51
|
Hirano K, Young SG, Farese RV, Ng J, Sande E, Warburton C, Powell-Braxton LM, Davidson NO. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 1996; 271:9887-90. [PMID: 8626621 DOI: 10.1074/jbc.271.17.9887] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A site-specific C to U editing reaction modifies nuclear apolipoprotein B100 (apoB100) mRNA, producing apolipoprotein B48 in the mammalian small intestine. This reaction is mediated by a multicomponent enzyme complex, which contains a catalytic subunit, Apobec-1. We have used gene targeting to disrupt mouse apobec-1 in order to establish its requisite importance in apoB mRNA editing and also, in view of its widespread tissue distribution in rodents, as a preliminary indication of other potential roles. Both heterozygous (apobec-1+/-) and homozygous (apobec-1-/-) gene-targeted mice appear healthy and fertile with no alterations in serum cholesterol or triglyceride concentrations. The apobec-1+/- mice demonstrated reduced levels of hepatic apoB mRNA editing. By contrast, levels of small intestinal apoB mRNA editing were indistinguishable in wild-type and apobec-1+/- animals, suggesting that Apobec-1 is expressed in limited quantities in the liver but not in the small intestine. The apobec-1-/- mice lacked detectable levels of Apobec-1 mRNA, expressed only unedited apoB mRNA in all tissues, and contained no apoB48 in their serum, demonstrating that there is no functional duplication of this gene.
Collapse
Affiliation(s)
- K Hirano
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Considerable progress has been made in unraveling the mechanistic features of RNA editing processes in a number of genetic systems. Recent highlights include the identification of the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme as a zinc-dependent cytidine deaminase that binds to RNA, the demonstration that adenosines in brain glutamate receptor pre-mRNAs are converted into inosines and that double-stranded RNA A deaminase (dsRAD), the candidate enzyme, is another zinc-dependent RNA nucleotide deaminase, and a mounting body of evidence for a cleavage-ligation mechanism for U insertion/deletion editing in kinetoplastid protozoa.
Collapse
Affiliation(s)
- R Benne
- Department of Biochemistry, Faculty of Medicine, University of Amsterdam, Academic Medical Centre, The Netherlands.
| |
Collapse
|
53
|
Sowden M, Hamm JK, Smith HC. Overexpression of APOBEC-1 results in mooring sequence-dependent promiscuous RNA editing. J Biol Chem 1996; 271:3011-7. [PMID: 8621694 DOI: 10.1074/jbc.271.6.3011] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Apolipoprotein B (apoB) RNA editing involves site-specific deamination of a cytidine to a uridine. A mooring sequence, a spacer region, and a regulator region are components of the apoB RNA editing motif of which only the mooring sequence is both necessary and sufficient for editosome assembly and editing. The catalytic component of the editosome is APOBEC-1. In rat hepatoma, stable cell lines, overexpression of APOBEC-1 resulted in 3 6-fold stimulation of the editing efficiency on either rat endogenous apoB RNA or transiently expressed human apoB RNA. In these cell lines, cytidines in addition to the one at the wild type site were edited. The occurrence and efficiency of this "promiscuous" editing increased with increasing expression of APOBEC-1. Promiscuous editing was restricted to cytidines 5' of the mooring sequence and only occurred on RNAs that had been edited at the wild type site. Moreover, RNAs with mutant editing motifs supported high efficiency but low fidelity editing in the presence of high levels of APOBEC-1. This study demonstrates that overexpression of APOBEC-1 can increase the efficiency of site-specific editing but can also result in promiscuous editing.
Collapse
Affiliation(s)
- M Sowden
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
54
|
Schock D, Kuo SR, Steinburg MF, Bolognino M, Sparks JD, Sparks CE, Smith HC. An auxiliary factor containing a 240-kDa protein complex is involved in apolipoprotein B RNA editing. Proc Natl Acad Sci U S A 1996; 93:1097-102. [PMID: 8577721 PMCID: PMC40037 DOI: 10.1073/pnas.93.3.1097] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A protein complex involved in apolipoprotein B (apoB) RNA editing, referred to as AUX240 (auxiliary factor containing p240), has been identified through the production of monoclonal antibodies against in vitro assembled 27S editosomes. The 240-kDa protein antigen of AUX240 colocalized with editosome complexes on immunoblots of native gels. Immunoadsorbed extracts were impaired in their ability to assemble editosomes beyond early intermediates and in their ability to edit apoB RNA efficiently. Supplementation of adsorbed extract with AUX240 restored both editosome assembly and editing activities. Several proteins, in addition to p240, ranging in molecular mass from 150 to 45 kDa coimmunopurify as AUX240 under stringent wash conditions. The activity of the catalytic subunit of the editosome APOBEC-1 and mooring sequence RNA binding proteins of 66 and 44 kDa could not be demonstrated in AUX240. The data suggest that p240 and associated proteins constitute an auxiliary factor required for efficient apoB RNA editing. We propose that the role of AUX240 may be regulatory and involve mediation or stabilization of interactions between APOBEC-1 subunits and editing site recognition proteins leading the assembly of the rat liver C/U editosome.
Collapse
Affiliation(s)
- D Schock
- Department of Pathology, University of Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Innerarity TL, Borén J, Yamanaka S, Olofsson SO. Biosynthesis of apolipoprotein B48-containing lipoproteins. Regulation by novel post-transcriptional mechanisms. J Biol Chem 1996; 271:2353-6. [PMID: 8576187 DOI: 10.1074/jbc.271.5.2353] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- T L Innerarity
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA
| | | | | | | |
Collapse
|
56
|
Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 1996; 24:478-85. [PMID: 8602361 PMCID: PMC145654 DOI: 10.1093/nar/24.3.478] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A functional mooring sequence, known to be required for apolipoprotein B (apoB) mRNA editing, exists in the mRNA encoding the neurofibromatosis type I (NF1) tumor suppressor. Editing of NF1 mRNA modifies cytidine in an arginine codon (CGA) at nucleotide 2914 to a uridine (UGA), creating an in frame translation stop codon. NF1 editing occurs in normal tissue but was several-fold higher in tumors. In vitro editing and transfection assays demonstrated that apoB and NF1 RNA editing will take place in both neural tumor and hepatoma cells. Unlike apoB, NF1 editing did not demonstrate dependence on rate-limiting quantities of APOBEC-1 (the apoB editing catalytic subunit) suggesting that different trans-acting factors may be involved in the two editing processes.
Collapse
Affiliation(s)
- G R Skuse
- Department of Medicine, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
57
|
Hughes SD, Rouy D, Navaratnam N, Scott J, Rubin EM. Gene transfer of cytidine deaminase apoBEC-1 lowers lipoprotein(a) in transgenic mice and induces apolipoprotein B editing in rabbits. Hum Gene Ther 1996; 7:39-49. [PMID: 8825867 DOI: 10.1089/hum.1996.7.1-39] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apolipoprotein (apo) B100 is an essential component of low-density lipoproteins (LDL) and lipoprotein(a) [Lp(a)]. In mammals, apoB can be edited post-transcriptionally to encode a truncated form of apoB (apoB48) that is unable to form either of these atherogenic lipoproteins. To study the effect of increasing hepatic apoB editing activity on formation of Lp(a), a recombinant adenovirus encoding rat apoBEC-1, the cytidine deaminase component of the apoB mRNA editing complex, was administered to human apoB/apo(a) transgenic mice. This resulted in expression of apoBEC-1 in hepatocytes of these mice, increased hepatic editing of human apoB mRNA, and decreased plasma levels of human apoB100 and Lp(a). The apoBEC-1 recombinant adenovirus was also administered to rabbits, an animal which, like humans, naturally lacks hepatic apoB editing. Expression of the exogenous apoBEC-1 in rabbit liver resulted in editing of up to 10% of apoB mRNA. Hepatic apoB editing was associated with lower LDL levels in these rabbits relative to those treated with a control adenovirus. However, LDL levels were elevated significantly in both animals as a result of adenovirus injection. These studies demonstrate that introduction of the cytidine deaminase apoBEC-1 is sufficient to induce hepatic apoB editing in an animal lacking this activity, and that induction of editing could serve as a novel approach for lowering plasma concentrations of the atherogenic lipoproteins Lp(a) and LDL.
Collapse
Affiliation(s)
- S D Hughes
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
58
|
Lau PP, Cahill DJ, Zhu HJ, Chan L. Ethanol modulates apolipoprotein B mRNA editing in the rat. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39192-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
59
|
Anant S, MacGinnitie AJ, Davidson NO. apobec-1, the Catalytic Subunit of the Mammalian Apolipoprotein B mRNA Editing Enzyme, Is a Novel RNA-binding Protein. J Biol Chem 1995. [DOI: 10.1074/jbc.270.24.14762] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
60
|
MacGinnitie AJ, Anant S, Davidson NO. Mutagenesis of apobec-1, the Catalytic Subunit of the Mammalian Apolipoprotein B mRNA Editing Enzyme, Reveals Distinct Domains That Mediate Cytosine Nucleoside Deaminase, RNA Binding, and RNA Editing Activity. J Biol Chem 1995. [DOI: 10.1074/jbc.270.24.14768] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
61
|
Funahashi T, Giannoni F, DePaoli AM, Skarosi SF, Davidson NO. Tissue-specific, developmental and nutritional regulation of the gene encoding the catalytic subunit of the rat apolipoprotein B mRNA editing enzyme: functional role in the modulation of apoB mRNA editing. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39876-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
62
|
Expression and characterization of p27, the catalytic subunit of the apolipoprotein B mRNA editing enzyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32097-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
63
|
REPR and complementation factor(s) interact to modulate rat apolipoprotein B mRNA editing in response to alterations in cellular cholesterol flux. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)40089-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
64
|
Yamanaka S, Poksay K, Balestra M, Zeng G, Innerarity T. Cloning and mutagenesis of the rabbit ApoB mRNA editing protein. A zinc motif is essential for catalytic activity, and noncatalytic auxiliary factor(s) of the editing complex are widely distributed. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31865-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
65
|
Köller J, Nörskau G, Paul AS, Stuart K, Göringer HU. Different Trypanosoma brucei guide RNA molecules associate with an identical complement of mitochondrial proteins in vitro. Nucleic Acids Res 1994; 22:1988-95. [PMID: 8029004 PMCID: PMC308111 DOI: 10.1093/nar/22.11.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA editing is a mitochondrial transcript maturation process which evolved in kinetoplastid protozoa. It entails the insertion and deletion of exclusively uridine nucleotides directed by gRNAs into pre-mRNAs. Other participating components are not currently known. The aim of this study was to identify mitochondrial proteins that are in direct physical contact with gRNAs thereby possibly involved in the editing reaction. At low monovalent cation concentration (30 mM KCl) 8 polypeptides with apparent molecular weights ranging from 124 to 9 kDa specifically cross-linked to gRNAs. Three of the proteins, 90, 21, and 9 kDa in size, were able to bind at higher salt concentrations (> or = 100 mM) indicating an enhanced affinity to the gRNA molecules. No cross-links were identified at > or = 250 mM KCl. Four gRNAs, specific for different editing domains of the ATPase 6 and ND7 pre-mRNAs, were in contact with the same set of mitochondrial polypeptides suggesting the assembly of an identical RNP complex that does not include pre-mRNA molecules. The binding of the 90 kDa protein was sensitive to the presence of U-nucleotides at the 3'-end of the gRNAs and could specifically be blocked by modifying free sulfhydryl groups. The interaction with the 124 kDa polypeptide was inhibited by vanadyl ribonucleosides, implicating a role for 2', 3' hydroxyl groups in the gRNA-protein interaction.
Collapse
Affiliation(s)
- J Köller
- Laboratorium für Molekulare Biologie, Genzentrum, Martinsried, Germany
| | | | | | | | | |
Collapse
|
66
|
Hadjiagapiou C, Giannoni F, Funahashi T, Skarosi SF, Davidson NO. Molecular cloning of a human small intestinal apolipoprotein B mRNA editing protein. Nucleic Acids Res 1994; 22:1874-9. [PMID: 8208612 PMCID: PMC308087 DOI: 10.1093/nar/22.10.1874] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mammalian small intestinal apolipoprotein B (apo B) mRNA undergoes posttranscriptional cytidine deamination with the production of an in frame stop codon and the translation of apo B48. We have isolated a cDNA from human jejunum which mediates in vitro editing of a synthetic apo B RNA template upon complementation with chicken intestinal S100 extracts. The cDNA specifies a 236 residue protein which is 69% identical to the apo B mRNA editing protein (REPR) cloned from rat small intestine [Teng, B., Burant, C. F. and Davidson, N. O. (1993) Science 260, 1816-1819] and which, by analogy, is referred to as HEPR. HEPR does not contain the carboxyl-terminus leucine zipper motif identified in REPR but contains consensus phosphorylation sites as well as the conserved histidine and both cysteine residues identified as a Zn2+ binding motif in other cytidine deaminases. The distribution of HEPR mRNA was predominantly confined to the adult small intestine with lower levels detectable by reverse-transcription polymerase chain reaction amplification in the stomach, colon and testis. These differences in the structure and distribution of the human as compared to the rat apo B mRNA editing protein suggest an important evolutionary adaptation in the mechanisms restricting apo B48 production to the small intestine.
Collapse
|
67
|
Hough R, Bass B. Purification of the Xenopus laevis double-stranded RNA adenosine deaminase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36972-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
68
|
Abstract
An RNA editing mechanism modifies apolipoprotein B (apo-B) mRNA in the intestine by converting cytosine at nucleotide (nt) 6666 to uracil. To define the sequence requirements for editing, mutant apo-B RNAs were analyzed for the ability to be edited in vitro by enterocyte extracts. Editing was detected by a sensitive and linear primer extension assay. An upstream region (nt 6648 to 6661) which affected the efficiency of editing was identified. RNAs with mutations in this efficiency sequence were edited at 22 to 160% of wild-type levels. Point mutations in a downstream 11-nt mooring sequence (nt 6671 to 6681) abolished editing, confirming previous studies (R. R. Shah, T. J. Knott, J. E. Legros, N. Navaratnam, J. C. Greeve, and J. Scott, J. Biol. Chem. 266:16301-16304, 1991). The optimal distance between the editing site and the mooring sequence is 5 nt, but a C positioned 8 nt upstream is edited even when nt 6666 contains U. The efficiency and mooring sequences were inserted individually and together adjacent to a heterologous C in apo-B mRNA. The mooring sequence alone induced editing of the C at nt 6597 both in vitro and in transfected rat hepatoma cells. Editing at nt 6597 was specific, was independent of editing at nt 6666, and was stimulated to wild-type levels when the efficiency sequence was also inserted. Introduction of the mooring sequence into a heterologous mRNA, luciferase mRNA, induced editing of an upstream cytidine. Although UV cross-linking studies have previously shown that proteins of 60 to 66 kDa cross-link to apo-B mRNA, these proteins did not cross-link to the luciferase translocation mutants.
Collapse
|
69
|
Driscoll DM, Lakhe-Reddy S, Oleksa LM, Martinez D. Induction of RNA editing at heterologous sites by sequences in apolipoprotein B mRNA. Mol Cell Biol 1993; 13:7288-94. [PMID: 8246950 PMCID: PMC364799 DOI: 10.1128/mcb.13.12.7288-7294.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An RNA editing mechanism modifies apolipoprotein B (apo-B) mRNA in the intestine by converting cytosine at nucleotide (nt) 6666 to uracil. To define the sequence requirements for editing, mutant apo-B RNAs were analyzed for the ability to be edited in vitro by enterocyte extracts. Editing was detected by a sensitive and linear primer extension assay. An upstream region (nt 6648 to 6661) which affected the efficiency of editing was identified. RNAs with mutations in this efficiency sequence were edited at 22 to 160% of wild-type levels. Point mutations in a downstream 11-nt mooring sequence (nt 6671 to 6681) abolished editing, confirming previous studies (R. R. Shah, T. J. Knott, J. E. Legros, N. Navaratnam, J. C. Greeve, and J. Scott, J. Biol. Chem. 266:16301-16304, 1991). The optimal distance between the editing site and the mooring sequence is 5 nt, but a C positioned 8 nt upstream is edited even when nt 6666 contains U. The efficiency and mooring sequences were inserted individually and together adjacent to a heterologous C in apo-B mRNA. The mooring sequence alone induced editing of the C at nt 6597 both in vitro and in transfected rat hepatoma cells. Editing at nt 6597 was specific, was independent of editing at nt 6666, and was stimulated to wild-type levels when the efficiency sequence was also inserted. Introduction of the mooring sequence into a heterologous mRNA, luciferase mRNA, induced editing of an upstream cytidine. Although UV cross-linking studies have previously shown that proteins of 60 to 66 kDa cross-link to apo-B mRNA, these proteins did not cross-link to the luciferase translocation mutants.
Collapse
Affiliation(s)
- D M Driscoll
- Department of Cell Biology, Cleveland Clinic Foundation, Ohio 44195
| | | | | | | |
Collapse
|
70
|
Chiesa G, Johnson D, Yao Z, Innerarity T, Mahley R, Young S, Hammer R, Hobbs H. Expression of human apolipoprotein B100 in transgenic mice. Editing of human apolipoprotein B100 mRNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80442-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
71
|
Navaratnam N, Morrison J, Bhattacharya S, Patel D, Funahashi T, Giannoni F, Teng B, Davidson N, Scott J. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36836-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
72
|
|
73
|
Abstract
Mammalian apolipoprotein B (apo B) exists in two forms, each the product of a single gene. The shorter form, apo B48, arises by posttranscriptional RNA editing whereby cytidine deamination produces a UAA termination codon. A full-length complementary DNA clone encoding an apo B messenger RNA editing protein (REPR) was isolated from rat small intestine. The 229-residue protein contains consensus phosphorylation sites and leucine zipper domains. HepG2 cell extracts acquire editing activity when mixed with REPR from oocyte extracts. REPR is essential for apo B messenger RNA editing, and the isolation and characterization of REPR may lead to the identification of other eukaryotic RNA editing proteins.
Collapse
Affiliation(s)
- B Teng
- Department of Medicine, University of Chicago, IL 60637
| | | | | |
Collapse
|
74
|
Abstract
In the mitochondria and chloroplasts of flowering plants (angiosperms), transcripts of protein-coding genes are altered after synthesis so that their final primary nucleotide sequence differs from that of the corresponding DNA sequence. This posttranscriptional mRNA editing consists almost exclusively of C-to-U substitutions. Editing occurs predominantly within coding regions, mostly at isolated C residues, and usually at first or second positions of codons, thereby almost always changing the amino acid from that specified by the unedited codon. Editing may also create initiation and termination codons. The net effect of C-to-U RNA editing in plants is to make proteins encoded by plant organelles more similar in sequence to their nonplant homologs. In a few cases, a strong argument can be made that specific C-to-U editing events are essential for the production of functional plant mitochondrial proteins. Although the phenomenon of RNA editing in plants is now well documented, fundamental questions remain to be answered: What determines the specificity of editing? What is the biochemical mechanism (deamination, base exchange, or nucleotide replacement)? How did the system evolve? RNA editing in plants, as in other organisms, challenges our traditional notions of genetic information transfer.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|