51
|
Chauhan A. Unperturbed posttranscriptional regulatory Rev protein function and HIV-1 replication in astrocytes. PLoS One 2014; 9:e106910. [PMID: 25188302 PMCID: PMC4154834 DOI: 10.1371/journal.pone.0106910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/08/2014] [Indexed: 12/23/2022] Open
Abstract
Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase) and TRBP (anti-PKR) in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.
Collapse
Affiliation(s)
- Ashok Chauhan
- Department of Pathology, Microbiology and Immunology, and Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
52
|
Burugu S, Daher A, Meurs EF, Gatignol A. HIV-1 translation and its regulation by cellular factors PKR and PACT. Virus Res 2014; 193:65-77. [PMID: 25064266 DOI: 10.1016/j.virusres.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
The synthesis of proteins from viral mRNA is the first step towards viral assembly. Viruses are dependent upon the cellular translation machinery to synthesize their own proteins. The synthesis of proteins from the human immunodeficiency virus (HIV) type 1 and 2 RNAs utilize several alternative mechanisms. The regulation of viral protein production requires a constant interplay between viral requirements and the cell response to viral infection. Among the antiviral cell responses, the interferon-induced RNA activated protein kinase, PKR, regulates the cellular and viral translation. During HIV-1 infection, PKR activation is highly regulated by viral and cellular factors. The cellular TAR RNA Binding Protein, TRBP, the Adenosine Deaminase acting on RNA, ADAR1, and the PKR Activator, PACT, play important roles. Recent data show that PACT changes its function from activator to inhibitor in HIV-1 infected cells. Therefore, HIV-1 has evolved to replicate in cells in which TRBP, ADAR1 and PACT prevent PKR activation to allow efficient viral protein synthesis. This proper translation will initiate the assembly of viral particles.
Collapse
Affiliation(s)
- Samantha Burugu
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Aïcha Daher
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Eliane F Meurs
- Institut Pasteur, Department of Virology, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Anne Gatignol
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
53
|
Abstract
microRNAs (miRNAs) are a family of small, non-coding RNAs, which provides broad silencing activity of mRNA targets in a sequence-dependent fashion. This review explores the hypothesis that the miRNA machinery is intimately linked with the cellular stress pathway and apparatus. Stress signaling potentially alters the function of the miRNA-bioprocessing core components and decompensates regulation. In addition, dysregulation of miRNA activity renders the cell more prone to stress and emerges as a new pathway for age-related insults and diseases, such as neurodegeneration.
Collapse
Affiliation(s)
- Anna Emde
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
54
|
Up-regulation and worse prognostic marker of cytoplasmic TARBP2 expression in obstinate breast cancer. Med Oncol 2014; 31:868. [PMID: 24563327 DOI: 10.1007/s12032-014-0868-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Expression of trans-activation-responsive-RNA-binding protein 2 (TARBP2) varied from normal cell lines to various cancer cell lines. The discussion of TARBP2 serve as tumor suppressor or tumor promotor goes on. However, its expression in breast cancer remains unknown. The aim of present study was to assess the expression of cytoplasm TARBP2 as potential prognostic marker in breast cancer. We further investigated cytoplasm TARBP2 could be a novel target in treatment for late-stage breast cancer and triple-negative breast cancer (TNBC). A total of patients with breast cancer were involved in our cohort. Immunohistochemical staining for TARBP2 on tissue microarray and western blot were used. Immunohistochemistry showed that cytoplasm TARBP2 was frequently up-regulated in breast carcinoma. This finding was in line with the result of western blot analysis. Further investigation showed that cytoplasm TARBP2 expression in non-TNBC was higher than that of their adjacent normal breast tissues (NBT), and TNBC was the highest of the three groups. The positive expression of cytoplasm TARBP2 in stage III breast cancer, stage I-II breast cancer, and NBT decreased gradually. In addition, univariate and multivariate survival analysis revealed cytoplasm TARBP2 was an independent prognostic factor for breast cancer. Breast cancer patients with cytoplasm TARBP2 expression had poorer disease-free survival and overall survival, and similar results were obtained in TNBC group and stage III breast cancer group. Our results provide convincing evidence for the first time that the expression of cytoplasm TARBP2 is up-regulated in breast cancer. Breast cancer patients with TARBP2 cytoplasm expression have unfavorable prognosis. Patients of TNBC and late-stage breast cancer with higher cytoplasm TARBP2 expression have an unfavorable prognosis.
Collapse
|
55
|
Thakur M, Seo EJ, Dever TE. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition. RNA (NEW YORK, N.Y.) 2014; 20:214-27. [PMID: 24335187 PMCID: PMC3895273 DOI: 10.1261/rna.042341.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.
Collapse
|
56
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
57
|
Innate immune evasion strategies by human immunodeficiency virus type 1. ISRN AIDS 2013; 2013:954806. [PMID: 24052891 PMCID: PMC3767209 DOI: 10.1155/2013/954806] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
Host immune components play both beneficial and pathogenic roles in human immunodeficiency virus type 1 (HIV-1) infection. During the initial stage of viral infection, a complex network of innate immune factors are activated. For instance, the immune cells express a number of inflammatory proteins including cytokines, chemokines, and antiviral restriction factors. These factors, specifically, interferons (IFNs) play a crucial role in antiviral defense system by modulating the downstream signaling events, by inducing maturation of dendritic cells (DCs), and by activation of macrophages, natural killer (NK) cells, and B and T cells. However, HIV-1 has evolved to utilize a number of strategies to overcome the antiviral effects of the host innate immune system. This review discusses the pathways and strategies utilized by HIV-1 to establish latent and persistent infection by defeating host's innate defense system.
Collapse
|
58
|
Benoit MPMH, Imbert L, Palencia A, Pérard J, Ebel C, Boisbouvier J, Plevin MJ. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic Acids Res 2013; 41:4241-52. [PMID: 23435228 PMCID: PMC3627579 DOI: 10.1093/nar/gkt086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer.
Collapse
|
59
|
The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev 2013; 76:652-66. [PMID: 22933564 DOI: 10.1128/mmbr.00012-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections.
Collapse
|
60
|
Mehla R, Bivalkar-Mehla S, Nagarkatti M, Chauhan A. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator. J Neuroinflammation 2012; 9:239. [PMID: 23078780 PMCID: PMC3533742 DOI: 10.1186/1742-2094-9-239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023] Open
Abstract
Background More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) of HIV-demented (HIV-D) and HIV-nondemented (HIV-ND) patients and studied their affect on neuroglial toxicity. Methods and results Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF) in the CSF of HIV-D patients (n = 7) but not in that of HIV-ND patients (n = 7). Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1)-activated human fetal astrocytes, HIV-1 (Ba-L)-infected macrophages, and HIV-1 (NLENG1)-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold) for activated peripheral blood mononuclear cells (PBMC), suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK) signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting of chemokines in brain may have adverse consequences on the host, current findings and earlier evidence suggest that CXCL10 could strongly impede neuroinflammation. Conclusion We have demonstrated induction of CXCL10 and other chemokines/cytokines during HIV-1 infection in the brain, as well as synergism of CXCL10 with HIV-1 in neuronal toxicity, which was dampened by bryostatin.
Collapse
Affiliation(s)
- Rajeev Mehla
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
61
|
Singh M, Patel RC. Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem 2012; 113:2754-64. [DOI: 10.1002/jcb.24152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
62
|
Jalalirad M, Saadatmand J, Laughrea M. Dominant role of the 5' TAR bulge in dimerization of HIV-1 genomic RNA, but no evidence of TAR-TAR kissing during in vivo virus assembly. Biochemistry 2012; 51:3744-58. [PMID: 22482513 DOI: 10.1021/bi300111p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 5' untranslated region of HIV-1 genomic RNA (gRNA) contains two stem-loop structures that appear to be equally important for gRNA dimerization: the 57-nucleotide 5' TAR, at the very 5' end, and the 35-nucleotide SL1 (nucleotides 243-277). SL1 is well-known for containing the dimerization initiation site (DIS) in its apical loop. The DIS is a six-nucleotide palindrome. Here, we investigated the mechanism of TAR-directed gRNA dimerization. We found that the trinucleotide bulge (UCU24) of the 5' TAR has dominant impacts on both formation of HIV-1 RNA dimers and maturation of the formed dimers. The ΔUCU trinucleotide deletion strongly inhibited the first process and blocked the other, thus impairing gRNA dimerization as severely as deletion of the entire 5' TAR, and more severely than deletion of the DIS, inactivation of the viral protease, or most severe mutations in the nucleocapsid protein. The apical loop of TAR contains a 10-nucleotide palindrome that has been postulated to stimulate gRNA dimerization by a TAR-TAR kissing mechanism analogous to the one used by SL1 to stimulate dimerization. Using mutations that strongly destabilize formation of the TAR palindrome duplex, as well as compensatory mutations that restore duplex formation to a wild-type-like level, we found no evidence of TAR-TAR kissing, even though mutations nullifying the kissing potential of the TAR palindrome could impair dimerization by a mechanism other than hindering of SL1. However, nullifying the kissing potential of TAR had much less severe effects than ΔUCU. By not uncovering a dimerization mechanism intrinsic to TAR, our data suggest that TAR mutations exert their effect 3' of TAR, yet not on SL1, because TAR and SL1 mutations have synergistic effects on gRNA dimerization.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
63
|
Dickerman BK, White CL, Chevalier C, Nalesso V, Charles C, Fouchécourt S, Guillou F, Viriot L, Sen GC, Hérault Y. Missense mutation in the second RNA binding domain reveals a role for Prkra (PACT/RAX) during skull development. PLoS One 2011; 6:e28537. [PMID: 22194846 PMCID: PMC3237451 DOI: 10.1371/journal.pone.0028537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 11/10/2011] [Indexed: 11/26/2022] Open
Abstract
Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this approach, reduced pinna (rep) or microtia, a defect in ear development, was mapped to a small region of mouse chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep) with a mutation in the Prkra gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a missense mutation (Serine 130 to Proline) that did not affect mRNA expression, however the steady state level of RAX protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions, was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein, demonstrating the importance of the Prkra gene in various aspects of mouse development.
Collapse
Affiliation(s)
- Benjamin K. Dickerman
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christine L. White
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Claire Chevalier
- Institut de Génétique Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris, IGBMC/ICS, CNRS, INSERM, UMR7104, UMR964, Université de Strasbourg, Illkirch, France
| | - Valérie Nalesso
- Institut de Génétique Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris, IGBMC/ICS, CNRS, INSERM, UMR7104, UMR964, Université de Strasbourg, Illkirch, France
| | - Cyril Charles
- Team Evo-Devo of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
| | - Sophie Fouchécourt
- Physiologie de la Reproduction et des Comportements INRA/CNRS/Université de Tours/Haras Nationaux, UMR 6175 Centre de Recherche de Tours, Nouzilly, France
| | - Florian Guillou
- Physiologie de la Reproduction et des Comportements INRA/CNRS/Université de Tours/Haras Nationaux, UMR 6175 Centre de Recherche de Tours, Nouzilly, France
| | - Laurent Viriot
- Team Evo-Devo of Vertebrate Dentition, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
| | - Ganes C. Sen
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Graduate Program in Molecular Virology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - Yann Hérault
- Institut de Génétique Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris, IGBMC/ICS, CNRS, INSERM, UMR7104, UMR964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
64
|
The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol 2011; 85:12614-21. [PMID: 21937648 DOI: 10.1128/jvi.05240-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5'-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4(+) T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal.
Collapse
|
65
|
Cloning and structural and expressional characterization of BcpLH gene preferentially expressed in folding leaf of Chinese cabbage. ACTA ACUST UNITED AC 2011; 43:321-9. [PMID: 18726388 DOI: 10.1007/bf02879292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1999] [Indexed: 10/22/2022]
Abstract
Vegetative growth of Chinese cabbage undergoes the four successive stages which are characterized with the definite types of juvenile, rosette, folding and head leaves. From shoot tips of Chinese cabbage at early folding stage, we constructed a cDNA library and screened the differentially expressed cDNA clones using the cDNAs derived from developing folding leaves and rosette leaves as probes. One complete length of cDNA clone is designated asBcpLH. Computer alignment matched BcpLH to the domains of double-stranded RNA binding (DBRM) and the homologous regions were recognized between BcpLH and human and mouse double-stranded RNA-binding protein TRBP. PCR expression analysis shows that during vegetative growthBcpLH gene was expressed preferentially in folding leaves at folding stage. Transcripts ofBcpLH gene were increased when plants were sprayed with IAA. It is deduced thatBcpLH gene may be related to initiation of folding leaf and leafy head and induced by auxin in the aspect of transcriptional expression.
Collapse
|
66
|
Hayes AM, Qian S, Yu L, Boris-Lawrie K. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1. Retrovirology 2011; 8:36. [PMID: 21569500 PMCID: PMC3120759 DOI: 10.1186/1742-4690-8-36] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model to investigate interplay between HIV-1 and host RNA silencing. The subset of miRNA determined to be perturbed by Tat RSS in HIV-1 infection provides a focal point to define the gene networks that shape the cellular environment for HIV-1 replication.
Collapse
Affiliation(s)
- Amy M Hayes
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus OH, USA
| | | | | | | |
Collapse
|
67
|
Singh M, Castillo D, Patel CV, Patel RC. Stress-induced phosphorylation of PACT reduces its interaction with TRBP and leads to PKR activation. Biochemistry 2011; 50:4550-60. [PMID: 21526770 DOI: 10.1021/bi200104h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.
Collapse
Affiliation(s)
- Madhurima Singh
- Department of Biological Sciences, Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
68
|
Kok KH, Lui PY, Ng MHJ, Siu KL, Au SWN, Jin DY. The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 2011; 9:299-309. [PMID: 21501829 DOI: 10.1016/j.chom.2011.03.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/14/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
Abstract
RIG-I, a virus sensor that triggers innate antiviral response, is a DExD/H box RNA helicase bearing structural similarity with Dicer, an RNase III-type nuclease that mediates RNA interference. Dicer requires double-stranded RNA-binding protein partners, such as PACT, for optimal activity. Here we show that PACT physically binds to the C-terminal repression domain of RIG-I and potently stimulates RIG-I-induced type I interferon production. PACT potentiates the activation of RIG-I by poly(I:C) of intermediate length. PACT also cooperates with RIG-I to sustain the activation of antiviral defense. Depletion of PACT substantially attenuates viral induction of interferons. The activation of RIG-I by PACT does not require double-stranded RNA-dependent protein kinase or Dicer, but is mediated by a direct interaction that leads to stimulation of its ATPase activity. Our findings reveal PACT as an important component in initiating and sustaining the RIG-I-dependent antiviral response.
Collapse
Affiliation(s)
- Kin-Hang Kok
- Department of Biochemistry and State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
69
|
Wheatley AK, Kramski M, Alexander MR, Toe JG, Center RJ, Purcell DFJ. Co-expression of miRNA targeting the expression of PERK, but not PKR, enhances cellular immunity from an HIV-1 Env DNA vaccine. PLoS One 2011; 6:e18225. [PMID: 21464971 PMCID: PMC3064671 DOI: 10.1371/journal.pone.0018225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/28/2011] [Indexed: 01/03/2023] Open
Abstract
Small non-coding micro-RNAs (miRNA) are important post-transcriptional regulators of mammalian gene expression that can be used to direct the knockdown of expression from targeted genes. We examined whether DNA vaccine vectors co-expressing miRNA with HIV-1 envelope (Env) antigens could influence the magnitude or quality of the immune responses to Env in mice. Human miR-155 and flanking regions from the non-protein encoding gene mirhg155 were introduced into an artificial intron within an expression vector for HIV-1 Env gp140. Using the miR-155-expressing intron as a scaffold, we developed novel vectors for miRNA-mediated targeting of the cellular antiviral proteins PKR and PERK, which significantly down-modulated target gene expression and led to increased Env expression in vitro. Finally, vaccinating BALB/c mice with a DNA vaccine vector delivering miRNA targeting PERK, but not PKR, was able to augment the generation of Env-specific T-cell immunity. This study provides proof-of-concept evidence that miRNA effectors incorporated into vaccine constructs can positively influence vaccine immunogenicity. Further testing of vaccine-encoded miRNA will determine if such strategies can enhance protective efficacy from vaccines against HIV-1 for eventual human use.
Collapse
Affiliation(s)
- Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marit Kramski
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marina R. Alexander
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jesse G. Toe
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Infection and Immunity, The Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Rob J. Center
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
70
|
Hartig JV, Förstemann K. Loqs-PD and R2D2 define independent pathways for RISC generation in Drosophila. Nucleic Acids Res 2011; 39:3836-51. [PMID: 21245036 PMCID: PMC3089465 DOI: 10.1093/nar/gkq1324] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Drosophila, siRNAs are classified as endo- or exo-siRNAs based on their origin. Both are processed from double-stranded RNA precursors by Dcr-2 and then loaded into the Argonaute protein Ago2. While exo-siRNAs serve to defend the cell against viruses, endo-siRNAs restrict the spread of selfish DNA in somatic cells, analogous to piRNAs in the germ line. Endo- and exo-siRNAs display a differential requirement for double-stranded RNA binding domain proteins (dsRBPs): R2D2 is needed to load exo-siRNAs into Ago2 while the PD isoform of Loquacious (Loqs-PD) stimulates Dcr-2 during the nucleolytic processing of hairpin-derived endo-siRNAs. In cell culture assays, R2D2 antagonizes Loqs-PD in endo-siRNA silencing and Loqs-PD is an inhibitor of RNA interference. Loqs-PD can interact via the C-terminus unique to this isoform with the DExH/D-helicase domain of Drosophila Dcr-2, where binding of R2D2 has also been localized. Separation of the two pathways is not complete; rather, the dicing and Ago2-loading steps appear uncoupled, analogous to the corresponding steps in miRNA biogenesis. Analysis of deep sequencing data further demonstrates that in r2d2 mutant flies, siRNAs can be loaded into Ago2 but not all siRNA classes are equally proficient for this. Thus, the canonical Ago2-RISC loading complex can be bypassed under certain circumstances.
Collapse
Affiliation(s)
- Julia V Hartig
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
71
|
Pindel A, Sadler A. The Role of Protein Kinase R in the Interferon Response. J Interferon Cytokine Res 2011; 31:59-70. [DOI: 10.1089/jir.2010.0099] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Agnieszka Pindel
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | - Anthony Sadler
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
72
|
Clerzius G, Gélinas JF, Gatignol A. Multiple levels of PKR inhibition during HIV-1 replication. Rev Med Virol 2010; 21:42-53. [PMID: 21294215 DOI: 10.1002/rmv.674] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/13/2010] [Accepted: 09/20/2010] [Indexed: 12/15/2022]
Abstract
Recent therapeutic approaches against HIV-1 include IFN in combination therapy for patients with coinfections or as an alternative strategy against the virus. These treatment options require a better understanding of the weak efficacy of the IFN-stimulated genes, such as the protein kinase RNA-activated (PKR), which results in viral progression. Activated PKR has a strong antiviral activity on HIV-1 expression and production in cell culture. However, PKR is not activated upon HIV-1 infection when the virus reaches high levels of replication, due to viral and cellular controls. PKR is activated by low levels of the HIV-1 trans-activation response (TAR) RNA element, but is inhibited by high levels of this double-stranded RNA. The viral Tat protein also counteracts PKR activation by several mechanisms. In addition, HIV-1 replicates only in cells that have a high level of the TAR RNA binding protein (TRBP), a strong inhibitor of PKR activation. Furthermore, increased levels of adenosine deaminase acting on RNA (ADAR1) are observed when HIV-1 replicates at high levels and the protein binds to PKR and inhibits its activation. Finally, the PKR activator (PACT) also binds to PKR during HIV-1 replication with no subsequent kinase activation. The combination of all the inhibiting pathways that prevent PKR phosphorylation contributes to a high HIV-1 production in permissive cells. Enhancing PKR activation by counteracting its inhibitory partners could establish an increased innate immune antiviral pathway against HIV-1 and could enhance the efficacy of the IFN treatment.
Collapse
|
73
|
Sadler AJ. Orchestration of the activation of protein kinase R by the RNA-binding motif. J Interferon Cytokine Res 2010; 30:195-204. [PMID: 20377414 DOI: 10.1089/jir.2010.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The protein kinase R (PKR) constitutes part of the host antiviral response. PKR activation is regulated by the N-terminus of protein, which encodes tandem RNA-binding motifs (RBMs). The full capabilities of RBMs from PKR and other proteins have surpassed the narrow specificities initially determined as merely binding double-stranded RNA. Recognition of the increased affinity of the RBM for additional RNA species has established an immunological distinction by which PKR can detect exogenous RNAs, as well as identified PKR-mediated expression of specific endogenous genes. Furthermore, as RBMs also mediate interactions with other proteins, including PKR itself, this motif connects PKR to the broader RNA metabolism. Given the fundamental importance of protein-RNA interactions, not only in the innate immune response to intracellular pathogens, but also to coordinate the cellular replication machinery, there is considerable interest in the mechanisms by which proteins recognize and respond to RNA. This review appraises our understanding of how PKR activity is modulated by the RBMs.
Collapse
Affiliation(s)
- Anthony J Sadler
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
74
|
MacFarlane LA, Gu Y, Casson AG, Murphy PR. Regulation of fibroblast growth factor-2 by an endogenous antisense RNA and by argonaute-2. Mol Endocrinol 2010; 24:800-12. [PMID: 20197313 DOI: 10.1210/me.2009-0367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have previously reported that elevated fibroblast growth factor-2 (FGF-2) expression is associated with tumor recurrence and reduced survival after surgical resection of esophageal cancer and that these risks are reduced in tumors coexpressing an endogenous antisense (FGF-AS) RNA. In the present study, we examined the role of the endogenous FGF-AS transcript in the regulation of FGF-2 expression in the human lung adenocarcinoma cell line Seg-1. FGF-2 and FGF-AS were temporally and spatially colocalized in the cytoplasm of individual cells, and knockdown of either FGF-2 or FGF-AS by target-specific siRNAs resulted in dose-dependent up-regulation of the complementary transcript and its encoded protein product. Using a luciferase reporter system, we show that these effects are mediated by interaction of the endogenous antisense RNA with the 3'-untranslated region of the FGF-2 mRNA. Deletion mapping identified a 392-nucleotide sequence in the 5823-nucleotide FGF-2 untranslated tail that is targeted by FGF-AS. Small interfering RNA-mediated knockdown of either FGF-AS or FGF-2 significantly increased the stability of the complementary partner mRNA, demonstrating that these mRNAs are mutually regulatory. Knockdown of FGF-AS also resulted in reduced expression of argonaute-2 (AGO-2) and a number of other elements of the endogenous micro-RNA/RNA interference pathways. Conversely, small interfering RNA-mediated knockdown of AGO-2 significantly increased the stability of the FGF-2 mRNA transcript and the steady-state levels of both FGF-2 mRNA and protein, suggesting a role for AGO-2 in the regulation of FGF-2 expression.
Collapse
Affiliation(s)
- Leigh-Ann MacFarlane
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
75
|
Wang S, Liu N, Chen AJ, Zhao XF, Wang JX. TRBP Homolog Interacts with Eukaryotic Initiation Factor 6 (eIF6) inFenneropenaeus chinensis. THE JOURNAL OF IMMUNOLOGY 2009; 182:5250-8. [DOI: 10.4049/jimmunol.0802970] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
76
|
Ouellet DL, Plante I, Barat C, Tremblay MJ, Provost P. Emergence of a complex relationship between HIV-1 and the microRNA pathway. Methods Mol Biol 2009; 487:415-33. [PMID: 19301659 DOI: 10.1007/978-1-60327-547-7_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent experimental evidences support the existence of an increasingly complex and multifaceted interaction between viruses and the microRNA-guided RNA silencing machinery of human cells. The discovery of small interfering RNAs (siRNAs), which are designed to mediate cleavage of specific messenger RNAs (mRNAs), prompted virologists to establish therapeutic strategies based on siRNAs with the aim to suppress replication of several viruses, including human immunodeficiency virus type 1 (HIV-1). It has been appreciated only recently that viral RNAs can also be processed endogenously by the microRNA-generating enzyme Dicer or recognized by cellular miRNAs, in processes that could be viewed as an adapted antiviral defense mechanism. Known to repress mRNA translation through recognition of specific binding sites usually located in their 3' untranslated region, miRNAs of host or viral origin may exert regulatory effects towards host and/or viral genes and influence viral replication and/or the host response to viral infection. This article summarizes our current state of knowledge on the relationship between HIV-1 and miRNA-guided RNA silencing, and discusses the different aspects of their interaction.
Collapse
Affiliation(s)
- Dominique L Ouellet
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center, Quebec, Canada
| | | | | | | | | |
Collapse
|
77
|
TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress. Mol Cell Biol 2008; 29:254-65. [PMID: 18936160 DOI: 10.1128/mcb.01030-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTDelta13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTDelta13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTDelta13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2(-/-) murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress.
Collapse
|
78
|
Abstract
RNA silencing is a common term for homology-dependent silencing phenomena found in the majority of eukaryotic species. RNA silencing pathways share several conserved components. The common denominator of these pathways is the presence of specific, short (21-25 nt) RNA molecules generated from different double-stranded RNA substrates by a specific RNase III activity. Short RNA molecules serve as a template for sequence-specific effects including transcriptional silencing, mRNA degradation, and inhibition of translation. This review will discuss possible roles of RNA silencing pathways in mouse oocytes and early embryos as well as the use of RNA silencing for experimental inhibition of gene expression in this model system.
Collapse
|
79
|
Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, Patel RC. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res 2007; 36:998-1008. [PMID: 18096616 PMCID: PMC2241914 DOI: 10.1093/nar/gkm1129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2α on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.
Collapse
Affiliation(s)
- Megan Mittelstadt
- Department of Biological Sciences, University of South Carolina Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Scoles DR. The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta Rev Cancer 2007; 1785:32-54. [PMID: 17980164 DOI: 10.1016/j.bbcan.2007.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/29/2007] [Accepted: 10/03/2007] [Indexed: 01/20/2023]
Abstract
The neurofibromatosis 2 (NF2) tumor suppressor protein merlin is commonly mutated in human benign brain tumors. The gene altered in NF2 was located on human chromosome 22q12 in 1993 and the encoded protein named merlin and schwannomin. Merlin has homology to ERM family proteins, ezrin, radixin, and moesin, within the protein 4.1 superfamily. In efforts to determine merlin function several groups have discovered 34 merlin interacting proteins, including ezrin, radixin, moesin, CD44, layilin, paxillin, actin, N-WASP, betaII-spectrin, microtubules, TRBP, eIF3c, PIKE, NHERF, MAP, RalGDS, RhoGDI, EG1/magicin, HEI10, HRS, syntenin, caspr/paranodin, DCC, NGB, CRM1/exportin, SCHIP1, MYPT-1-PP1delta, RIbeta, PKA, PAK (three types), calpain and Drosophila expanded. Many of the proteins that interact with the merlin N-terminal domain also bind ezrin, while other merlin interacting proteins do not bind other members of the ERM family. Merlin also interacts with itself. This review describes these proteins, their possible roles in NF2, and the resultant hypothesized merlin functions. Review of all of the merlin interacting proteins and functional consequences of losses of these interactions reveals multiple merlin actions in PI3-kinase, MAP kinase and small GTPase signaling pathways that might be targeted to inhibit the proliferation of NF2 tumors.
Collapse
Affiliation(s)
- Daniel R Scoles
- Women's Cancer Research Institute, CSMC Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
81
|
HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007; 8:63. [PMID: 17663774 PMCID: PMC1955452 DOI: 10.1186/1471-2199-8-63] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 12/27/2022] Open
Abstract
Background RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA. Results In this study we investigated the possibility that the HIV-1 TAR element, a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA, is recognized by the RNAi machinery and processed to yield a viral miRNA. We show that the protein Dicer, the enzyme responsible for cleaving miRNA and siRNA from longer RNA sequences, is expressed in CD4+ T-cells. Interestingly, the level of expression of Dicer in monocytes is sub-optimal, suggesting a possible role for RNAi in maintaining latency in T-cells. Using a biotin labeled TAR element we demonstrate that Dicer binds to this structure. We show that recombinant Dicer is capable of cleaving the TAR element in vitro and that TAR derived miRNA is present in HIV-1 infected cell lines and primary T-cell blasts. Finally, we show that a TAR derived miRNA is capable of regulating viral gene expression and may be involved in repressing gene expression through transcriptional silencing. Conclusion HIV-1 TAR element is processed by the Dicer enzyme to create a viral miRNA. This viral miRNA is detectable in infected cells and appears to contribute to viral latency.
Collapse
|
82
|
Kok KH, Ng MHJ, Ching YP, Jin DY. Human TRBP and PACT Directly Interact with Each Other and Associate with Dicer to Facilitate the Production of Small Interfering RNA. J Biol Chem 2007; 282:17649-57. [PMID: 17452327 DOI: 10.1074/jbc.m611768200] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and PACT form a triple complex with Dicer and facilitate the production of small interfering RNA (siRNA) by Dicer. Knockdown of both TRBP and PACT in cultured cells leads to significant inhibition of gene silencing mediated by short hairpin RNA but not by siRNA, suggesting that TRBP and PACT function primarily at the step of siRNA production. Taken together, these findings indicate that human TRBP and PACT directly interact with each other and associate with Dicer to stimulate the cleavage of double-stranded or short hairpin RNA to siRNA. Our work significantly alters the current model for the assembly and function of the Dicer-containing complex that generates siRNA and micro-RNA in human.
Collapse
Affiliation(s)
- Kin Hang Kok
- Department of Biochemistry, University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
83
|
Abstract
RNAi is a collection of processes mediated by small RNAs that silence gene expression in a sequence-specific manner. Studies of processes as divergent as post-transcriptional gene silencing, transcriptional silencing through RNA-directed DNA methylation, or heterochromatin formation, and even RNA-guided DNA elimination have converged on a core pathway. This review will highlight recent structural and mechanistic studies illustrating siRNA and miRNA processing, RISC formation, the execution of RNAi by RISC, and the regulation of these pathways, with a specific focus on vertebrate systems.
Collapse
Affiliation(s)
- Robert E Collins
- Department of Biochemistry, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
84
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2007; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 602] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
85
|
Provost P, Barat C, Plante I, Tremblay MJ. HIV-l and the microRNA-guided silencing pathway: an intricate and multifaceted encounter. Virus Res 2006; 121:107-15. [PMID: 16889864 PMCID: PMC2896964 DOI: 10.1016/j.virusres.2006.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/13/2006] [Accepted: 06/28/2006] [Indexed: 01/02/2023]
Abstract
MicroRNAs (miRNAs) are approximately 21-24 nucleotide RNAs that mediate repression of messenger RNA (mRNA) translation through recognition of specific miRNA binding sites usually located in the 3' non-translated region. Designed to simulate miRNAs, small interfering RNAs represent a powerful genetic approach to potently inhibit gene expression by mediating cleavage of the intended mRNA target. This strategy has been applied successfully to suppress replication of several viruses, including human immunodeficiency virus type 1 (HIV-1). However, recent evidences indicate that viral RNAs may themselves be processed, to some extent, by the endogenous miRNA biosynthetic machinery in mammalian cells, extending previous observations in plants. The resulting viral miRNAs may exert regulatory effects towards host and/or viral genes that may influence viral replication and modulate the course of infection. Viral miRNA generation and/or action may be limited by counteraction through inhibitory viral RNAs and/or proteins. This review article will focus on the relationship between HIV-1 and miRNA-guided RNA silencing, and discuss the different aspects of their interaction. As we learn more about the mechanism and importance of small RNA-based antiviral systems, a more intricate picture of the interaction between HIV-1 and a proven antiviral defense mechanism in lower eukaryotes is emerging.
Collapse
Affiliation(s)
- Patrick Provost
- Centre de Recherche en Rhumatologie et Immunologie, CHUL Research Center, Quebec, Quebec, Canada.
| | | | | | | |
Collapse
|
86
|
Bennasser Y, Yeung ML, Jeang KT. HIV-1 TAR RNA subverts RNA interference in transfected cells through sequestration of TAR RNA-binding protein, TRBP. J Biol Chem 2006; 281:27674-8. [PMID: 16887810 DOI: 10.1074/jbc.c600072200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TAR RNA-binding protein, TRBP, was recently discovered to be an essential partner for Dicer and a crucial component of the RNA-induced silencing complex (RISC), a critical element of the RNA interference (RNAi) of the cell apparatus. Human TRBP was originally characterized and cloned 15 years ago based on its high affinity for binding the HIV-1 encoded leader RNA, TAR. RNAi is used, in part, by cells to defend against infection by viruses. Here, we report that transfected TAR RNA can attenuate the RNAi machinery in human cells. Our data suggest that TAR RNA sequesters TRBP rendering it unavailable for downstream Dicer-RISC complexes. TAR-induced inhibition of Dicer-RISC activity in transfected cells was partially relieved by exogenous expression of TRBP.
Collapse
Affiliation(s)
- Yamina Bennasser
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
87
|
Watanabe S, Yamashita T, Taira H. A new double-stranded RNA binding protein (DRBP-120) is associated with double-stranded RNA-activated protein kinase (PKR). Biosci Biotechnol Biochem 2006; 70:1717-23. [PMID: 16861808 DOI: 10.1271/bbb.60061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-activated protein kinase (PKR) plays an important role in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In this study, a new 120-kDa PKR-associated protein designated double-stranded RNA binding protein (DRBP)-120 was identified using co-immunoprecipitation with anti-PKR antiserum and two-dimensional electrophoresis. Furthermore, DRBP-120 is a double-stranded RNA (dsRNA)-binding protein, and it was detected in both the cytoplasm and the nucleus of HeLa cells associated with PKR.
Collapse
Affiliation(s)
- Shuji Watanabe
- Department of Physiology, School of Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | | | | |
Collapse
|
88
|
Langland JO, Cameron JM, Heck MC, Jancovich JK, Jacobs BL. Inhibition of PKR by RNA and DNA viruses. Virus Res 2006; 119:100-10. [PMID: 16704884 DOI: 10.1016/j.virusres.2005.10.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 09/28/2005] [Accepted: 10/20/2005] [Indexed: 11/28/2022]
Abstract
Interferons were the first of the anti-viral innate immune modulators to be characterized, initially characterized solely as anti-viral proteins [reviewed in Le Page, C., Genin, P., Baines, M.G., Hiscott, J., 2000. Inteferon activation and innate immunity. Rev. Immunogenet. 2, 374-386]. As we have progressed in our understanding of the interferons they have taken a more central role in our understanding of innate immunity and its interplay with the adaptive immune response. One of the key players in function of interferon is the interferon-inducible enzyme, protein kinase (PKR, activatable by RNA). The key role played by PKR in the innate response to virus infection is emphasized by the large number of viruses, DNA viruses as well as RNA viruses, whose hosts range from insects to humans, that code for PKR inhibitors. In this review we will first describe activation of PKR and then describe the myriad of ways that viruses inhibit function of PKR.
Collapse
Affiliation(s)
- Jeffrey O Langland
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
89
|
Lee JY, Moon HJ, Lee WK, Chun HJ, Han CW, Jeon YW, Lim Y, Kim YH, Yao TP, Lee KH, Jun TY, Rha HK, Kang JK. Merlin facilitates ubiquitination and degradation of transactivation-responsive RNA-binding protein. Oncogene 2006; 25:1143-52. [PMID: 16247459 DOI: 10.1038/sj.onc.1209150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Nf2 tumor suppressor codes for merlin, a protein whose function is largely unknown. We have previously demonstrated a novel interaction between merlin and TRBP, which inhibits the oncogenic activity of TRBP. In spite of the significance of their functional interaction, its molecular mechanism still remains to be elucidated. In this report, we investigated how merlin inhibits the oncogenic activity of TRBP in association with cell growth conditions. In the human embryonic kidney 293 cell line, the level of endogenous merlin increased, whereas that of endogenous TRBP significantly decreased along with the increase in cell confluence. We demonstrated that the carboxyl-terminal region of TRBP was responsible for this phenomenon using stable cell lines expressing deletion mutants of TRBP. The overexpression of merlin decreased the protein level of TRBP, and the ubiquitin-like subdomain of merlin's FERM domain was important for this activity. We also demonstrated that TRBP is ubiquitinylated and the ubiquitinylated forms of TRBP are accumulated by ectopically expressed merlin or cell confluence in the presence of MG132, a proteasome inhibitor. Furthermore, we showed that the regulation of TRBP in response to cell confluence was abolished upon knockdown of merlin expression by specific small interfering RNA. Finally, we showed that ectopically expressed merlin restored cell-cell contact inhibition in cells stably expressing TRBP but not in TRBPDeltac. These results suggest that merlin is involved in the regulation of TRBP protein level by facilitating its ubiquitination in response to such cues as cell-cell contacts.
Collapse
Affiliation(s)
- J Y Lee
- Catholic Neuroscience Center, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Scoles DR, Yong WH, Qin Y, Wawrowsky K, Pulst SM. Schwannomin inhibits tumorigenesis through direct interaction with the eukaryotic initiation factor subunit c (eIF3c). Hum Mol Genet 2006; 15:1059-70. [PMID: 16497727 DOI: 10.1093/hmg/ddl021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neurofibromatosis 2 (NF2) tumor suppressor protein, schwannomin or merlin, is commonly lost upon NF2 gene mutation in benign human brain tumors. We identified the p110 subunit of the eukaryotic initiation factor 3 (eIF3c) as a schwannomin interacting protein. The eIF3 complex consists of approximately 10 subunits whose functions are only recently becoming known. Interaction between schwannomin and eIF3c suggests a role for schwannomin in eIF3c-mediated regulation of proliferation related to changes in protein translation. We found that schwannomin was most effective for inhibiting cellular proliferation when eIF3c was highly expressed. When we examined these proteins in 14 meningiomas, we observed high eIF3c abundance in those that had lost schwannomin expression but low eIF3c abundance in those retaining schwannomin. Consequently, eIF3c appears to be involved in NF2 pathogenesis and deserves to be investigated as a prognostic marker for NF2 and target for treatment of NF2 patient tumors.
Collapse
Affiliation(s)
- Daniel R Scoles
- Division of Neurology, CSMC Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| | | | | | | | | |
Collapse
|
91
|
Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P. MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006; 2006:69616. [PMID: 17057368 PMCID: PMC1559927 DOI: 10.1155/jbb/2006/69616] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 04/17/2006] [Indexed: 12/19/2022] Open
Abstract
Encoded by the genome of most eukaryotes examined so far, microRNAs (miRNAs) are small approximately 21-nucleotide (nt) noncoding RNAs (ncRNAs) derived from a biosynthetic cascade involving sequential processing steps executed by the ribonucleases (RNases) III Drosha and Dicer. Following their recent identification, miRNAs have rapidly taken the center stage as key regulators of gene expression. In this review, we will summarize our current knowledge of the miRNA biosynthetic pathway and its protein components, as well as the processes it regulates via miRNAs, which are known to exert a variety of biological functions in eukaryotes. Although the relative importance of miRNAs remains to be fully appreciated, deregulated protein expression resulting from either dysfunctional miRNA biogenesis or abnormal miRNA-based gene regulation may represent a key etiologic factor in several, as yet unidentified, diseases. Hence is our need to better understand the complexity of the basic mechanisms underlying miRNA biogenesis and function.
Collapse
Affiliation(s)
- Dominique L. Ouellet
- Centre de Recherche en Rhumatologie et Immunologie,
Centre de Recherche du CHUL, 2705 Boulevard Laurier, Ste-Foy, Quebec, Canada G1V 4G2
- Faculté de Médecine, Université Laval, Quebec, Canada G1K 7P4
| | - Marjorie P. Perron
- Centre de Recherche en Rhumatologie et Immunologie,
Centre de Recherche du CHUL, 2705 Boulevard Laurier, Ste-Foy, Quebec, Canada G1V 4G2
- Faculté de Médecine, Université Laval, Quebec, Canada G1K 7P4
| | - Lise-Andrée Gobeil
- Centre de Recherche en Rhumatologie et Immunologie,
Centre de Recherche du CHUL, 2705 Boulevard Laurier, Ste-Foy, Quebec, Canada G1V 4G2
- Faculté de Médecine, Université Laval, Quebec, Canada G1K 7P4
| | - Pierre Plante
- Centre de Recherche en Rhumatologie et Immunologie,
Centre de Recherche du CHUL, 2705 Boulevard Laurier, Ste-Foy, Quebec, Canada G1V 4G2
- Faculté de Médecine, Université Laval, Quebec, Canada G1K 7P4
| | - Patrick Provost
- Centre de Recherche en Rhumatologie et Immunologie,
Centre de Recherche du CHUL, 2705 Boulevard Laurier, Ste-Foy, Quebec, Canada G1V 4G2
- Faculté de Médecine, Université Laval, Quebec, Canada G1K 7P4
| |
Collapse
|
92
|
Ong CL, Thorpe JC, Gorry PR, Bannwarth S, Jaworowski A, Howard JL, Chung S, Campbell S, Christensen HS, Clerzius G, Mouland AJ, Gatignol A, Purcell DFJ. Low TRBP levels support an innate human immunodeficiency virus type 1 resistance in astrocytes by enhancing the PKR antiviral response. J Virol 2005; 79:12763-72. [PMID: 16188979 PMCID: PMC1235869 DOI: 10.1128/jvi.79.20.12763-12772.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute human immunodeficiency virus type 1 (HIV-1) replication in astrocytes produces minimal new virus particles due, in part, to inefficient translation of viral structural proteins despite high levels of cytoplasmic viral mRNA. We found that a highly reactive double-stranded (ds) RNA-binding protein kinase (PKR) response in astrocytes underlies this inefficient translation of HIV-1 mRNA. The dsRNA elements made during acute replication of HIV-1 in astrocytes triggers PKR activation and the specific inhibition of HIV-1 protein translation. The heightened PKR response results from relatively low levels of the cellular antagonist of PKR, the TAR RNA binding protein (TRBP). Efficient HIV-1 production was restored in astrocytes by inhibiting the innate PKR response to HIV-1 dsRNA with dominant negative PKR mutants, or PKR knockdown by siRNA gene silencing. Increasing the expression of TRBP in astrocytes restored acute virus production to levels comparable to those observed in permissive cells. Therefore, the robust innate PKR antiviral response in astrocytes results from relatively low levels of TRBP expression and contributes to their restricted infection. Our findings highlight TRBP as a novel cellular target for therapeutic interventions to block productive HIV-1 replication in cells that are fully permissive for HIV-1 infection.
Collapse
Affiliation(s)
- Chi L Ong
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Gatignol A, Lainé S, Clerzius G. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity? Retrovirology 2005; 2:65. [PMID: 16253139 PMCID: PMC1282568 DOI: 10.1186/1742-4690-2-65] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/27/2005] [Indexed: 11/10/2022] Open
Abstract
Increasing evidence indicates that RNA interference (RNAi) may be used to provide antiviral immunity in mammalian cells. Human micro (mi)RNAs can inhibit the replication of a primate virus, whereas a virally-encoded miRNA from HIV inhibits its own replication. Indirect proof comes from RNAi suppressors encoded by mammalian viruses. Influenza NS1 and Vaccinia E3L proteins can inhibit RNAi in plants, insects and worms. HIV-1 Tat protein and Adenovirus VA RNAs act as RNAi suppressors in mammalian cells. Surprisingly, many RNAi suppressors are also inhibitors of the interferon (IFN)-induced protein kinase R (PKR) but the potential overlap between the RNAi and the IFN pathways remains to be determined. The link between RNAi as an immune response and the IFN pathway may be formed by a cellular protein, TRBP, which has a dual role in HIV replication and RNAi. TRBP has been isolated as an HIV-1 TAR RNA binding protein that increases HIV expression and replication by inhibiting PKR and by increasing translation of structured RNAs. A recent report published in the Journal of Virology shows that the poor replication of HIV in astrocytes is mainly due to a heightened PKR response that can be overcome by supplying TRBP exogenously. In two recent papers published in Nature and EMBO Reports, TRBP is now shown to interact with Dicer and to be required for RNAi mediated by small interfering (si) and micro (mi)RNAs. The apparent discrepancy between TRBP requirement in RNAi and in HIV replication opens the hypotheses that RNAi may be beneficial for HIV-1 replication or that HIV-1 may evade the RNAi restriction by diverting TRBP from Dicer and use it for its own benefit.
Collapse
Affiliation(s)
- Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, and Department of Medicine and Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Sébastien Lainé
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, and Department of Medicine and Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Guerline Clerzius
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, and Department of Medicine and Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
94
|
Saito K, Ishizuka A, Siomi H, Siomi MC. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 2005. [PMID: 15918769 DOI: 10.1371/journal.pbio/0030235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
microRNAs (miRNAs) are a large family of 21- to 22-nucleotide non-coding RNAs that interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. miRNAs are excised in a stepwise process from primary miRNA (pri-miRNA) transcripts. The Drosha-Pasha/DGCR8 complex in the nucleus cleaves pri-miRNAs to release hairpin-shaped precursor miRNAs (pre-miRNAs). These pre-miRNAs are then exported to the cytoplasm and further processed by Dicer to mature miRNAs. Here we show that Drosophila Dicer-1 interacts with Loquacious, a double-stranded RNA-binding domain protein. Depletion of Loquacious results in pre-miRNA accumulation in Drosophila S2 cells, as is the case for depletion of Dicer-1. Immuno-affinity purification experiments revealed that along with Dicer-1, Loquacious resides in a functional pre-miRNA processing complex, and stimulates and directs the specific pre-miRNA processing activity. These results support a model in which Loquacious mediates miRNA biogenesis and, thereby, the expression of genes regulated by miRNAs.
Collapse
Affiliation(s)
- Kuniaki Saito
- Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan
| | | | | | | |
Collapse
|
95
|
Saito K, Ishizuka A, Siomi H, Siomi MC. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 2005; 3:e235. [PMID: 15918769 PMCID: PMC1141268 DOI: 10.1371/journal.pbio.0030235] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 04/30/2005] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are a large family of 21- to 22-nucleotide non-coding RNAs that interact with target mRNAs at specific sites to induce cleavage of the message or inhibit translation. miRNAs are excised in a stepwise process from primary miRNA (pri-miRNA) transcripts. The Drosha-Pasha/DGCR8 complex in the nucleus cleaves pri-miRNAs to release hairpin-shaped precursor miRNAs (pre-miRNAs). These pre-miRNAs are then exported to the cytoplasm and further processed by Dicer to mature miRNAs. Here we show that Drosophila Dicer-1 interacts with Loquacious, a double-stranded RNA-binding domain protein. Depletion of Loquacious results in pre-miRNA accumulation in Drosophila S2 cells, as is the case for depletion of Dicer-1. Immuno-affinity purification experiments revealed that along with Dicer-1, Loquacious resides in a functional pre-miRNA processing complex, and stimulates and directs the specific pre-miRNA processing activity. These results support a model in which Loquacious mediates miRNA biogenesis and, thereby, the expression of genes regulated by miRNAs. This and an accompanying paper by Förstemann et al. identify Loquacious, which encodes a double-stranded RNA binding domain protein, and partners with Dicer-1 in the processing of microRNAs.
Collapse
Affiliation(s)
- Kuniaki Saito
- 1Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Akira Ishizuka
- 1Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Haruhiko Siomi
- 1Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Mikiko C Siomi
- 1Institute for Genome Research, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
96
|
Fasciano S, Hutchins B, Handy I, Patel RC. Identification of the heparin-binding domains of the interferon-induced protein kinase, PKR. FEBS J 2005; 272:1425-39. [PMID: 15752359 PMCID: PMC3969814 DOI: 10.1111/j.1742-4658.2005.04575.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PKR is an interferon-induced serine-threonine protein kinase that plays an important role in the mediation of the antiviral and antiproliferative actions of interferons. PKR is present at low basal levels in cells and its expression is induced at the transcriptional level by interferons. PKR's kinase activity stays latent until it binds to its activator. In the case of virally infected cells, double-stranded (ds) RNA serves as PKR's activator. The dsRNA binds to PKR via two copies of an evolutionarily conserved motif, thus inducing a conformational change, unmasking the ATP-binding site and leading to autophosphorylation of PKR. Activated PKR then phosphorylates the alpha-subunit of the protein synthesis initiation factor 2 (eIF2alpha) thereby inducing a general block in the initiation of protein synthesis. In addition to dsRNA, polyanionic agents such as heparin can also activate PKR. In contrast to dsRNA-induced activation of PKR, heparin-dependent PKR activation has so far remained uncharacterized. In order to understand the mechanism of heparin-induced PKR activation, we have mapped the heparin-binding domains of PKR. Our results indicate that PKR has two heparin-binding domains that are nonoverlapping with its dsRNA-binding domains. Although both these domains can function independently of each other, they function cooperatively when present together. Point mutations created within these domains rendered PKR defective in heparin-binding, thereby confirming their essential role. In addition, these mutants were defective in kinase activity as determined by both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
97
|
Gil J, Esteban M. Vaccinia virus recombinants as a model system to analyze interferon-induced pathways. J Interferon Cytokine Res 2005; 24:637-46. [PMID: 15684816 DOI: 10.1089/jir.2004.24.637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The interferons (IFNs) are a family of cytokines with broad antiviral activities that also control cell proliferation and modulate immune responses. IFNs exert their pleiotropic actions through the regulation of multiple pathways that have been subjected to extensive study using diverse approaches. The scope of this review is to show how we can take advantage of vaccinia virus (VV) to study IFN-related pathways. We summarize and present the different VV models available for studying IFN function and the possibilities that they offer to analyze IFN-induced pathways, IFN modulators, and the biologic effects at the molecular and cellular levels. Emphasis is given to studies of dsRNA-activated signaling with VV lacking E3L (VV DeltaE3L) and in RNA-activated protein kinase (PKR)-related pathways, through the use of VV recombinants (VVr) with inducible PKR (VV PKR). The latest system is versatile, as expression of PKR can be regulated and induced at different times; similarly, VVr can be generated expressing other PKR modulators. As an example of the utility of VVr, we describe how this model has been used to analyze the antiviral and proapoptotic functions of PKR, the impact of PKR on translation, and the PKR-induced activation of the nuclear factor-kappaB (NF-kappaB) pathway.
Collapse
Affiliation(s)
- Jesús Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
98
|
Kasuya H, Pawlik TM, Mullen JT, Donahue JM, Nakamura H, Chandrasekhar S, Kawasaki H, Choi E, Tanabe KK. Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Res 2004; 64:2561-7. [PMID: 15059912 DOI: 10.1158/0008-5472.can-03-3431] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Replication-conditional viruses destroy tumors in a process referred to as viral oncolysis. An important prerequisite for this cancer therapy strategy is use of viruses that replicate preferentially in neoplastic cells. In this study the DF3/MUC1 promoter/enhancer sequence is used to regulate expression of gamma(1)34.5 to drive replication of a Herpes simplex virus 1 (HSV-1) mutant (DF3gamma34.5) preferentially in DF3/MUC1-positive cells. HSV-1 gamma(1)34.5 functions to dephosphorylate elongation initiation factor 2alpha, which is an important step for robust HSV-1 replication. After DF3gamma34.5 infection of cells, elongation initiation factor 2alpha phosphatase activity and viral replication were observed preferentially in DF3/MUC1-positive cells but not in DF3/MUC1-negative cells. Regulation of gamma(1)34.5 function results in preferential replication in cancer cells that express DF3/MUC1, restricted biodistribution in vivo, and less toxicity as assessed by LD(50). Preferential replication of DF3gamma34.5 was observed in DF3/MUC1-positive liver tumors after intravascular perfusion of human liver specimens. DF3gamma34.5 was effective against carcinoma xenografts in nude mice. Regulation of gamma(1)34.5 by the DF3/MUC1 promoter is a promising strategy for development of HSV-1 mutants for viral oncolysis.
Collapse
Affiliation(s)
- Hideki Kasuya
- Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Elia A, Vyas J, Laing KG, Clemens MJ. Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. ACTA ACUST UNITED AC 2004; 271:1895-905. [PMID: 15128299 DOI: 10.1111/j.1432-1033.2004.04099.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epstein-Barr virus (EBV) is a potent mitogenic and antiapoptotic agent for B lymphocytes and is associated with several different types of human tumour. The abundantly expressed small viral RNA, EBER-1, binds to the growth inhibitory and pro-apoptotic protein kinase R (PKR) and blocks activation of the latter by double-stranded RNA. Recent evidence has suggested that expression of EBER-1 alone in EBV-negative B cells promotes a tumorigenic phenotype and that this may be related to inhibition of the pro-apoptotic effects of PKR. The ribosomal protein L22 binds to EBER-1 in virus-infected cells, but the significance of this has not previously been established. We report here that L22 and PKR compete for a common binding site on EBER-1. As a result of this competition, L22 interferes with the ability of the small RNA to inhibit the activation of PKR by dsRNA. Transient expression of EBER-1 in murine embryonic fibroblasts stimulates reporter gene expression and partially reverses the inhibitory effect of PKR. However, EBER-1 is also stimulatory when transfected into PKR knockout cells, suggesting an additional, PKR-independent, mode of action of the small RNA. Expression of L22 prevents both the PKR-dependent and -independent effects of EBER-1 in vivo. These results suggest that the association of L22 with EBER-1 in EBV-infected cells can attenuate the biological effects of the viral RNA. Such effects include both the inhibition of PKR and additional mechanism(s) by which EBER-1 stimulates gene expression.
Collapse
Affiliation(s)
- Androulla Elia
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
100
|
Lee JY, Kim H, Ryu CH, Kim JY, Choi BH, Lim Y, Huh PW, Kim YH, Lee KH, Jun TY, Rha HK, Kang JK, Choi CR. Merlin, a tumor suppressor, interacts with transactivation-responsive RNA-binding protein and inhibits its oncogenic activity. J Biol Chem 2004; 279:30265-73. [PMID: 15123692 DOI: 10.1074/jbc.m312083200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurofibromatosis type 2 gene-encoded protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of membrane-cytoskeleton-associated proteins. Recent studies suggest that the loss of neurofibromatosis type 2 function contributes to tumor development and metastasis. Although the cellular functions of merlin as a tumor suppressor are relatively well characterized, the cellular mechanism whereby merlin controls cell proliferation from membrane locations is still poorly understood. During our efforts to find potential merlin modulators through protein-protein interactions, we identified transactivation-responsive RNA-binding protein (TRBP) as a merlin-binding protein in a yeast two-hybrid screen. The interaction between TRBP and merlin was confirmed by glutathione S-transferase pull-down assays, co-immunoprecipitation, and co-localization experiments. The carboxyl-terminal regions of each protein were responsible for their interaction. Cells overexpressing TRBP showed enhanced cell growth in cell proliferation assays and also exhibited transformed phenotypes, such as anchorage-independent cell growth and tumor development in mouse xenografts. Merlin efficiently inhibited these oncogenic activities of TRBP in our experiments. These results provide the first clue to the functional interaction between TRBP and merlin and suggest a novel mechanism for the tumor suppressor function of merlin both in vitro and in vivo.
Collapse
Affiliation(s)
- Joo Yong Lee
- Catholic Neuroscience Center, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|