID: 17434936 PMCID: PMC1914417 DOI: 10.1529/biophysj.106.093302] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this work, we present a ridged, microfabricated, force sensor that can be used to investigate mechanical interactions between cells exhibiting contact guidance and the underlying cell culture substrate, and a proof-of-function evaluation of the force sensor performance. The substrates contain arrays of vertical pillars between solid ridges that were microfabricated in silicon wafers using photolithography and deep reactive ion etching. The spring constant of the pillars was measured by atomic force microscopy. For time-lapse experiments, cells were seeded on the pillared substrates and cultured in an on-stage incubator on a microscope equipped with reflected differential interference contrast optics. Endothelial cells (ECs) and fibroblasts were observed during attachment, spreading, and migration. Custom image analysis software was developed to resolve cell borders, cell alignment to the pillars and migration, displacements of individual pillars, and to quantify cell traction forces. Contact guidance classification was based on cell alignment and movement angles with respect to microfabricated ridges, as well as cell elongation. In initial investigations made with the ridged cell force sensor, we have observed contact guidance in ECs but not in fibroblast cells. A difference in maximal amplitude of mechanical forces was observed between a contact-guided and non-contact-guided, but mobile, EC. However, further experiments are required to determine the statistical significance of this observation. By chance, we observed another feature of cell behavior, namely a reversion of cell force direction. The direction of forces measured under rounded fibroblast cells changed from outwards during early cell attachment to inwards during further observation of the spreading phase. The range of forces measured under fibroblasts (up to 138 nN) was greater than that measured in EC (up to 57 nN), showing that the rigid silicon sensor is capable of resolving a large range of forces, and hence detection of differences in traction forces between cell types. These observations indicate proof-of-function of the ridged cell force sensor to induce contact guidance, and that the pillared cell force sensor constructed in rigid silicon has the necessary sensitivity to detect differences in traction force vectors between different cell phenotypes and morphologies.
Collapse
Affiliation(s)
- N Tymchenko
- Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
68
|
Dalby MJ, Biggs MJP, Gadegaard N, Kalna G, Wilkinson CDW, Curtis ASG. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem 2007; 100:326-38. [PMID: 16888806 DOI: 10.1002/jcb.21058] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We apply a recently developed method for controlling the spreading of cultured cells using electron beam lithography (EBL) to create polymethylmethacrylate (PMMA) substrata with repeating nanostructures. There are indications that the reduced cell spreading on these substrata, compared with planar PMMA, results from a reduced adhesivity since there are fewer adhesive structures and fewer of their associated stress fibres. The reduced cell spreading also results in a reduced nuclear area and a closer spacing of centrosomes within the nucleus, suggesting that the tension applied to the nucleus is reduced as would be expected from the reduction in stress fibres. In order to obtain further evidence for this, we have used specific inhibitors of components of the cytoskeleton and have found effects comparable with those induced by the new substrata. We have also obtained evidence that these subtrata result in downregulation of gene expression which suggests that this may be due to the changed tension on the nucleus: an intriguing possibility that merits further investigation.
Collapse
Affiliation(s)
- Matthew J Dalby
- Division of Infection and Immunity, Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
69
|
Dalby MJ. Cellular response to low adhesion nanotopographies. Int J Nanomedicine 2007; 2:373-81. [PMID: 18019836 PMCID: PMC2676652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This review focuses on how cells respond to low-adhesion nanotopographies. In order to do this, fabrication techniques, how cells may locate nanofeatures through the use of filopodia and possible mechanotransductive mechanisms are discussed. From this, examples of low-adhesion topographies and sizes and arrangements that may lead to low-adhesion are discussed. Finally, it is hypothesized as to how specifically low-adhesion materials may fit into the outlined mechanotransductive mechanisms.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, UK.
| |
Collapse
|
70
|
|
71
|
Schwarz US, Bischofs IB. Physical determinants of cell organization in soft media. Med Eng Phys 2006; 27:763-72. [PMID: 15951217 DOI: 10.1016/j.medengphy.2005.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Cell adhesion is an integral part of many physiological processes in tissues, including development, tissue maintenance, angiogenesis, and wound healing. Recent advances in materials science (including microcontact printing, soft lithography, microfluidics, and nanotechnology) have led to strongly improved control of extracellular ligand distribution and of the properties of the micromechanical environment. As a result, the investigation of cellular response to the physical properties of adhesive surfaces has become a very active area of research. Sophisticated use of elastic substrates has revealed that cell organization in soft media is determined by active mechanosensing at cell-matrix adhesions. In order to determine the underlying mechanisms, quantification and biophysical modelling are essential. In tissue engineering, theory might help to design new environments for cells.
Collapse
Affiliation(s)
- Ulrich S Schwarz
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
72
|
Dalby MJ. Topographically induced direct cell mechanotransduction. Med Eng Phys 2005; 27:730-42. [PMID: 15921949 DOI: 10.1016/j.medengphy.2005.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/11/2005] [Indexed: 01/26/2023]
Abstract
This review is designed to introduce the cytoskeleton and then discuss how mechanical forces may be transduced to the cell nucleus. In addition to this, it also tries to explain current thinking as to how the nucleus turns these mechanical cues into gene changes and is especially interested in mechanotransduction arising from topographically induced morphological changes, specifically nanotopography. Thus, this review also describes cell responses to topography.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
73
|
Dai L, Alt W, Schilling K, Retzlik J, Gieselmann V, Magin TM, Kappler J. A fast and robust quantitative time-lapse assay for cell migration. Exp Cell Res 2005; 311:272-80. [PMID: 16248998 DOI: 10.1016/j.yexcr.2005.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/26/2005] [Accepted: 09/22/2005] [Indexed: 01/28/2023]
Abstract
We describe a simple and widely applicable method to measure cell migration in time-lapse sequences of fluorescently labeled cells in culture. Briefly, binarized cell images obtained after thresholding were cumulatively projected, and the covered areas were measured. This procedure determines the time course of the track area successively covered by the cell population. Under conditions where cell growth is negligible, a robust index of cell motility is derived from normalized plots for the displacement of cells over time. We applied this method to quantitatively examine the migration of B35 neuroblastoma cells transiently expressing GFP and to C6 glioma cells after staining with Hoechst 33258. This sensitive assay detected the influence of agents which inhibit actin polymerization (cytochalasin B) or interfere with the maintenance of cell polarity (methyl-beta-cyclodextrin) on cell migration. Thus, this assay is a versatile tool to measure quickly the migration of different cell types using different labeling strategies.
Collapse
Affiliation(s)
- Lingsong Dai
- Institut für Physiologische Chemie, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Use of nanotopography to study mechanotransduction in fibroblasts--methods and perspectives. Eur J Cell Biol 2005; 83:159-69. [PMID: 15260438 DOI: 10.1078/0171-9335-00369] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this 'self-induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
75
|
Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CDW, Curtis ASG. Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int J Biochem Cell Biol 2004; 36:2005-15. [PMID: 15203114 DOI: 10.1016/j.biocel.2004.03.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/11/2004] [Accepted: 03/15/2004] [Indexed: 11/16/2022]
Abstract
In order for cells to react to topography, they must be able to sense shape. When considering nano-topography, these shapes are much smaller than the cell, but still strong responses to nano-topography have been seen. Filopodia, or microspikes, presented by cells at their leading edges are thought to be involved in gathering of special information. In order to investigate this, and to develop an understanding of what size of feature can be sensed by cells, morphological observation (electron and fluorescent microscopy) of fibroblasts reacting to nano-pits with 35, 75 and 120 nm diameters has been used in this study. The nano-pits are especially interesting because unlike many of the nanofeatures cited in the literature, they have no height for the cells to react to. The results showed that cell filopodia, and retraction fibres, interacted with all pit sizes, although direct interaction was hard to image on the 35 nm pits. This suggests that cells are extremely sensitive to their nanoevironment and that should be taken in to consideration when designing next-generation tissue engineering materials. We suggest that this may occur through nanocontact guidance as filopodia are moved over the pits.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
76
|
Growth and shaping of the fin and limb buds. Russ J Dev Biol 2000. [DOI: 10.1007/bf02758819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
77
|
Abstract
Studies were made with time-lapse motion pictures of the reactions of cells in culture to changes in their environment. The concentrations of H+, HCO3-and CO2 in the medium were altered in such a way that each, in turn, could be maintained constant while the others were varied. Observations were made on the shape of the cells, their activity, and their relation to the substratum. Characteristic reversible changes in the cells were observed whenever environmental pH was altered. Elevation of the pH accelerated cell movements and caused contraction of the cytoplasm, while lowering of the pH retarded and eventually stopped all cell activity, causing apparent gelation of the protoplasm. These responses did not occur when HCO3- and CO2 were varied without changing the pH. It is suggested that local pH changes in the micro-environment of a cell's surface may be a significant factor in controlling cell behavior in culture and in vivo.
Collapse
|
78
|
Abstract
Observations have been made on the response, in vitro, of cultured and freshly dissociated cells to mechanical deformation. Large numbers of individual cells were studied by means of a special culture chamber bounded by two parallel glass coverslips whose spacing could be reduced from 140 to 2 microns in steps of roughly 0.5 micron. The degree of deformation required for herniation of the cell surface was measured. These measurements lead to the definition of a statistical index characteristic of the extensibility of cell surfaces. This index has been shown to be distinctive for several types of cells; to alter with certain stages of embryonic development; and to be stable with respect to the culturing of cells and certain alterations in the method of cell culture.
Collapse
|
79
|
Weinreb M, Gal D, Weinreb MM, Pitaru S. Changes in the shape and orientation of periodontal ligament fibroblasts in the continuously erupting rat incisor following removal of the occlusal load. J Dent Res 1997; 76:1660-6. [PMID: 9326898 DOI: 10.1177/00220345970760100701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the main theories which attempts to explain the phenomenon of tooth eruption suggests that periodontal ligament (PDL) fibroblasts move actively and pull the tooth with them out of its socket. To find further support for this theory, we determined the changes in the shape and orientation of PDL fibroblasts induced by a transition from impeded to unimpeded eruption. We measured nuclear area, elongation (length-to-width ratio), and orientation (angulation in relation to the eruption axis) of PDL fibroblasts in impeded (functionally loaded) and unimpeded (hypoloaded) rat incisors. The mean cross-sectional nuclear area did not differ between fibroblasts in the two groups. In contrast, unimpeded eruption resulted in a marked increase in the mean nuclear elongation (from about 2 to 2.56) and a significant increase in the mean nuclear orientation (from 25.6 to 14.0 degrees). Bivariate analysis suggested that these changes occurred in the same cells. Analysis of nuclear elongation and orientation at various distances from the cementum toward the alveolar bone revealed a profile of both parameters, such that cells located 20 to 80 microns away from the cemental surface were more elongated and more frequently oriented toward the eruption axis, while cells at 0 to 20 and 80 to 100 microns were more round/oval and had a greater angulation with the eruption axis. These findings, together with other observations of changes in cell number, number of microtubules, and migration velocity which occur on the shift to unimpeded eruption, support the theory of active movement of PDL fibroblasts as an important component of tooth eruption.
Collapse
Affiliation(s)
- M Weinreb
- Department of Oral Biology, Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
80
|
|
81
|
Lorimier S, Gillery P, Hornebeck W, Chastang F, Laurent-Maquin D, Bouthors S, Droulle C, Potron G, Maquart FX. Tissue origin and extracellular matrix control neutral proteinase activity in human fibroblast three-dimensional cultures. J Cell Physiol 1996; 168:188-98. [PMID: 8647915 DOI: 10.1002/(sici)1097-4652(199607)168:1<188::aid-jcp23>3.0.co;2-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Remodeling of the extracellular matrix by fibroblasts is an important step in the process of wound healing and tissue repair. We compared the behavior of fibroblasts from two different tissues, dermis and gingiva, in three-dimensional lattices made of two different extracellular matrix macromolecules, collagen and fibrin. Cells were grown in monolayer cultures from normal skin or gingiva and seeded in three-dimensional lattices made of either collagen of fibrin. Photonic and scanning electron microscopy did not reveal any morphological differences between the two types of fibroblasts in both sets of lattices. Both types of fibroblasts retracted collagen lattices similarly and caused only a slight degradation of the collagen substratum. By contrast, when seeded in fibrin lattices, gingival fibroblasts completely digested their substratum in less than 8 days, whereas only a slight fibrin degradation was observed with dermal fibroblasts. The ability of gingival but not dermal fibroblasts to express high levels of tissue plasminogen activators (tPA) when cultured in fibrin lattices was assessed on an immunological basis. Also, deprivation of plasminogen-contaminating fibrinogen preparations or use of tPA inhibitors markedly inhibited both fibrinolysis and retraction rates of fibrin lattices by gingival fibroblasts. Casein-zymography confirmed the intense proteolytic activity induced by fibrin in gingival fibroblasts. It was inhibited by aprotinin and phenyl methylsulfonyl fluoride (PMSF), two non-specific inhibitors of serine proteinases, and by epsilon-amino-caproic acid (epsilon ACA), an inhibitor of plasminogen activators. Monolayer cultures exhibited only trace amounts of caseinolytic activity. Our results demonstrate that the expression of proteinases by fibroblasts is dependent not only on their tissue origin but also on the surrounding extracellular matrix. The intense fibrinolytic activity of gingival fibroblasts in fibrin lattices may explain partially the high rate of healing clinically observed in gingiva.
Collapse
Affiliation(s)
- S Lorimier
- Laboratorie de Biochimie-CNRS EP 89, Faculté de Médecine, Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
A new technique of microinterferometry permits cellular growth and motile dynamics to be studied simultaneously in living cells. In isolated chick heart fibroblasts, we have found that the non-aqueous mass of each cell tends to increase steadily, with minor fluctuations, throughout the cell cycle. The spread area of each cell also tends to increase during interphase but fluctuates between wide limits. These limits are dependent on the cell's mass and the upper limit is particularly sharp and directly proportional to mass. From a dynamical point of view, the spread area of a cell is determined by the balance between the rates of two antagonistic processes: protrusion of cellular material into new territory and retraction of material from previously occupied territory. The spatial asymmetry of these processes determines the translocation of the cell. We have found with the chick fibroblasts that the rates of the two processes are generally closely matched to each other and appear to be dependent on the cell's area of spreading. Both continue incessantly in well spread cells, even when there is no net translocation of the cell, and the lower limit of each activity is directly proportional to spread area. The two processes show different behaviour, however, during changes in the spread area of the cell. Both increases and decreases in area appear to be brought about by changes in the rate of retraction, the rate of protrusion remaining relatively constant. A simple stochastic model based on a limited supply of adhesion molecules can simulate all our observations including the mass-limited spreading, the strong correlation between protrusion and retraction and the retraction-dominated changes in area. We conclude that the spread area of the cell is actively regulated, possibly by a simple automatic mechanism that adjusts the area of spreading in relation to the mass of the cell and controls the rate of protrusion to compensate rapidly for spontaneous fluctuations in retraction.
Collapse
Affiliation(s)
- G A Dunn
- MRC Muscle and Cell Motility Unit, Randall Institute, King's College London, UK
| | | |
Collapse
|
83
|
Abstract
In this article are discussed several minor reconstructive pelvic procedures that should be a part of the gynecologic surgeon's armamentarium, specifically the following: Z-plasty, full-thickness skin grafting, skin flaps, W-plasty, and transposition skin flaps. These procedures are essential in both primary reparative and reoperative surgery. These procedures are widely used in other surgical specialties and can be adapted for use in gynecologic surgery.
Collapse
Affiliation(s)
- S H Cruikshank
- Department of Obstetrics and Gynecology, Hennepin County Medical Center, Minneapolis, MN 55415
| |
Collapse
|
84
|
Goslin K, Banker G. Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 1989; 108:1507-16. [PMID: 2925793 PMCID: PMC2115496 DOI: 10.1083/jcb.108.4.1507] [Citation(s) in RCA: 327] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In culture, hippocampal neurons develop a polarized form, with a single axon and several dendrites. Transecting the axons of hippocampal neurons early in development can cause an alteration of polarity; a process that would have become a dendrite instead becomes the axon (Dotti, C. G., and G. A. Banker. 1987. Nature (Lond.). 330:254-256). To investigate this phenomenon more systematically, we transected axons at varying lengths. The greater the distance of the transection from the soma, the greater the probability for regrowth of the original axon. However, it was not the absolute length of the axonal stump that determined the response to transection, but rather its length relative to the lengths of the cell's other processes. If one process was greater than 10 microns longer than the others, it invariably became the axon regardless of its identity before transection. Conversely, when a cell's processes were nearly equal in length, it was impossible to predict which would become the axon. In these cases, axonal outgrowth began only after a long latency. During this interval, the processes appeared to be in dynamic equilibrium, some growing for short distances while others retracted. When one process exceeded the others by a critical length, it rapidly elongated to become the axon. The establishment of neuronal polarity during normal development may similarly involve an interaction among processes whose identities have not yet been determined. When, by chance, one exceeds the others by a critical length, it becomes specified as the axon.
Collapse
Affiliation(s)
- K Goslin
- Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208
| | | |
Collapse
|
85
|
Matthes T, Gruler H. Analysis of cell locomotion. Contact guidance of human polymorphonuclear leukocytes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1988; 15:343-57. [PMID: 3371272 DOI: 10.1007/bf00254722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The methods of statistical physics have been applied to the analysis of cell movement. Human polymorphonuclear leukocytes were exposed to different surfaces possessing parallel oriented physical structures (scratched glass surface, machine drilled aluminum surface, optical grid and stretched polyethylene foil) and cell migration was observed using time-lapse photography. We demonstrate that in cell migration along physical structures, referred to as contact guidance, two subgroups can be distinguished: 1) The nematic type where the cell size is large in relation to the grid distance of the undulate surface. 2) The smectic type where the cell size is small in relation to the grid distance of the substrate. Nematic contact guidance is characterized by an anisotropic random walk. In all substrates investigated the diffusion process parallel to the lines was faster than the diffusion process perpendicular to them. The angular dependent diffusion coefficient was described by an ellipse. Deviation from a circle defined an apolar order parameter, whose value was about 0.3. The amount of information which the cells collected from, the undulate surface was very low, between 0.1 and 0.2 bits. We demonstrate that cells do not recognize all the details of their surroundings and that their migration can be compared to the "groping around" of a short sighted man. The blurred environment can be described by a mean field whose strength is proportional to the apolar order parameter. It is argued that the anisotropic surface tension is the basic source for nematic contact guidance. Smectic contact guidance is characterized by an anisotropic random walk and is quantified by a density order parameter which is 0.28 in the case of the scratched glass surface of a Neubauer counting chamber. The information which the cells collect from their environment is very low (0.03 bits). The lines seen by the cell can be described by a mean field whose strength is proportional to the density oder parameter. Finally, we demonstrate that the locomotion of granulocytes is governed by an internal clock and internal programs. After migrating for a certain time (32 s) in a particular direction, a new direction of locomotion is determined by an internal program. The cell decides basically between left or right, thereby preferring a turn angle such that the cell migrates either parallel or perpendicular to the lines. The angles are nearly equally probable but the cell moves, in the case of nematic guidance, with different velocities in the + or - direction. The cell also has directional memories with characteristic times of 32 s and greater than 100 s.
Collapse
Affiliation(s)
- T Matthes
- Department of Biophysics, University of Ulm, Federal Republic of Germany
| | | |
Collapse
|
86
|
Inoue T, Cox JE, Pilliar RM, Melcher AH. Effect of the surface geometry of smooth and porous-coated titanium alloy on the orientation of fibroblasts in vitro. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1987; 21:107-26. [PMID: 3549736 DOI: 10.1002/jbm.820210114] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The migration and orientation of human gingival fibroblasts in relation to the rim of smooth-surfaced and porous-coated titanium discs placed on multilayers in vitro was investigated. Samples were examined after 6 h, 24 h, 3 days, and 7 days of culture using phase-contrast and scanning electron microscopy. The cells migrated from the multilayer onto the smooth-surfaced discs forming bridges between them, and orientated along parallel circumferential grooves in the rim of the discs. This resulted in the cellular bridges orientating at an acute angle to the rim of the disc, and adjacent cells in the multilayer orientating parallel to the rim. Cellular bridges were also formed between the porous-coated discs and the multilayer but, because the cells that migrated onto, and between, the spheres of the porous-coat showed no preferred orientation, the bridges retained their orientation at right angles to the surface of the rim. This in turn resulted in the cells of the adjacent multilayer becoming similarly orientated. These observations suggest that the geometrical configuration of the surface of implants could influence whether a capsule or an orientated fibrous attachment is developed in relation to implants in vivo.
Collapse
|
87
|
Hartwig JH, Niederman R, Lind SE. Cortical actin structures and their relationship to mammalian cell movements. Subcell Biochem 1985; 11:1-49. [PMID: 3904083 DOI: 10.1007/978-1-4899-1698-3_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
88
|
Tomasek JJ, Hay ED. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J Cell Biol 1984; 99:536-49. [PMID: 6146628 PMCID: PMC2113263 DOI: 10.1083/jcb.99.2.536] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts in situ reside within a collagenous stroma and are elongate and bipolar in shape. If isolated and grown on glass, they change from elongate to flat shape, lose filopodia, and acquire ruffles. This shape change can be reversed to resemble that in situ by suspending the cells in hydrated collagen gels. In this study of embryonic avian corneal fibroblasts grown in collagen gels, we describe for the first time the steps in the acquisition of the elongate shape and analyze the effect of cytoskeleton-disrupting drugs on filopodial activity, assumption of bipolarity, and cell elongation within extracellular matrix. We have previously shown by immunofluorescence that filopodia contain actin but not myosin and are free of organelles. The cell cortex is rich in actin and the cytosol, in myosin. By using antitubulin, we show in the present study that microtubules are aligned along the long axis of the bipolar cell body. The first step in assumption of the elongate shape is extension of filopodia by the round cells suspended in collagen, and this is not significantly affected by the drugs we used: taxol to stabilize microtubules; nocodazole to disassemble microtubules; and cytochalasin D to disrupt microfilaments. The second step, movement of filopodia to opposite ends of the cell, is disrupted by cytochalasin, but not by taxol or nocodazole. The third step, extension of pseudopodia and acquisition of bipolarity similarly requires intact actin, but not microtubules. If fibroblasts are allowed to become bipolar before drug treatment, moreover, they remain so in the presence of the drugs. To complete the fourth step, extensive elongation of the cell, both intact actin and microtubules are required. Retraction of the already elongated cell occurs on microtubule disruption, but retraction requires an intact actin cytoskeleton. We suggest that the cell interacts with surrounding collagen fibrils via its actin cytoskeleton to become bipolar in shape, and that microtubules interact with the actin cortex to bring about the final elongation of the fibroblast.
Collapse
|
89
|
Trinkaus JP, Erickson CA. Protrusive activity, mode and rate of locomotion, and pattern of adhesion ofFundulus deep cells during gastrulation. ACTA ACUST UNITED AC 1983. [DOI: 10.1002/jez.1402280106] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
90
|
Abstract
Actin-rich cortical cytoplasm of phagocytic leucocytes forms pseudopodia and controls cell shape and movement by generating directional propulsive and contractile forces. Proteins purified from leucocytes form and deform an actin matrix. Actin-binding protein (ABP) cross-links actin filaments into a three-dimensional lattice with perpendicular branches. This structure, which can be visualized in the electron microscope, is consistent with physical properties of actin-ABP matrices. Gelsolin binds one end of actin filaments with high affinity in the presence of calcium; acumentin, another protein, constitutively binds the other end with low affinity. Together these proteins can control actin filament length and thereby regulate expansion (propulsion) or collapse of the actin network. The assembly state of the network also controls myosin-based contractile forces. A tug-of-war decides the direction of lattice movement, regions of lesser structure tending to move toward regions of greater structure.
Collapse
|
91
|
Abstract
Retraction of the taut, trailing portion of a moving chick heart fibroblast in vitro is an abrupt dynamic process. Upon retraction, the fibroblast tail always ruptures, leaving a small amount of itself attached to the substratum by focal contacts. Time-lapse cinemicrography shows that retraction produces a sudden, massive movement of both surface and cytoplasmic material toward a cluster of focal contacts near the main body of the cell. The appearance of folds on the upper cell surface at this time and the absence of endocytotic vesicles are consistent with this forward movement. Retraction of the trailing edge, either occurring naturally or produced artificially with a microneedle, consists of an initial fast component followed and overlapped by a slow component. Upon artificial detachment in the presence of iodoacetate, dinitrophenol, and sodium fluoride, and at 4 degrees C, the slow component is strongly inhibited and the fast one only slightly inhibited. Moreover of the bundles of microfilaments oriented parallel to the long axis of the tail seen in TEM. Most of the birefringence is lost during the fast phase and the rest during the slow phase of retraction. Concurrently, the bundles of microfilaments disappear during the fast phase of retraction and are replaced by a microfilament meshwork. All of these results are consistent with the hypothesis that the initial fast component of retraction is a passive elastic recoil, associated with the oriented bundles of microfilaments, and that the slow component of retraction is an active contraction, associated with a meshwork of microfilaments.
Collapse
|
92
|
Abstract
In 30 patients who were followed up, discrete corneal epithelial dots developed in a strictly confined area of the peripheral donor cornea within two months after penetrating keratoplasty. The incidence was higher, although not statistically significant, in the disparate group (55%) as compared to the isometric group (30%). The change in dot density that occurs after nylon suture removal is consistent with the idea of lateral cell movement in the corneal epithelium. This study confirms that donor epithelium persists for long periods of time.
Collapse
|
93
|
|
94
|
England MA, Wakely J. Evidence for changes in cell shape from a 2-dimensional to a 3-dimensional substrate. EXPERIENTIA 1979; 35:664-6. [PMID: 376336 DOI: 10.1007/bf01960386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chick embryo mesoderm cells were explanted to culture systems in vivo and in vitro and their subsequent movements were correlated with the external morphology as studied by SEM. In vitro cell movements are exaggerations of normal in vivo movements where a 2-dimensional substrate is encountered rather than a 3-dimensional environment.
Collapse
|
95
|
Grinnell F. Cellular adhesiveness and extracellular substrata. INTERNATIONAL REVIEW OF CYTOLOGY 1978; 53:65-144. [PMID: 208994 DOI: 10.1016/s0074-7696(08)62241-x] [Citation(s) in RCA: 664] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Vasiliev JM, Gelfand IM. Mechanisms of morphogenesis in cell cultures. INTERNATIONAL REVIEW OF CYTOLOGY 1977; 50:159-274. [PMID: 332655 DOI: 10.1016/s0074-7696(08)60099-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
97
|
Krupp S. [Transformation of monocytes into fibroblasts in wound healing (author's transl)]. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1976; 167:85-126. [PMID: 981808 DOI: 10.1007/bf01851593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent investigations of HELPAP and CREMER 1972 seem to confirm the supposition of COHNHEIM 1867 that monocytes of the peripheral blood are transformed into firbroblasts in healing wounds. The view of VIRCHOW 1871, MARCHAND 1901 and ASCHOFF 1924 that the fibroblasts in healing wounds are of local origin seems to be supported by the invesigation on parabiotic inbred rats of ROSS et al. 1970. We thought that irradiating the whole body of rabbits could be of value in resolving these apparent contradictions about the origin of fibroblasts in healing wounds.
Collapse
|
98
|
Knoche H, Klose R. [Orientation of scar tissue after incision of the optic nerve (author's transl)]. ALBRECHT VON GRAEFES ARCHIV FUR KLINISCHE UND EXPERIMENTELLE OPHTHALMOLOGIE. ALBRECHT VON GRAEFE'S ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY 1974; 191:1-11. [PMID: 4137443 DOI: 10.1007/bf00414677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
99
|
|
100
|
Stuart ES, Garber B, Moscona AA. Analysis of feather germ formation in the embryo and vitro, in normal development and in skin treated with hydrocortisone. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1972; 179:97-118. [PMID: 4333385 DOI: 10.1002/jez.1401790108] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|