51
|
Husain F, Tang K, Veeranagouda Y, Boente R, Patrick S, Blakely G, Wexler HM. Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom 2019; 3. [PMID: 29208130 PMCID: PMC5729914 DOI: 10.1099/mgen.0.000136] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteroides fragilis, an important component of the human gastrointestinal microbiota, can cause lethal extra-intestinal infection upon escape from the gastrointestinal tract. We demonstrated transfer and recombination of large chromosomal segments from B. fragilis HMW615, a multidrug resistant clinical isolate, to B. fragilis 638R. In one example, the transfer of a segment of ~435 Kb/356 genes replaced ~413 Kb/326 genes of the B. fragilis 638R chromosome. In addition to transfer of antibiotic resistance genes, these transfers (1) replaced complete divergent polysaccharide biosynthesis loci; (2) replaced DNA inversion-controlled intergenic shufflons (that control expression of genes encoding starch utilization system outer membrane proteins) with more complex, divergent shufflons; and (3) introduced additional intergenic shufflons encoding divergent Type 1 restriction/modification systems. Conjugative transposon-like genes within a transferred segment and within a putative integrative conjugative element (ICE5) ~45 kb downstream from the transferred segment both encode proteins that may be involved in the observed transfer. These data indicate that chromosomal transfer is a driver of antigenic diversity and nutrient adaptation in Bacteroides that (1) contributes to the dissemination of the extensive B. fragilis pan-genome, (2) allows rapid adaptation to a changing environment and (3) can confer pathogenic characteristics to host symbionts.
Collapse
Affiliation(s)
- Fasahath Husain
- Brentwood Biomedical Research Institute, Los Angeles, CA, USA
| | | | | | | | | | | | - Hannah M. Wexler
- Research, GLAVAHCS, 11301 Wilshire Blvd., 691/151J Bldg. 115, Room 312, Los Angeles, CA, USA
- *Correspondence: Hannah M. Wexler,
| |
Collapse
|
52
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
53
|
Liu H, Sandal N, Andersen KR, James EK, Stougaard J, Kelly S, Kawaharada Y. A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. THE NEW PHYTOLOGIST 2018; 220:526-538. [PMID: 29959893 DOI: 10.1111/nph.15293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/24/2018] [Indexed: 05/08/2023]
Abstract
Nodule primordia induced by rhizobial glycan mutants often remain uninfected. To identify processes involved in infection and organogenesis we used forward genetics to identify plant genes involved in perception and responses to bacterial glycans. To dissect the mechanisms underlying the negative plant responses to the Mesorhizobium loti R7AexoU and ML001cep mutants, a screen for genetic suppressors of the nodulation phenotypes was performed on a chemically mutagenized Lotus population. Two mutant lines formed infected nitrogen-fixing pink nodules, while five mutant lines developed uninfected large white nodules, presumably altered in processes controlling organogenesis. Genetic mapping identified a mutation in the cytokinin receptor Lhk1 resulting in an alanine to valine substitution adjacent to a coiled-coil motif in the juxta-membrane region of LHK1. This results in a spontaneous nodulation phenotype and increased ethylene production. The allele was renamed snf5, and segregation studies of snf5 together with complementation studies suggest that snf5 is a gain-of-function allele. This forward genetic approach to investigate the role of glycans in the pathway synchronizing infection and organogenesis shows that a combination of plant and bacterial genetics opens new possibilities to study glycan responses in plants as well as identification of mutant alleles affecting nodule organogenesis.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8-Ueda, Morioka, Iwate, Japan
| |
Collapse
|
54
|
Porter SS, Faber-Hammond J, Montoya AP, Friesen ML, Sackos C. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. ISME JOURNAL 2018; 13:301-315. [PMID: 30218020 PMCID: PMC6331556 DOI: 10.1038/s41396-018-0266-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/01/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022]
Abstract
Research on mutualism seeks to explain how cooperation can be maintained when uncooperative mutants co-occur with cooperative kin. Gains and losses of the gene modules required for cooperation punctuate symbiont phylogenies and drive lifestyle transitions between cooperative symbionts and uncooperative free-living lineages over evolutionary time. Yet whether uncooperative symbionts commonly evolve from within cooperative symbiont populations or from within distantly related lineages with antagonistic or free-living lifestyles (i.e., third-party mutualism exploiters or parasites), remains controversial. We use genomic data to show that genotypes that differ in the presence or absence of large islands of symbiosis genes are common within a single wild recombining population of Mesorhizobium symbionts isolated from host tissues and are an important source of standing heritable variation in cooperation in this population. In a focal population of Mesorhizobium, uncooperative variants that lack a symbiosis island segregate at 16% frequency in nodules, and genome size and symbiosis gene number are positively correlated with cooperation. This finding contrasts with the genomic architecture of variation in cooperation in other symbiont populations isolated from host tissues in which the islands of genes underlying cooperation are ubiquitous and variation in cooperation is primarily driven by allelic substitution and individual gene gain and loss events. Our study demonstrates that uncooperative mutants within mutualist populations can comprise a significant component of genetic variation in nature, providing biological rationale for models and experiments that seek to explain the maintenance of mutualism in the face of non-cooperators.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA.
| | - Joshua Faber-Hammond
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| | - Angeliqua P Montoya
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Cynthia Sackos
- School of Biological Sciences, Washington State University, Vancouver, WA, 98686, USA
| |
Collapse
|
55
|
Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, Videira e Castro IM, Monza J, Sanjuán J, León-Barrios M. The Rhizobia- Lotus Symbioses: Deeply Specific and Widely Diverse. Front Microbiol 2018; 9:2055. [PMID: 30258414 PMCID: PMC6144797 DOI: 10.3389/fmicb.2018.02055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between Lotus and rhizobia has been long considered very specific and only two bacterial species were recognized as the microsymbionts of Lotus: Mesorhizobium loti was considered the typical rhizobia for the L. corniculatus complex, whereas Bradyrhizobium sp. (Lotus) was the symbiont for L. uliginosus and related species. As discussed in this review, this situation has dramatically changed during the last 15 years, with the characterization of nodule bacteria from worldwide geographical locations and from previously unexplored Lotus spp. Current data support that the Lotus rhizobia are dispersed amongst nearly 20 species in five genera (Mesorhizobium, Bradyrhizobium, Rhizobium, Ensifer, and Aminobacter). As a consequence, M. loti could be regarded an infrequent symbiont of Lotus, and several plant-bacteria compatibility groups can be envisaged. Despite the great progress achieved with the model L. japonicus in understanding the establishment and functionality of the symbiosis, the genetic and biochemical bases governing the stringent host-bacteria compatibility pairships within the genus Lotus await to be uncovered. Several Lotus spp. are grown for forage, and inoculation with rhizobia is a common practice in various countries. However, the great diversity of the Lotus rhizobia is likely squandered, as only few bacterial strains are used as inoculants for Lotus pastures in very different geographical locations, with a great variety of edaphic and climatic conditions. The agroecological potential of the genus Lotus can not be fully harnessed without acknowledging the great diversity of rhizobia-Lotus interactions, along with a better understanding of the specific plant and bacterial requirements for optimal symbiotic nitrogen fixation under increasingly constrained environmental conditions.
Collapse
Affiliation(s)
- María J. Lorite
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J. Estrella
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Francisco J. Escaray
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | | | - Jorge Monza
- Facultad de Agronomia, Universidad de la República, Montevideo, Uruguay
| | - Juan Sanjuán
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
56
|
Koskella B, Taylor TB. Multifaceted Impacts of Bacteriophages in the Plant Microbiome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:361-380. [PMID: 29958076 DOI: 10.1146/annurev-phyto-080417-045858] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant-associated bacteria face multiple selection pressures within their environments and have evolved countless adaptations that both depend on and shape bacterial phenotype and their interaction with plant hosts. Explaining bacterial adaptation and evolution therefore requires considering each of these forces independently as well as their interactions. In this review, we examine how bacteriophage viruses (phages) can alter the ecology and evolution of plant-associated bacterial populations and communities. This includes influencing a bacterial population's response to both abiotic and biotic selection pressures and altering ecological interactions within the microbiome and between the bacteria and host plant. We outline specific ways in which phages can alter bacterial phenotype and discuss when and how this might impact plant-microbe interactions, including for plant pathogens. Finally, we highlight key open questions in phage-bacteria-plant research and offer suggestions for future study.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720, USA;
| | - Tiffany B Taylor
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| |
Collapse
|
57
|
Masson-Boivin C, Sachs JL. Symbiotic nitrogen fixation by rhizobia-the roots of a success story. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:7-15. [PMID: 29289792 DOI: 10.1016/j.pbi.2017.12.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/12/2023]
Abstract
By evolving the dual capacity of intracellular survival and symbiotic nitrogen fixation in legumes, rhizobia have achieved an ecological and evolutionary success that has reshaped our biosphere. Despite complex challenges, including a dual lifestyle of intracellular infection separated by a free-living phase in soil, rhizobial symbiosis has spread horizontally to hundreds of bacterial species and geographically throughout the globe. This symbiosis has also persisted and been reshaped through millions of years of history. Here, we summarize recent advances in our understanding of the molecular mechanisms, ecological settings, and evolutionary pathways that are collectively responsible for this symbiotic success story. We offer predictions of how this symbiosis can evolve under new influences and for the benefit of a burgeoning human population.
Collapse
Affiliation(s)
| | - Joel L Sachs
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
58
|
Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW. Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes (Basel) 2018; 9:E321. [PMID: 29954096 PMCID: PMC6071183 DOI: 10.3390/genes9070321] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/17/2023] Open
Abstract
Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume⁻rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated. The occurrence and importance of horizontal transfer of rhizobial symbiosis genes within and between bacterial genera were assessed. Horizontal transfer of symbiosis genes between rhizobial strains is of common occurrence, is widespread geographically, is not restricted to specific rhizobial genera, and occurs within and between rhizobial genera. The transfer of symbiosis genes to bacteria adapted to local soil conditions can allow these bacteria to become rhizobial symbionts of previously incompatible legumes growing in these soils. This, in turn, will have consequences for the growth, life history, and biogeography of the legume species involved, which provides a critical ecological link connecting the horizontal transfer of symbiosis genes between rhizobial bacteria in the soil to the above-ground floral biodiversity and vegetation community structure.
Collapse
Affiliation(s)
- Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Sofie De Meyer
- Centre for Rhizobium Studies, Murdoch University, Murdoch 6150, Australia.
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
| | - Euan K James
- James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | - Tomasz Stępkowski
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland.
| | - Simon Hodge
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
| | - Marcelo F Simon
- Embrapa Genetic Resources and Biotechnology, Brasilia DF 70770-917, Brazil.
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
59
|
Chen YX, Zou L, Penttinen P, Chen Q, Li QQ, Wang CQ, Xu KW. Faba Bean ( Vicia faba L.) Nodulating Rhizobia in Panxi, China, Are Diverse at Species, Plant Growth Promoting Ability, and Symbiosis Related Gene Levels. Front Microbiol 2018; 9:1338. [PMID: 29973926 PMCID: PMC6019463 DOI: 10.3389/fmicb.2018.01338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
We isolated 65 rhizobial strains from faba bean (Vicia faba L.) from Panxi, China, studied their plant growth promoting ability with nitrogen free hydroponics, genetic diversity with clustered analysis of combined ARDRA and IGS-RFLP, and phylogeny by sequence analyses of 16S rRNA gene, three housekeeping genes and symbiosis related genes. Eleven strains improved the plant shoot dry mass significantly comparing to that of not inoculated plants. According to the clustered analysis of combined ARDRA and IGS-RFLP the isolates were genetically diverse. Forty-one of 65 isolates represented Rhizobium anhuiense, and the others belonged to R. fabae, Rhizobium vallis, Rhizobium sophorae, Agrobacterium radiobacter, and four species related to Rhizobium and Agrobacterium. The isolates carried four and five genotypes of nifH and nodC, respectively, in six different nifH-nodC combinations. When looking at the species-nifH-nodC combinations it is noteworthy that all but two of the six R. anhuiense isolates were different. Our results suggested that faba bean rhizobia in Panxi are diverse at species, plant growth promoting ability and symbiosis related gene levels.
Collapse
Affiliation(s)
- Yuan X Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, School of Environmental & Resource Sciences, Zhejiang Agriculture & Forestry University, Lin'an, China.,Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qi Q Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Chang Q Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Kai W Xu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
60
|
Parallels between experimental and natural evolution of legume symbionts. Nat Commun 2018; 9:2264. [PMID: 29891837 PMCID: PMC5995829 DOI: 10.1038/s41467-018-04778-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis. It is unclear if experimental evolution is a good model for natural processes. Here, Clerissi et al. find parallels between the evolution of symbiosis in rhizobia after horizontal transfer of a plasmid over 10 million years ago and experimentally evolved symbionts.
Collapse
|
61
|
Soenens A, Imperial J. Novel, non-symbiotic isolates of Neorhizobium from a dryland agricultural soil. PeerJ 2018; 6:e4776. [PMID: 29785349 PMCID: PMC5960266 DOI: 10.7717/peerj.4776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus Neorhizobium, as concluded from partial rpoB and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within Neorhizobium, closer to N. galegae than to the remaining Neorhizobium species, but clearly differentiated from the former, and constituting at least one new genomospecies within Neorhizobium. All the isolates lacked nod and nif symbiotic genes but contained a repABC replication/maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These repABC sequences were related, but not identical, to repABC sequences found in symbiotic plasmids from N. galegae, suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of Neorhizobium from soil.
Collapse
Affiliation(s)
- Amalia Soenens
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain.,Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
62
|
Jiao J, Ni M, Zhang B, Zhang Z, Young JPW, Chan TF, Chen WX, Lam HM, Tian CF. Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genet 2018; 14:e1007428. [PMID: 29795552 PMCID: PMC5991415 DOI: 10.1371/journal.pgen.1007428] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Prokaryotes benefit from having accessory genes, but it is unclear how accessory genes can be linked with the core regulatory network when developing adaptations to new niches. Here we determined hierarchical core/accessory subsets in the multipartite pangenome (composed of genes from the chromosome, chromid and plasmids) of the soybean microsymbiont Sinorhizobium fredii by comparing twelve Sinorhizobium genomes. Transcriptomes of two S. fredii strains at mid-log and stationary growth phases and in symbiotic conditions were obtained. The average level of gene expression, variation of expression between different conditions, and gene connectivity within the co-expression network were positively correlated with the gene conservation level from strain-specific accessory genes to genus core. Condition-dependent transcriptomes exhibited adaptive transcriptional changes in pangenome subsets shared by the two strains, while strain-dependent transcriptomes were enriched with accessory genes on the chromid. Proportionally more chromid genes than plasmid genes were co-expressed with chromosomal genes, while plasmid genes had a higher within-replicon connectivity in expression than chromid ones. However, key nitrogen fixation genes on the symbiosis plasmid were characterized by high connectivity in both within- and between-replicon analyses. Among those genes with host-specific upregulation patterns, chromosomal znu and mdt operons, encoding a conserved high-affinity zinc transporter and an accessory multi-drug efflux system, respectively, were experimentally demonstrated to be involved in host-specific symbiotic adaptation. These findings highlight the importance of integrative regulation of hierarchical core/accessory components in the multipartite genome of bacteria during niche adaptation and in shaping the prokaryotic pangenome in the long run.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Meng Ni
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Ting-Fung Chan
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
63
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
64
|
Haskett TL, Terpolilli JJ, Ramachandran VK, Verdonk CJ, Poole PS, O’Hara GW, Ramsay JP. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements. PLoS Genet 2018; 14:e1007292. [PMID: 29565971 PMCID: PMC5882170 DOI: 10.1371/journal.pgen.1007292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases–or recombination directionality factors—RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a “master controller” of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer. Bacteria evolve and adapt quickly through the horizontal transfer of DNA. A major mechanism facilitating this transfer is conjugation. Conjugative DNA elements that integrate into the chromosome are termed ‘Integrative and Conjugative Elements’ (ICE). We recently discovered a unique form of ICE that undergoes a complex series of recombination events with the host chromosome to split itself into three separate parts. This tripartite ICE must also precisely order its recombination when leaving the current host to avoid splitting the host chromosome and the ICE into non-viable parts. In this work, we show that the tripartite ICEs use chemical cell-cell communication to stimulate recombination and that recombination events are specifically ordered through cascaded transcriptional activation of small DNA-binding proteins called recombination directionality factors. Despite the inherent complexity of tripartite ICEs this work exposes a surprisingly simple system to stimulate their precise and ordered molecular assembly prior to horizontal transfer.
Collapse
Affiliation(s)
- Timothy L. Haskett
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- * E-mail:
| | - Jason J. Terpolilli
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | | | - Callum J. Verdonk
- School of Pharmacy and Biomedical Sciences and the Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Phillip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Joshua P. Ramsay
- School of Pharmacy and Biomedical Sciences and the Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
65
|
Reid D, Liu H, Kelly S, Kawaharada Y, Mun T, Andersen SU, Desbrosses G, Stougaard J. Dynamics of Ethylene Production in Response to Compatible Nod Factor. PLANT PHYSIOLOGY 2018; 176:1764-1772. [PMID: 29187569 PMCID: PMC5813561 DOI: 10.1104/pp.17.01371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 05/22/2023]
Abstract
Establishment of symbiotic nitrogen-fixation in legumes is regulated by the plant hormone ethylene, but it has remained unclear whether and how its biosynthesis is regulated by the symbiotic pathway. We established a sensitive ethylene detection system for Lotus japonicus and found that ethylene production increased as early as 6 hours after inoculation with Mesorhizobium loti This ethylene response was dependent on Nod factor production by compatible rhizobia. Analyses of nodulation mutants showed that perception of Nod factor was required for ethylene emission, while downstream transcription factors including CYCLOPS, NIN, and ERN1 were not required for this response. Activation of the nodulation signaling pathway in spontaneously nodulating mutants was also sufficient to elevate ethylene production. Ethylene signaling is controlled by EIN2, which is duplicated in L. japonicus We obtained a L. japonicus Ljein2a Ljein2b double mutant that exhibits complete ethylene insensitivity and confirms that these two genes act redundantly in ethylene signaling. Consistent with this redundancy, both LjEin2a and LjEin2b are required for negative regulation of nodulation and Ljein2a Ljein2b double mutants are hypernodulating and hyperinfected. We also identified an unexpected role for ethylene in the onset of nitrogen fixation, with the Ljein2a Ljein2b double mutant showing severely reduced nitrogen fixation. These results demonstrate that ethylene production is an early and sustained nodulation response that acts at multiple stages to regulate infection, nodule organogenesis, and nitrogen fixation in L. japonicus.
Collapse
Affiliation(s)
- Dugald Reid
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Huijun Liu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Yasuyuki Kawaharada
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Terry Mun
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Stig U Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Guilhem Desbrosses
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Université Montpellier 2, IRD, CIRAD, SupAgro, INRA Montpellier Cedex 05 France
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
66
|
Yamaya-Ito H, Shimoda Y, Hakoyama T, Sato S, Kaneko T, Hossain MS, Shibata S, Kawaguchi M, Hayashi M, Kouchi H, Umehara Y. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:5-16. [PMID: 29086445 DOI: 10.1111/tpj.13759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 05/06/2023]
Abstract
The nitrogen-fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix- mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix- mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix- mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE-INDUCED 1 (LjAPN1), encodes a nepenthesin-type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain-specific Fix- phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen-fixing) symbiosis in a rhizobial strain-dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.
Collapse
Affiliation(s)
- Hiroko Yamaya-Ito
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0800, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tsuneo Hakoyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Md Shakhawat Hossain
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Satoshi Shibata
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | | | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Kouchi
- International Christian University, Mitaka, Tokyo, 181-8585, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
67
|
Zhao R, Liu LX, Zhang YZ, Jiao J, Cui WJ, Zhang B, Wang XL, Li ML, Chen Y, Xiong ZQ, Chen WX, Tian CF. Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. THE ISME JOURNAL 2018; 12:101-111. [PMID: 28800133 PMCID: PMC5738999 DOI: 10.1038/ismej.2017.136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
Mutualism between bacteria and eukaryotes has essential roles in the history of life, but the evolution of their compatibility is poorly understood. Here we show that different Sinorhizobium strains can form either nitrogen-fixing nodules or uninfected pseudonodules on certain cultivated soybeans, while being all effective microsymbionts of some wild soybeans. However, a few well-infected nodules can be found on a commercial soybean using inocula containing a mixed pool of Tn5 insertion mutants derived from an incompatible strain. Reverse genetics and genome sequencing of compatible mutants demonstrated that inactivation of T3SS (type three secretion system) accounted for this phenotypic change. These mutations in the T3SS gene cluster were dominated by parallel transpositions of insertion sequences (ISs) other than the introduced Tn5. This genetic and phenotypic change can also be achieved in an experimental evolution scenario on a laboratory time scale using incompatible wild-type strains as inocula. The ISs acting in the adaptive evolution of Sinorhizobium strains exhibit broader phyletic and replicon distributions than other ISs, and prefer target sequences of low GC% content, a characteristic feature of symbiosis plasmid where T3SS genes are located. These findings suggest an important role of co-evolved ISs in the adaptive evolution of rhizobial compatibility.
Collapse
Affiliation(s)
- Ran Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Jing Cui
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Lin Wang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Lin Li
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Qing Xiong
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
68
|
Porter SS, Faber-Hammond JJ, Friesen ML. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes. FEMS Microbiol Ecol 2017; 94:4705886. [DOI: 10.1093/femsec/fix168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Joshua J Faber-Hammond
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, P.O. Box 646430 Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420 Pullman, WA 99164, USA
| |
Collapse
|
69
|
Liu LX, Li QQ, Zhang YZ, Hu Y, Jiao J, Guo HJ, Zhang XX, Zhang B, Chen WX, Tian CF. The nitrate-reduction gene cluster components exert lineage-dependent contributions to optimization of Sinorhizobium symbiosis with soybeans. Environ Microbiol 2017; 19:4926-4938. [PMID: 28967174 DOI: 10.1111/1462-2920.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/02/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022]
Abstract
Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix- ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix+ ) but ineffective (Eff- ) nodules. These Fix+ /Eff- nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host.
Collapse
Affiliation(s)
- Li Xue Liu
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Zeng Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Hu
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
70
|
Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC, Masson-Boivin C. Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont. Mol Biol Evol 2017; 34:2503-2521. [PMID: 28535261 DOI: 10.1093/molbev/msx165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.
Collapse
Affiliation(s)
- Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Camille Clérissi
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.,Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Anthony Perrier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dorian Guetta
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Carine Gris
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marc Valls
- Department of Genetics, University of Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Spain
| | - Alain Jauneau
- Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Plateforme d'Imagerie TRI, CNRS, UPS, Castanet-Tolosan, France
| | - Stéphane Cruveiller
- CNRS-UMR8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DRF/IG/GEN LABGeM, Evry, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | | |
Collapse
|
71
|
Moyano G, Marco D, Knopoff D, Torres G, Turner C. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling. Math Biosci 2017; 292:30-35. [DOI: 10.1016/j.mbs.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
72
|
Akimova ES, Gumenko RS, Vershinina ZR, Baymiev AK, Baymiev AK. Genetic markers for search of rhizobia based on symbiotic genes. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717050034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
73
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
74
|
Haskett TL, Ramsay JP, Bekuma AA, Sullivan JT, O'Hara GW, Terpolilli JJ. Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid 2017; 92:30-36. [DOI: 10.1016/j.plasmid.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
75
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 2017; 91:82-89. [DOI: 10.1016/j.plasmid.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/25/2022]
|
76
|
Habibi S, Ayubi AG, Ohkama-Ohtsu N, Sekimoto H, Yokoyama T. Genetic Characterization of Soybean Rhizobia Isolated from Different Ecological Zones in North-Eastern Afghanistan. Microbes Environ 2017; 32:71-79. [PMID: 28321006 PMCID: PMC5371078 DOI: 10.1264/jsme2.me16119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/11/2017] [Indexed: 11/12/2022] Open
Abstract
Seventy rhizobial isolates were obtained from the root nodules of two soybean (Glycine max) cultivars: Japanese cultivar Enrei and USA cultivar Stine3300, which were inoculated with different soil samples from Afghanistan. In order to study the genetic properties of the isolates, the DNA sequences of the 16S rRNA gene and symbiotic genes (nodD1 and nifD) were elucidated. Furthermore, the isolates were inoculated into the roots of two soybean cultivars, and root nodule numbers and nitrogen fixation abilities were subsequently evaluated in order to assess symbiotic performance. Based on 16S rRNA gene sequences, the Afghanistan isolates obtained from soybean root nodules were classified into two genera, Bradyrhizobium and Ensifer. Bradyrhizobium isolates accounted for 54.3% (38) of the isolates, and these isolates had a close relationship with Bradyrhizobium liaoningense and B. yuanmingense. Five out of the 38 Bradyrhizobium isolates showed a novel lineage for B. liaoningense and B. yuanmingense. Thirty-two out of the 70 isolates were identified as Ensifer fredii. An Ensifer isolate had identical nodD1 and nifD sequences to those in B. yuanmingense. This result indicated that the horizontal gene transfer of symbiotic genes occurred from Bradyrhizobium to Ensifer in Afghanistan soil. The symbiotic performance of the 14 tested isolates from the root nodules of the two soybean cultivars indicated that Bradyrhizobium isolates exhibited stronger acetylene reduction activities than Ensifer isolates. This is the first study to genetically characterize soybean-nodulating rhizobia in Afghanistan soil.
Collapse
Affiliation(s)
- Safiullah Habibi
- United Graduate School of Agriculture, Tokyo University of Agriculture and TechnologyJapan
- Faculty of Agriculture, Kabul UniversityAfghanistan
| | | | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and TechnologyJapan
| | | | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and TechnologyJapan
| |
Collapse
|
77
|
Colombi E, Straub C, Künzel S, Templeton MD, McCann HC, Rainey PB. Evolution of copper resistance in the kiwifruit pathogenPseudomonas syringaepv.actinidiaethrough acquisition of integrative conjugative elements and plasmids. Environ Microbiol 2017; 19:819-832. [DOI: 10.1111/1462-2920.13662] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Elena Colombi
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
| | - Christina Straub
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology; Plön Germany
| | - Matthew D. Templeton
- Plant and Food Research; Auckland New Zealand
- School of Biological Sciences; University of Auckland; Auckland New Zealand
| | - Honour C. McCann
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
- South China Botanical Institute; Chinese Academy of Sciences; Guangzhou China
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey University; Auckland New Zealand
- Max Planck Institute for Evolutionary Biology; Plön Germany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris-Tech), PSL Research University; Paris France
| |
Collapse
|
78
|
|
79
|
Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities. Appl Environ Microbiol 2016; 83:AEM.01735-16. [PMID: 27793823 DOI: 10.1128/aem.01735-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023] Open
Abstract
Anthyllis vulneraria is a legume associated with nitrogen-fixing rhizobia that together offer an adapted biological material for mine-soil phytostabilization by limiting metal pollution. To find rhizobia associated with Anthyllis at a given site, we evaluated the genetic and phenotypic properties of a collection of 137 rhizobia recovered from soils presenting contrasting metal levels. Zn-Pb mine soils largely contained metal-tolerant rhizobia belonging to Mesorhizobium metallidurans or to another sister metal-tolerant species. All of the metal-tolerant isolates harbored the cadA marker gene (encoding a metal-efflux PIB-type ATPase transporter). In contrast, metal-sensitive strains were taxonomically distinct from metal-tolerant populations and consisted of new Mesorhizobium genospecies. Based on the symbiotic nodA marker, the populations comprise two symbiovar assemblages (potentially related to Anthyllis or Lotus host preferences) according to soil geographic locations but independently of metal content. Multivariate analysis showed that soil Pb and Cd concentrations differentially impacted the rhizobial communities and that a rhizobial community found in one geographically distant site was highly divergent from the others. In conclusion, heavy metal levels in soils drive the taxonomic composition of Anthyllis-associated rhizobial populations according to their metal-tolerance phenotype but not their symbiotic nodA diversity. In addition to heavy metals, local soil physicochemical and topoclimatic conditions also impact the rhizobial beta diversity. Mesorhizobium communities were locally adapted and site specific, and their use is recommended for the success of phytostabilization strategies based on Mesorhizobium-legume vegetation. IMPORTANCE Phytostabilization of toxic mine spoils limits heavy metal dispersion and environmental pollution by establishing a sustainable plant cover. This eco-friendly method is facilitated by the use of selected and adapted cover crop legumes living in symbiosis with rhizobia that can stimulate plant growth naturally through biological nitrogen fixation. We studied microsymbiont partners of a metal-tolerant legume, Anthyllis vulneraria, which is tolerant to very highly metal-polluted soils in mining and nonmining sites. Site-specific rhizobial communities were linked to taxonomic composition and metal tolerance capacity. The rhizobial species Mesorhizobium metallidurans was dominant in all Zn-Pb mines but one. It was not detected in unpolluted sites where other distinct Mesorhizobium species occur. Given the different soil conditions at the respective mining sites, including their heavy-metal contamination, revegetation strategies based on rhizobia adapting to local conditions are more likely to succeed over the long term compared to strategies based on introducing less-well-adapted strains.
Collapse
|
80
|
Zou L, Chen YX, Penttinen P, Lan Q, Wang K, Liu M, Peng D, Zhang X, Chen Q, Zhao K, Zeng X, Xu KW. Genetic Diversity and Symbiotic Efficiency of Nodulating Rhizobia Isolated from Root Nodules of Faba Bean in One Field. PLoS One 2016; 11:e0167804. [PMID: 27936180 PMCID: PMC5147995 DOI: 10.1371/journal.pone.0167804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022] Open
Abstract
Thirty-one nodulating rhizobium strains were collected from root nodules of spring and winter type faba bean cultivars grown in micro ecoarea, i.e. the same field in Chengdu plain, China. The symbiotic efficiency and phylogeny of these strains were studied. Effectively nitrogen fixing strains were isolated from both winter type and spring type cultivars. Based on phylogenetic analysis of 16S rRNA gene and concatenated sequence of atpD, glnII and recA genes, the isolates were assigned as Rhizobium anhuiense and a potential new Rhizobium species. The isolates were diverse on symbiosis related gene level, carrying five, four and three variants of nifH, nodC and nodD, respectively. Strains carrying similar gene combinations were trapped by both winter and spring cultivars, disagreeing with the specificity of symbiotic genotypes to reported earlier faba bean ecotypes.
Collapse
Affiliation(s)
- Lan Zou
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yuan Xue Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- * E-mail: (KWX); (YXC)
| | - Petri Penttinen
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Qin Lan
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Liu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Dan Peng
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiangzhong Zeng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kai Wei Xu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- * E-mail: (KWX); (YXC)
| |
Collapse
|
81
|
Lorite MJ, Flores-Félix JD, Peix Á, Sanjuán J, Velázquez E. Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 2016; 39:557-561. [DOI: 10.1016/j.syapm.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022]
|
82
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Perea JF, Gil-Serrano A, Jin H, An Q, Rodríguez-Carvajal MA, Andersen SU, Sandal N, Stougaard J, Vinardell JM, Ruiz-Sainz JE. Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor-and Surface Polysaccharide-Dependent Manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:925-937. [PMID: 27827003 DOI: 10.1094/mpmi-09-16-0195-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sinorhizobium fredii HH103-Rifr, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S. fredii HH103-Rifr invade L. burttii roots through infection threads or epidermal cracks, respectively. Infection threads in root hairs were not observed in L. burttii plants inoculated with S. fredii HH103-Rifr. A S. fredii HH103-Rifr nodA mutant failed to nodulate L. burttii, demonstrating that Nod factors are strictly necessary for this crack-entry mode, and a noeL mutant was also severely impaired in L. burttii nodulation, indicating that the presence of fucosyl residues in the Nod factor is symbiotically relevant. However, significant symbiotic impacts due to the absence of methylation or to acetylation of the fucosyl residue were not detected. In contrast S. fredii HH103-Rifr mutants showing lipopolysaccharide alterations had reduced symbiotic capacity, while mutants affected in production of either exopolysaccharides, capsular polysaccharides, or both were not impaired in nodulation. Mutants unable to produce cyclic glucans and purine or pyrimidine auxotrophic mutants formed ineffective nodules with L. burttii. Flagellin-dependent bacterial mobility was not required for crack infection, since HH103-Rifr fla mutants nodulated L. burttii. None of the S. fredii HH103-Rifr surface-polysaccharide mutants gained effective nodulation with L. japonicus.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Juan Fernández Perea
- 2 IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Antonio Gil-Serrano
- 4 Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P. 41012, Sevilla, Spain
| | - Haojie Jin
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Qi An
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | - Miguel A Rodríguez-Carvajal
- 4 Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P. 41012, Sevilla, Spain
| | - Stig U Andersen
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Niels Sandal
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Jens Stougaard
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - José-María Vinardell
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | - José E Ruiz-Sainz
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| |
Collapse
|
83
|
Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A 2016; 113:13875-13880. [PMID: 27849579 DOI: 10.1073/pnas.1615121113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.
Collapse
|
84
|
Marchetti M, Clerissi C, Yousfi Y, Gris C, Bouchez O, Rocha E, Cruveiller S, Jauneau A, Capela D, Masson-Boivin C. Experimental evolution of rhizobia may lead to either extra- or intracellular symbiotic adaptation depending on the selection regime. Mol Ecol 2016; 26:1818-1831. [PMID: 27770459 DOI: 10.1111/mec.13895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Experimental evolution is a powerful approach to study the process of adaptation to new environments, including the colonization of eukaryotic hosts. Facultative endosymbionts, including pathogens and mutualists, face changing and spatially structured environments during the symbiotic process, which impose diverse selection pressures. Here, we provide evidence that different selection regimes, involving different times spent in the plant environment, can result in either intra- or extracellular symbiotic adaptations. In previous work, we introduced the symbiotic plasmid of Cupriavidus taiwanensis, the rhizobial symbiont of Mimosa pudica, into the phytopathogen Ralstonia solanacearum and selected three variants able to form root nodules on M. pudica, two (CBM212 and CBM349) being able to rudimentarily infect nodule cells and the third one (CBM356) only capable of extracellular infection of nodules. Each nodulating ancestor was further challenged to evolve using serial ex planta-in planta cycles of either 21 (three short-cycle lineages) or 42 days (three long-cycle lineages). In this study, we compared the phenotype of the 18 final evolved clones. Evolution through short and long cycles resulted in similar adaptive paths on lineages deriving from the two intracellularly infectious ancestors, CBM212 and CBM349. In contrast, only short cycles allowed a stable acquisition of intracellular infection in lineages deriving from the extracellularly infecting ancestor, CBM356. Long cycles, instead, favoured improvement of extracellular infection. Our work highlights the importance of the selection regime in shaping desired traits during host-mediated selection experiments.
Collapse
Affiliation(s)
- Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Camille Clerissi
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan Cedex, France.,Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, 75015, Paris, France.,CNRS, UMR3525, 25-28 rue Dr Roux, 75015, Paris, France
| | - Yasmine Yousfi
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Carine Gris
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Olivier Bouchez
- GeT-PlaGe, INRA, 31326, Castanet-Tolosan Cedex, France.,GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet-Tolosan Cedex, France
| | - Eduardo Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr Roux, 75015, Paris, France.,CNRS, UMR3525, 25-28 rue Dr Roux, 75015, Paris, France
| | - Stéphane Cruveiller
- CNRS-UMR8030 and Commissariat à l'Energie Atomique CEA/DSV/IG/Genoscope LABGeM, 2 rue gaston Crémieux, 91057, Evry, France
| | - Alain Jauneau
- Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Plateforme d'Imagerie TRI, CNRS, UPS, 31326, Castanet-Tolosan Cedex, France
| | - Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan Cedex, France
| | | |
Collapse
|
85
|
Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A 2016; 113:12268-12273. [PMID: 27733511 DOI: 10.1073/pnas.1613358113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as "genomic islands" within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of attL and attR sites. Sequential recombination between each attL and attR pair produced corresponding attP and attB sites and joined the three fragments to produce a single circular ICE, ICEMcSym1271 A plasmid carrying the three attP sites was used to recreate the process of tripartite ICE integration and to confirm the role of integrase genes intS, intM, and intG in this process. Nine additional tripartite ICEs were identified in diverse mesorhizobia and transfer was demonstrated for three of them. The transfer of tripartite ICEs to nonsymbiotic mesorhizobia explains the evolution of competitive but suboptimal N2-fixing strains found in Western Australian soils. The unheralded existence of tripartite ICEs raises the possibility that multipartite elements reside in other organisms, but have been overlooked because of their unusual biology. These discoveries reveal mechanisms by which integrases dramatically manipulate bacterial genomes to allow cotransfer of disparate chromosomal regions.
Collapse
|
86
|
Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Igual JM, Sanjuán J, León-Barrios M, Peix A, Velázquez E. Reclassification of strains MAFF 303099T and R7A into Mesorhizobiumjaponicum sp. nov. Int J Syst Evol Microbiol 2016; 66:4936-4941. [PMID: 27565417 DOI: 10.1099/ijsem.0.001448] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work we revise the taxonomic status of the Lotus-nodulating strains MAFF 303099T and R7A isolated in Japan and New Zealand, respectively. Their 16S rRNA gene sequences are identical and show 98.0, 99.7, 99.8 and 99.9 % similarity values with respect to Mesorhizobium loti NZP 2213T, M. jarvisii ATCC 33669T, M. huakuii USDA 4779T (=CCBAU 2609T) and M. erdmanii USDA 3471T, respectively. The analysis of recA and glnII gene sequeces showed that M. jarvisii ATCC 33669T and M. huakuii USDA 4779T (=CCBAU 2609T) are the most closely related strains to MAFF 303099T and R7A, with similarity values suggesting that these two strains belong to a different species for which MAFF 303099T is selected as the type strain. The DNA-DNA relatedness values between strain MAFF 303099T and its closest phylogenetic relatives ranged from 53 to 60 % in average. Strains MAFF 303099T and R7A presented slight differences in the proportions of C18 : 1ω7c 11-methyl and C19 : 0 cyclo ω8c fatty acids with respect to M. jarvisii ATCC 33669T and M. huakuii USDA 4779T, and also in several phenotypic characteristics. Therefore, we propose the reclassification of these two strains into a novel species named Mesorhizobium japonicum sp. nov., with the type strain being MAFF 303099T (=LMG 29417T=CECT 9101T).
Collapse
Affiliation(s)
| | - Martha Helena Ramírez-Bahena
- Desarrollo Sostenible de Sistemas Agroforestales y Ganaderos, IRNASA-CSIC, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC 'Interacciones Planta-Microorganismo', Salamanca, Spain
| | | | - José M Igual
- Desarrollo Sostenible de Sistemas Agroforestales y Ganaderos, IRNASA-CSIC, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC 'Interacciones Planta-Microorganismo', Salamanca, Spain
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Alvaro Peix
- Desarrollo Sostenible de Sistemas Agroforestales y Ganaderos, IRNASA-CSIC, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC 'Interacciones Planta-Microorganismo', Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Universidad de Salamanca-CSIC 'Interacciones Planta-Microorganismo', Salamanca, Spain
| |
Collapse
|
87
|
Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism. Appl Environ Microbiol 2016; 82:5259-68. [PMID: 27316960 DOI: 10.1128/aem.01116-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Rhizobia are best known for nodulating legume roots and fixing atmospheric nitrogen for the host in exchange for photosynthates. However, the majority of the diverse strains of rhizobia do not form nodules on legumes, often because they lack key loci that are needed to induce nodulation. Nonnodulating rhizobia are robust heterotrophs that can persist in bulk soil, thrive in the rhizosphere, or colonize roots as endophytes, but their role in the legume-rhizobium mutualism remains unclear. Here, we investigated the effects of nonnodulating strains on the native Acmispon-Bradyrhizobium mutualism. To examine the effects on both host performance and symbiont fitness, we performed clonal inoculations of diverse nonnodulating Bradyrhizobium strains on Acmispon strigosus hosts and also coinoculated hosts with mixtures of sympatric nodulating and nonnodulating strains. In isolation, nonnodulating Bradyrhizobium strains did not affect plant performance. In most cases, coinoculation of nodulating and nonnodulating strains reduced host performance compared to that of hosts inoculated with only a symbiotic strain. However, coinoculation increased host performance only under one extreme experimental treatment. Nearly all estimates of nodulating strain fitness were reduced in the presence of nonnodulating strains. We discovered that nonnodulating strains were consistently capable of coinfecting legume nodules in the presence of nodulating strains but that the fitness effects of coinfection for hosts and symbionts were negligible. Our data suggest that nonnodulating strains most often attenuate the Acmispon-Bradyrhizobium mutualism and that this occurs via competitive interactions at the root-soil interface as opposed to in planta IMPORTANCE Rhizobia are soil bacteria best known for their capacity to form root nodules on legume plants and enhance plant growth through nitrogen fixation. Yet, most rhizobia in soil do not have this capacity, and their effects on this symbiosis are poorly understood. We investigated the effects of diverse nonnodulating rhizobia on a native legume-rhizobium symbiosis. Nonnodulating strains did not affect plant growth in isolation. However, compared to inoculations with symbiotic rhizobia, coinoculations of symbiotic and nonnodulating strains often reduced plant and symbiont fitness. Coinoculation increased host performance only under one extreme treatment. Nonnodulating strains also invaded nodule interiors in the presence of nodulating strains, but this did not affect the fitness of either partner. Our data suggest that nonnodulating strains may be important competitors at the root-soil interface and that their capacity to attenuate this symbiosis should be considered in efforts to use rhizobia as biofertilizers.
Collapse
|
88
|
Soares SC, Geyik H, Ramos RT, de Sá PH, Barbosa EG, Baumbach J, Figueiredo HC, Miyoshi A, Tauch A, Silva A, Azevedo V. GIPSy: Genomic island prediction software. J Biotechnol 2016; 232:2-11. [DOI: 10.1016/j.jbiotec.2015.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
89
|
Zhao L, Wang X, Huo H, Yuan G, Sun Y, Zhang D, Cao Y, Xu L, Wei G. Phylogenetic Diversity of Ammopiptanthus Rhizobia and Distribution of Rhizobia Associated with Ammopiptanthus mongolicus in Diverse Regions of Northwest China. MICROBIAL ECOLOGY 2016; 72:231-239. [PMID: 27079453 DOI: 10.1007/s00248-016-0759-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Aiming to investigate the diversity and distribution of rhizobia associated with Ammopiptanthus, an endangered evergreen legume widely distributed in deserts, we characterized a total of 219 nodule isolates from nine sampling sites in Northwest China with different soil characteristics based upon restriction fragment length polymorphism (RFLP) analysis of 16S ribosomal RNA (rRNA) and symbiotic genes (nodC and nifH). Ten isolates representing different 16S rRNA-RFLP types were selected for further sequence analyses of 16S rRNA and four housekeeping genes. As results, nine genospecies belonging to the genera Ensifer, Neorhizobium, Agrobacterium, Pararhizobium, and Rhizobium could be defined among the isolates. The nodC and nifH phylogenies of 14 isolates representing different symbiotic-RFLP types revealed five lineages linked to Ensifer fredii, Ensifer meliloti, Rhizobium leguminosarum, Mesorhizobium amorphae, and Rhizobium gallicum, which demonstrated the various origins and lateral transfers of symbiotic genes between different genera and species. The rhizobial diversities of Ammopiptanthus mongolicus varied among regions, and the community compositions of rhizobia associated with A. mongolicus were significantly different in wild and cultured fields. Constrained correspondence analysis showed that the distribution of A. mongolicus rhizobia could be explained by available potassium content and that the assembly of symbiotic types was mainly affected by available phosphorus content and carbon-nitrogen ratio.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiji Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lin Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
90
|
Tatsukami Y, Ueda M. Rhizobial gibberellin negatively regulates host nodule number. Sci Rep 2016; 6:27998. [PMID: 27307029 PMCID: PMC4910070 DOI: 10.1038/srep27998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
In legume-rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia.
Collapse
Affiliation(s)
- Yohei Tatsukami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
91
|
Sami D, Mokhtar R, Peter M, Mohamed M. Rhizobium leguminosarum symbiovar trifolii, Ensifer numidicus and Mesorhizobium amorphae symbiovar ciceri (or Mesorhizobium loti) are new endosymbiotic bacteria of Lens culinaris Medik. FEMS Microbiol Ecol 2016; 92:fiw118. [PMID: 27267929 DOI: 10.1093/femsec/fiw118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 11/13/2022] Open
Abstract
A total of 142 rhizobial bacteria were isolated from root nodules of Lens culinaris Medik endemic to Tunisia and they belonged to the species Rhizobium leguminosarum, and for the first time to Ensifer and Mesorhizobium, genera never previously described as microsymbionts of lentil. Phenotypically, our results indicate that L. culinaris Medik strains showed heterogenic responses to the different phenotypic features and they effectively nodulated their original host. Based on the concatenation of the 16S rRNA with relevant housekeeping genes (glnA, recA, dnaK), rhizobia that nodulate lentil belonged almost exclusively to the known R. leguminosarum sv. viciae. Interestingly, R. leguminosarum sv. trifolii, Ensifer numidicus (10 isolates) and Mesorhizobium amorphae (or M. loti) (9 isolates) isolates species, not considered, up to now, as a natural symbiont of lentil are reported. The E. numidicus and M. amorphae (or M. loti) strains induced fixing nodules on Medicago sativa and Cicer arietinum host plants, respectively. Symbiotic gene phylogenies showed that the E. numidicus, new symbiont of lentil, markedly diverged from strains of R. leguminosarum, the usual symbionts of lentil, and converged to the symbiovar meliloti so far described within E. meliloti Indeed, the nodC and nodA genes from the M. amorphae showed more than 99% similarity with respect to those from M. mediterraneum, the common chickpea nodulating species, and would be included in the new infrasubspecific division named M. amorphae symbiovar ciceri, or to M. loti, related to the strains able to effectively nodulate C. arietinum host plant. On the basis of these data, R. leguminosarum sv. trifolii (type strain LBg3 (T)), M. loti or M. amorphae sv. ciceri (type strain LB4 (T)) and E. numidicus (type strain LBi2 (T)) are proposed as new symbionts of L. culinaris Medik.
Collapse
Affiliation(s)
- Dhaoui Sami
- Research Unit Biodiversity & Valorization of Arid Areas Bioressources, Faculty of Sciences of Gabès, Erriadh-Zrig, Gabes 6072, Tunisia
| | - Rejili Mokhtar
- Research Unit Biodiversity & Valorization of Arid Areas Bioressources, Faculty of Sciences of Gabès, Erriadh-Zrig, Gabes 6072, Tunisia
| | - Mergaert Peter
- Institute for IntegrativeBiology of the Cell, Centre National de la Recherche Scientifique, Avenue de la Terrasse Bât. 34, 91198 Gif-sur-Yvette, France
| | - Mars Mohamed
- Research Unit Biodiversity & Valorization of Arid Areas Bioressources, Faculty of Sciences of Gabès, Erriadh-Zrig, Gabes 6072, Tunisia
| |
Collapse
|
92
|
Jiao J, Wu LJ, Zhang B, Hu Y, Li Y, Zhang XX, Guo HJ, Liu LX, Chen WX, Zhang Z, Tian CF. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:352-61. [PMID: 26883490 DOI: 10.1094/mpmi-01-16-0019-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation.
Collapse
Affiliation(s)
- Jian Jiao
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Juan Wu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Biliang Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Hu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Li
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xing Xing Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Li Xue Liu
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Ziding Zhang
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- 1 State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
- 2 Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China; and
- 3 Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
93
|
Hollowell AC, Regus JU, Turissini D, Gano-Cohen KA, Bantay R, Bernardo A, Moore D, Pham J, Sachs JL. Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities. Proc Biol Sci 2016; 283:20160496. [PMID: 27122562 PMCID: PMC4855393 DOI: 10.1098/rspb.2016.0496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated 'symbiosis island' (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance.
Collapse
Affiliation(s)
- Amanda C Hollowell
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - John U Regus
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - David Turissini
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Roxanne Bantay
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Andrew Bernardo
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Devora Moore
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Jonathan Pham
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Joel L Sachs
- Department of Biology, University of California, Riverside, CA 92521, USA Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
94
|
diCenzo GC, Zamani M, Milunovic B, Finan TM. Genomic resources for identification of the minimal N2 -fixing symbiotic genome. Environ Microbiol 2016; 18:2534-47. [PMID: 26768651 DOI: 10.1111/1462-2920.13221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
95
|
Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol 2016; 39:141-9. [PMID: 26915496 DOI: 10.1016/j.syapm.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
With the increasing cultivation of medicinal legumes in agricultural fields, the rhizobia associated with these plants are facing new stresses, mainly from fertilization and irrigation. In this study, investigations on the nodulation of three cultivated medicinal legumes, Astragalus mongholicus, Astragalus membranaceus and Hedysarum polybotrys were performed. Bacterial isolates from root nodules of these legumes were subjected to genetic diversity and multilocus sequence analyses. In addition, the distribution of nodule bacteria related to soil factors and host plants was studied. A total 367 bacterial isolates were obtained and 13 genospecies were identified. The predominant microsymbionts were identified as Mesorhizobium septentrionale, Mesorhizobium temperatum, Mesorhizobium tianshanense, Mesorhizobium ciceri and Mesorhizobium muleiense. M. septentrionale was found in most root nodules especially from legumes grown in the barren soils (with low available nitrogen and low organic carbon contents), while M. temperatum was predominant in nodules where the plants were grown in the nitrogen-rich fields. A. mongholicus tended to be associated with M. septentrionale, M. temperatum and M. ciceri in different soils, while A. membranaceus and H. polybotrys tended to be associated with M. tianshanense and M. septentrionale, respectively. This study showed that soil fertility may be the main determinant for the distribution of rhizobia associated with these cultured legume plants.
Collapse
Affiliation(s)
- Hui Yan
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Zhao Jun Ji
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| | - En Tao Wang
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China.
| | - Bao Lin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobia Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
96
|
Baymiev AK, Ivanova ES, Gumenko RS, Chubukova OV, Baymiev AK. Analysis of symbiotic genes of leguminous root nodule bacteria grown in the southern urals. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415110034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Xu KW, Zou L, Penttinen P, Zeng X, Liu M, Zhao K, Chen C, Chen YX, Zhang X. Diversity and phylogeny of rhizobia associated with Desmodium spp. in Panxi, Sichuan, China. Syst Appl Microbiol 2015; 39:33-40. [PMID: 26654528 DOI: 10.1016/j.syapm.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
Thirty-four rhizobial isolates were obtained from root nodules of four wild Desmodium species growing in Panxi, Sichuan, China. According to the combined ARDRA and IGS-RFLP (CACAI) cluster analysis, Rhizobium, Pararhizobium and Mesorhizobium isolates outnumbered Bradyrhizobium isolates. In general, the isolates representing the same species from the same site clustered together. Furthermore, the four Desmodium species were all nodulated by more than one rhizobial species. AFLP and phenotypic analyses showed that the 34 isolates represented at least 32 distinct strains. None of the strains were found from more than one site or host, indicating a high degree of rhizobial diversity in Panxi. In the multilocus sequence analysis, the isolates were assigned to Pararhizobium giardinii, Bradyrhizobium japonicum, Mesorhizobium septentrionale, and to undescribed species of the genera Rhizobium, Bradyrhizobium and Agrobacterium.
Collapse
Affiliation(s)
- Kai Wei Xu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China.
| | - Lan Zou
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China
| | - Petri Penttinen
- Department of Environmental Sciences, University of Helsinki, Helsinki Fin-00014, Finland
| | - Xiangzhong Zeng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Ming Liu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China
| | - Cuiping Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China
| | - Yuan Xue Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China.
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 625014, China.
| |
Collapse
|
98
|
Remigi P, Zhu J, Young JPW, Masson-Boivin C. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends Microbiol 2015; 24:63-75. [PMID: 26612499 DOI: 10.1016/j.tim.2015.10.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait.
Collapse
Affiliation(s)
- Philippe Remigi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France; New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| |
Collapse
|
99
|
Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M, Łotocka B, Wójcik M. Phylogeny of Symbiotic Genes and the Symbiotic Properties of Rhizobia Specific to Astragalus glycyphyllos L. PLoS One 2015; 10:e0141504. [PMID: 26496493 PMCID: PMC4619719 DOI: 10.1371/journal.pone.0141504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99-100% in the case of nodAC and nifH genes, and 98-99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar "glycyphyllae", based on nodA and nodC genes sequences.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, University of Life Sciences, 13 Akademicka st. 20–950 Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| | - Ewa Oleńska
- Department of Genetics and Evolution, University of Białystok, 1J Ciołkowskiego st., 15–245 Białystok, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| | - Barbara Łotocka
- Department of Botany, Warsaw University of Life Sciences—SGGW, 159 Nowoursynowska st., 02–766 Warsaw, Poland
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, University of Maria Curie-Skłodowska, 19 Akademicka st., 20–033 Lublin, Poland
| |
Collapse
|
100
|
Ramsay JP, Ronson CW. Silencing quorum sensing and ICE mobility through antiactivation and ribosomal frameshifting. Mob Genet Elements 2015; 5:103-108. [PMID: 26942047 PMCID: PMC4755241 DOI: 10.1080/2159256x.2015.1107177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 01/27/2023] Open
Abstract
Mobile genetic elements run an evolutionary gauntlet to maintain their mobility in the face of selection against their selfish dissemination but, paradoxically, they can accelerate the adaptability of bacteria through the gene-transfer events that they facilitate. These temporally conflicting evolutionary forces have shaped exquisite regulation systems that silence mobility and maximize the competitive fitness of the host bacterium, but maintain the ability of the element to deliver itself to a new host should the opportunity arise. Here we review the excision regulation system of the Mesorhizobium loti symbiosis island ICEMlSymR7A, a 502-kb integrative and conjugative element (ICE) capable of converting non-symbiotic mesorhizobia into plant symbionts. ICEMlSymR7A excision is activated by quorum sensing, however, both quorum sensing and excision are strongly repressed in the vast majority of cells by dual-target antiactivation and programmed ribosomal-frameshifting mechanisms. We examine these recently discovered regulatory features under the light of natural selection and discuss common themes that can be drawn from recent developments in ICE biology.
Collapse
Affiliation(s)
- Joshua P Ramsay
- School of Biomedical Sciences; Curtin University ; Perth, Australia
| | - Clive W Ronson
- Department of Microbiology and Immunology; University of Otago ; Dunedin, New Zealand
| |
Collapse
|