51
|
Zeng WH, Liao SC, Chang CC. Identification of RNA Editing Sites in Chloroplast Transcripts of Phalaenopsis aphrodite and Comparative Analysis with Those of Other Seed Plants. ACTA ACUST UNITED AC 2007; 48:362-8. [PMID: 17169923 DOI: 10.1093/pcp/pcl058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
RNA editing sites were systematically examined for the transcripts of 74 known protein-coding genes in the chloroplasts of Phalaenopsis aphrodite. A total of 44 editing sites were identified in 24 transcripts, the highest reported in seed plants. In addition, 21 editing sites are unique to the Phalaenopsis orchid as compared with other seed plants. All editing is C-to-U conversion, and 42 editing sites bring about the changes in amino acids. One of the remaining two editing sites occurs in the transcripts of the ndhB pseudogene, and another in the 5'-untranslated region of psbH transcripts.
Collapse
Affiliation(s)
- Wun-Hong Zeng
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
52
|
Hayes ML, Hanson MR. Identification of a sequence motif critical for editing of a tobacco chloroplast transcript. RNA (NEW YORK, N.Y.) 2007; 13:281-8. [PMID: 17158709 PMCID: PMC1781371 DOI: 10.1261/rna.295607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/23/2006] [Indexed: 05/07/2023]
Abstract
Nucleotides are specifically and efficiently targeted for modification from C to U within transcripts of chloroplasts in higher plants. Although the enzymatic apparatus responsible for altering C to U has not been identified, the sequences surrounding editing sites are known to contain information essential for efficient editing. We set out to determine the nucleotides that are critical for editing of a particular C, NTpsbE C214, in chloroplast transcripts in tobacco. Assay of editing of substrates with different lengths of 5' and 3' sequence around the target C was carried out to delimit the region of sequence critical for editing in vitro. Mutated substrates were then constructed with an altered nucleotide at each position within the previously defined region around NTpsbE C214. In individual nucleotides, both 5' and 3' of the edited nucleotide were found to be important for editing. The sequence GCCGUU, which occurs 5' of the editing site, was discovered to be critical for editing. Editing substrates mutated to alter the distance between the GCCGUU sequence and NTpsbE C214 resulted in the generation of a new editing target, the 3' adjacent nucleotide. These data are consistent with a model in which the selection of the C target for editing is determined by its distance from a crucial 5' sequence.
Collapse
Affiliation(s)
- Michael L Hayes
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
53
|
Abstract
RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- Michael Tillich
- Cell Biology, Philipps-University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
54
|
Sasaki T, Yukawa Y, Wakasugi T, Yamada K, Sugiura M. A simple in vitro RNA editing assay for chloroplast transcripts using fluorescent dideoxynucleotides: distinct types of sequence elements required for editing of ndh transcripts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:802-10. [PMID: 16856984 DOI: 10.1111/j.1365-313x.2006.02825.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA editing is found in various transcripts from land plant chloroplasts. In tobacco chloroplasts, C-to-U conversion occurs at 36 specific sites including two sites identified in this work. Our RNA editing assay system using chloroplast extracts facilitated biochemical analyses of editing reactions but required mRNAs labeled with (32)P at specific sites. Here, we have improved the in vitro system using fluorescence-labeled chain terminators, ddGTP and ddATP, and have measured the editing activity at 19 sites in ndh transcripts. Editing activities varied from site to site. It has been reported that one editing site in ndhA mRNAs is present in spinach but absent in tobacco, but a corresponding editing capacity had been found in vivo in tobacco using biolistic transformation. We confirmed biochemically the existence of this activity in tobacco extracts. Using the non-radioactive assay, we examined sequences essential for editing within a 50-nt mRNA region encompassing an editing site. Editing of the ndhB-2 site requires a short sequence in front of the editing site, while that of the ndhF mRNA requires two separate regions, a sequence surrounding the editing site and a 5' distal sequence. These results suggest that distinct editing mechanisms are present in chloroplasts.
Collapse
Affiliation(s)
- Tadamasa Sasaki
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501, Japan
| | | | | | | | | |
Collapse
|
55
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 2006. [PMID: 16830097 DOI: 10.1007/s00239‐005‐0254‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
56
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the Tomato Chloroplast DNA and Evolutionary Comparison of Solanaceous Plastid Genomes. J Mol Evol 2006; 63:194-207. [PMID: 16830097 DOI: 10.1007/s00239-005-0254-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant/genetics
- Genome, Plant/genetics
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Phylogeny
- Plastids/genetics
- RNA Editing/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanaceae/genetics
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
57
|
Kusumi J, Sato A, Tachida H. Relaxation of Functional Constraint on Light-Independent Protochlorophyllide Oxidoreductase in Thuja. Mol Biol Evol 2006; 23:941-8. [PMID: 16428257 DOI: 10.1093/molbev/msj097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The light-independent protochlorophyllide oxidoreductase (DPOR) plays a key role in the ability of nonflowering plants and algae to synthesize chlorophyll in darkness. This enzyme consists of three subunits encoded by the chlB, chlL, and chlN genes in the plastid genome. Previously, we found a high nonsynonymous substitution rate (dN) of the chlL gene in the lineage of Thuja standishii, a conifer belonging to the Cupressaceae. Here we revealed that the acceleration of dN in the chlL occurred as well in other species of Thuja, Thuja occidentalis and Thuja plicata. In addition, dark-grown seedlings of T. occidentalis were found to exhibit a pale yellowish color, and their chlorophyll concentration was much lower than that of other species of Cupressaceae. The results suggested that the species of Thuja have lost the ability to synthesize chlorophyll in darkness, and the functional constraint on the DPOR would thus be expected to be relaxed in this genus. Therefore, we expected to find that the evolutionary rates of all subunits of DPOR would in this case be accelerated. Sequence analyses of the chlN and chlB (encoding the other subunits of DPOR) in 18 species of Cupressaceae revealed that the dN of the chlN gene was accelerated in Thuja as was the dN of the chlL gene, but the dN of the chlB gene did not appear to differ significantly among the species of Cupressaceae. Sequencing of reverse transcription-polymerase chain reaction (RT-PCR) products of these genes showed that RNA editing was rare and unlikely to have contributed to the acceleration. Moreover, the RT-PCR analysis indicated that all chl genes were still transcriptionally active in T. occidentalis. Based on these results, it appears that species of Thuja still bear the DPOR protein, although the enzyme has lost its activity because of nonsynonymous mutations of some of the chl genes. The lack of acceleration of the dN of the chlB gene might be accounted for by various unknown functions of its gene product.
Collapse
Affiliation(s)
- Junko Kusumi
- Department of Biology, Faculty of Sciences, Kyushu University, Ropponmatsu, Chuou-ku, Fukuoka, Japan.
| | | | | |
Collapse
|
58
|
Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM. Editing of plastid RNA in Arabidopsis thaliana ecotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:708-15. [PMID: 16115067 DOI: 10.1111/j.1365-313x.2005.02484.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Post-transcriptional maturation of plastid-encoded mRNAs from land plants includes editing by making cytidine to uridine alterations at highly specific positions; this usually restores codon identities for conserved amino acids that are important for the proper function of the affected proteins. In contrast to the rather constant number of editing sites their location varies greatly, even between closely related taxa. Here, we experimentally determined the specific pattern of editing sites (the editotype) of the plastid genome of Arabidopsis thaliana ecotype Columbia (Col-0). Based on phylogenetic analyses of plastid open reading frames, we identified 28 editing sites. Two editing events in the genes matK and ndhB seem to have evolved late during the evolution of flowering plants. Strikingly, they are embedded in almost identical sequence elements and seem to be phylogenetically co-processed. This suggests that the two sites are recognized by the same trans-factor, which could help to explain the hitherto enigmatic gain of editing sites in evolution. In order to trace variations in editotype at the subspecies level we examined two other A. thaliana accessions, Cape Verde Islands (Cvi-0) and Wassilewskija (Ws-2), for the Col-0 editing sites. Both Cvi-0 and Ws-2 possess and process the whole set of editing sites as determined in Col-0, but the consequences of RNA editing differ at one position between the ecotypes.
Collapse
Affiliation(s)
- Michael Tillich
- Department für Biologie I der Ludwig-Maximilians-Universität München, Bereich Botanik, Menzingerstr. 67, 80638 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
59
|
Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 2005; 68:1175-84. [PMID: 15215578 DOI: 10.1271/bbb.68.1175] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Heteromeric ACCase composed of four subunits is usually found in prokaryotes, and homomeric ACCase composed of a single large polypeptide is found in eukaryotes. Most plants have both forms, the heteromeric form in plastids, in which de novo fatty acids are synthesized, and the homomeric form in cytosol. This review focuses on the structure and regulation of plant heteromeric ACCase and its manipulation for plant breeding.
Collapse
Affiliation(s)
- Yukiko Sasaki
- Genesis Research Institute, Inc., Nishi-ku, Nagoya, Japan.
| | | |
Collapse
|
60
|
Calsa Júnior T, Carraro DM, Benatti MR, Barbosa AC, Kitajima JP, Carrer H. Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 2004; 46:366-73. [PMID: 15526204 DOI: 10.1007/s00294-004-0542-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/30/2004] [Accepted: 10/03/2004] [Indexed: 11/29/2022]
Abstract
The complete nucleotide sequence of the chloroplast genome of sugarcane (Saccharum officinarum) was determined. It consists of 141,182 base-pairs (bp), containing a pair of inverted repeat regions (IR(A), IR(B)) of 22,794 bp each. The IR(A) and IR(B) sequences separate a small single copy region (12,546 bp) and a large single copy (83,048 bp) region. The gene content and relative arrangement of the 116 identified genes (82 peptide-encoding genes, four ribosomal RNA genes, 30 tRNA genes), with the 16 ycf genes, are highly similar to maize. Editing events, defined as C-to-U transitions in the mRNA sequences, were comparable with those observed in maize, rice and wheat. The conservation of gene organization and mRNA editing suggests a common ancestor for the sugarcane and maize plastomes. These data provide the basis for functional analysis of plastid genes and plastid metabolism within the Poaceae. The sugarcane chloroplast DNA sequence is available at GenBank under accession NC005878.
Collapse
Affiliation(s)
- Tercilio Calsa Júnior
- ESALQ/Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, 13418-900 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
61
|
Inada M, Sasaki T, Yukawa M, Tsudzuki T, Sugiura M. A systematic search for RNA editing sites in pea chloroplasts: an editing event causes diversification from the evolutionarily conserved amino acid sequence. PLANT & CELL PHYSIOLOGY 2004; 45:1615-22. [PMID: 15574837 DOI: 10.1093/pcp/pch191] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA editing in higher plant chloroplasts involves C-to-U conversion at specific sites in the transcripts. To examine whether pea shares editing sites with other angiosperms, a systematic search for editing sites in pea chloroplast transcripts was performed. Based on amino acid sequence alignment, 451 RNA editing sites were predicted from 60 transcripts. Sequence analysis of amplified cDNAs for these potential editing sites revealed 19 true editing sites from 13 transcripts. Together with those reported previously, the total number of editing sites is 27 from 16 transcripts in pea chloroplasts. Twenty-two sites are conserved among other plant species, whereas five sites are unique to pea. Among the 27 editing sites, seven are partially edited. The most interesting is the ndhG site 1, which has led to the diversification of the evolutionarily conserved amino acid sequence. This observation suggests that some of the editing events cause the diversity of amino acid sequences, and hence, that prediction of editing sites based on amino acid sequence alignment has its own limitations.
Collapse
Affiliation(s)
- Misato Inada
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya, 467-8501 Japan
| | | | | | | | | |
Collapse
|
62
|
Cummings MP, Myers DS. Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinformatics 2004; 5:132. [PMID: 15373947 PMCID: PMC521485 DOI: 10.1186/1471-2105-5-132] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 09/16/2004] [Indexed: 11/10/2022] Open
Abstract
Background RNA editing is the process whereby an RNA sequence is modified from the sequence of the corresponding DNA template. In the mitochondria of land plants, some cytidines are converted to uridines before translation. Despite substantial study, the molecular biological mechanism by which C-to-U RNA editing proceeds remains relatively obscure, although several experimental studies have implicated a role for cis-recognition. A highly non-random distribution of nucleotides is observed in the immediate vicinity of edited sites (within 20 nucleotides 5' and 3'), but no precise consensus motif has been identified. Results Data for analysis were derived from the the complete mitochondrial genomes of Arabidopsis thaliana, Brassica napus, and Oryza sativa; additionally, a combined data set of observations across all three genomes was generated. We selected datasets based on the 20 nucleotides 5' and the 20 nucleotides 3' of edited sites and an equivalently sized and appropriately constructed null-set of non-edited sites. We used tree-based statistical methods and random forests to generate models of C-to-U RNA editing based on the nucleotides surrounding the edited/non-edited sites and on the estimated folding energies of those regions. Tree-based statistical methods based on primary sequence data surrounding edited/non-edited sites and estimates of free energy of folding yield models with optimistic re-substitution-based estimates of ~0.71 accuracy, ~0.64 sensitivity, and ~0.88 specificity. Random forest analysis yielded better models and more exact performance estimates with ~0.74 accuracy, ~0.72 sensitivity, and ~0.81 specificity for the combined observations. Conclusions Simple models do moderately well in predicting which cytidines will be edited to uridines, and provide the first quantitative predictive models for RNA edited sites in plant mitochondria. Our analysis shows that the identity of the nucleotide -1 to the edited C and the estimated free energy of folding for a 41 nt region surrounding the edited C are the most important variables that distinguish most edited from non-edited sites. However, the results suggest that primary sequence data and simple free energy of folding calculations alone are insufficient to make highly accurate predictions.
Collapse
Affiliation(s)
- Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742-3360, USA
| | - Daniel S Myers
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742-3360, USA
| |
Collapse
|
63
|
Wolf PG, Rowe CA, Hasebe M. High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 2004; 339:89-97. [PMID: 15363849 DOI: 10.1016/j.gene.2004.06.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 03/25/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
We sequenced transcripts from all putative genes for proteins, rRNAs, and a selection of gene-encoding tRNAs in the chloroplast genome of the fern Adiantum capillus-veneris. We detected 350 RNA editing sites when the cDNA sequence was compared to that of the genomic DNA. Of these sites, 10% were U-to-C edits and 90% were C-to-U edits. RNA editing created 19 new start codons, three new stop codons, and "repaired" 26 internal stop codons. Of the 332 editing sites that altered a codon, 26% were in the first codon position, 68% in the second, and 6% in the third. We also detected 21 silent edits, as well as 19 edits that were in untranslated regions, including introns and the anticodon of tRNA(Leu). The latter edit provided a tRNA that is not otherwise encoded in this genome and accounts for a heavily used leucine codon. The level of RNA editing in this fern is more than ten times that of any other vascular plant examined across an entire chloroplast genome. A previous study found even higher levels of editing in a hornwort (942 sites). This suggests that the relatively low levels of editing in seed plants (less than 0.05%) may not be typical for land plants, and that RNA editing may play a major role in chloroplast genome processing. Additionally, we found that 53 editing sites in A. capillus-veneris are homologous to editing sites in the hornwort, and some other land plants. This implies that a major component of RNA editing sites have been conserved for hundreds of millions of years.
Collapse
Affiliation(s)
- Paul G Wolf
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA.
| | | | | |
Collapse
|
64
|
Bungard RA. Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 2004; 26:235-47. [PMID: 14988925 DOI: 10.1002/bies.10405] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the enormous diversity in plant form, structure and growth environment across the seed-bearing plants (angiosperms and gymnosperms), the chloroplast genome has, with few exceptions, remained remarkably conserved. This conservation suggests the existence of universal evolutionary selection pressures associated with photosynthesis-the primary function of chloroplasts. The stark exceptions to this conservation occur in parasitic angiosperms, which have escaped the dominant model by evolving the capacity to obtain some or all of their carbon (and nutrients) from their plant hosts. The consequence of this evolution to parasitism is a relaxation of the evolutionary constraints associated with the need to maintain photosynthetic function, the very function that drove early stages of the ancient symbiotic relationship that produced the contemporary chloroplast. Extreme examples of reductionism among parasitic angiosperms reveals major alterations in chloroplast function with the loss of photosynthetic capacity and, with that, massive alterations in chloroplast genome content. This review highlights emerging patterns in reported gene loss and gene retention in the chloroplast genomes of parasitic plants. Some gene losses appear to occur in the early stages of parasitic evolution, even before the loss of photosynthetic capacity, like the chlororespiratory (ndh) genes. This contrasts with unexpected gene retentions, like that of the rbcL gene responsible for photosynthetic carbon dioxide fixation, and belies current understanding of gene function. The review relates gene retention to current knowledge of protein function and gene processing that has implications to broader aspects of genome conservation in organelles.
Collapse
Affiliation(s)
- Ralph A Bungard
- School of Biological Science and New Zealand Institute of Gene Ecology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| |
Collapse
|
65
|
Fiebig A, Stegemann S, Bock R. Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Res 2004; 32:3615-22. [PMID: 15240834 PMCID: PMC484182 DOI: 10.1093/nar/gkh695] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 11/12/2022] Open
Abstract
Chloroplast RNA editing proceeds by C-to-U transitions at highly specific sites. Here, we provide a phylogenetic analysis of RNA editing in a small plastid gene, petL, encoding subunit VI of the cytochrome b6f complex. Analyzing representatives from most major groups of seed plants, we find an unexpectedly high frequency and dynamics of RNA editing. High-frequency editing has previously been observed in plastid ndh genes, which are remarkable in that their mutational inactivation does not produce an obvious mutant phenotype. In order to test the idea that reduced functional constraints allow for more flexible evolution of RNA editing sites, we have created petL knockout plants by tobacco chloroplast transformation. We find that, in the higher plant tobacco, targeted inactivation of petL does not impair plant growth under a variety of conditions markedly contrasting the important role of petL in photosynthesis in the green alga Chlamydomonas reinhardtii. Together with a low number of editing sites in plastid genes that are essential to gene expression and photosynthetic activity, these data suggest that RNA editing sites may evolve more readily in those genes whose transitory loss of function can be tolerated. Accumulated evidence for this 'relative neutrality hypothesis for the evolution of plastid editing sites' is discussed.
Collapse
Affiliation(s)
- Andreas Fiebig
- Westfälische Wilhelms-Universität Münster, Institut für Biochemie und Biotechnologie der Pflanzen, Hindenburgplatz 55, D-48143 Münster, Germany
| | | | | |
Collapse
|
66
|
Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K. RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 2003; 31:2417-23. [PMID: 12711687 PMCID: PMC154213 DOI: 10.1093/nar/gkg327] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2002] [Revised: 02/05/2003] [Accepted: 02/24/2003] [Indexed: 11/15/2022] Open
Abstract
RNA editing in chloroplasts alters the RNA sequence by converting C-to-U or U-to-C at a specific site. During the study of the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae, RNA editing events have been systematically investigated. A total of 509 C-to-U and 433 U-to-C conversions are identified in the transcripts of 68 genes and eight ORFs. No RNA editing is seen in any of the rRNA but one tRNA suffered a C-to-U conversion at an anticodon. All nonsense codons in 52 protein-coding genes and seven ORFs are removed in the transcripts by U-to-C conversions, and five initiation and three termination codons are created by C-to-U conversions. RNA editing in intron sequence suggests that editing can precede intercistronic processing. The sequence complementary to the edited site is proposed as a distant cis-recognition element.
Collapse
Affiliation(s)
- Masanori Kugita
- Graduate School of Science and Engineering, Shizuoka University, Oya 836, 422-8529 Shizuoka, Japan
| | | | | | | | | |
Collapse
|
67
|
Miyamoto T, Obokata J, Sugiura M. Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 2002; 22:6726-34. [PMID: 12215530 PMCID: PMC134032 DOI: 10.1128/mcb.22.19.6726-6734.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Revised: 05/13/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.
Collapse
|
68
|
Miyata Y, Sugiura C, Kobayashi Y, Hagiwara M, Sugita M. Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:346-9. [PMID: 12084583 DOI: 10.1016/s0167-4781(02)00346-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rps14 transcript is edited in the moss Physcomitrella patens chloroplast by a C-to-U transition, to create a translation initiation codon, AUG. The efficiency of RNA editing was low, with approximately 20% of rps14 transcripts edited. This suggests that the translation of rps14 mRNA is strictly regulated by RNA editing. This is the first report of RNA editing in P. patens and the creation of a translation initiation codon in rps14 mRNA in chloroplasts.
Collapse
Affiliation(s)
- Yuki Miyata
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
69
|
Villegas J, Müller I, Arredondo J, Pinto R, Burzio LO. A putative RNA editing from U to C in a mouse mitochondrial transcript. Nucleic Acids Res 2002; 30:1895-901. [PMID: 11972325 PMCID: PMC113838 DOI: 10.1093/nar/30.9.1895] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, we isolated and characterized a new mouse mitochondrial RNA molecule containing the mitochondrial 16S RNA plus 121 nt joined to the 5' end of the RNA. This fragment arises from the L strand of the same gene and we have named this transcript chimeric RNA. At position 121 of the RNA there is a C, which, according to the sequence of the mitochondrial 16S RNA gene, should be a U. We hypothesized that this RNA is synthesized having a U at position 121, which is later substituted to a C by a putative editing reaction. Based on the presence of sites for the restriction endonucleases RsaI and Fnu4HI around position 121, both forms of the RNA were detected in mouse tissues. To confirm the presence of the non-edited and putative edited RNA, a fragment containing the first 154 nt of the RNA was amplified by RT-PCR and cloned. The substitution of U for C was demonstrated by sequencing these clones. In vitro transcription experiments demonstrated that the substitution of U for C is not due to artifact of amplification or cloning. Moreover, in mitochondria from testis only the non-edited form was found. This, together with other experimental evidence, demonstrated that the base substitution was not due to polymorphism of the mitochondrial 16S RNA gene. This is the first demonstration of a substitution reaction from U to C in a mammalian mitochondrial transcript.
Collapse
Affiliation(s)
- Jaime Villegas
- Bios Chile Ingeniería Genética S.A., Millennium Institute for Fundamental and Applied Biology and Fundación Ciencia para la Vida, Avenida Marathon 1943, Santiago, Chile
| | | | | | | | | |
Collapse
|
70
|
Karcher D, Bock R. The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J Biol Chem 2002; 277:5570-4. [PMID: 11734554 DOI: 10.1074/jbc.m107074200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA editing in plant organelles post-transcriptionally alters single nucleotides by C-to-U or U-to-C conversions at highly specific sites. Plant editing is generally viewed as a repair mechanism acting at the transcript level by restoring conserved amino acid residues. Here we report that an editing reaction within the ndhB transcript (encoding a plastid NAD(P)H dehydrogenase subunit) is strictly dependent on active photosynthesis. Employing non-photosynthetic mutants, we show that in the absence of photosynthesis, the site remains unedited, whereas it is fully edited when the photosynthetic apparatus is intact. Moreover, the site also remains unedited during the etiolated stage of seedling development, suggesting that two different NdhB proteins are synthesized under photosynthetic versus non-photosynthetic conditions. This is the first case where RNA editing in plants appears to regulate gene expression qualitatively, resulting in the production of two different proteins from one and the same gene in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Daniel Karcher
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
71
|
Reed ML, Peeters NM, Hanson MR. A single alteration 20 nt 5' to an editing target inhibits chloroplast RNA editing in vivo. Nucleic Acids Res 2001; 29:1507-13. [PMID: 11266552 PMCID: PMC31290 DOI: 10.1093/nar/29.7.1507] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Revised: 02/14/2001] [Accepted: 02/14/2001] [Indexed: 11/14/2022] Open
Abstract
Transcripts of typical dicot plant plastid genes undergo C-->U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence -20 to +6 surrounding the C target of editing. When the -20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C-->U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located -20 nt 5' to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- Chloroplasts/genetics
- Chloroplasts/metabolism
- DNA, Chloroplast/genetics
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- DNA-Directed RNA Polymerases
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Plant Proteins/genetics
- Plants, Toxic
- RNA Editing
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Nicotiana/genetics
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- M L Reed
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
72
|
Hirose T, Sugiura M. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 2001; 20:1144-52. [PMID: 11230137 PMCID: PMC145495 DOI: 10.1093/emboj/20.5.1144] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2000] [Revised: 01/15/2001] [Accepted: 01/15/2001] [Indexed: 11/13/2022] Open
Abstract
RNA editing in higher plant chloroplasts involves C-->U conversion at approximately 30 specific sites. An in vitro system supporting accurate editing has been developed from tobacco chloroplasts. Mutational analysis of substrate mRNAs derived from tobacco chloroplast psbL and ndhB mRNAs confirmed the participation of cis-acting elements that had previously been identified in vivo. Competition analysis revealed the existence of site-specific trans-acting factors interacting with the corresponding upstream cis-elements. A chloroplast protein of 25 kDa was found to be specifically associated with the cis-element involved in psbL mRNA editing. Immunological analyses revealed that an additional factor, the chloroplast RNA-binding protein cp31, is also required for RNA editing at multiple sites. This combination of site-specific and common RNA-binding proteins recognizes editing sites in chloroplasts.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan Present address: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 295 Congress Avenue, BCMM 133, New Haven, CT 06536, USA Present address: Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan Corresponding author e-mail:
| | - Masahiro Sugiura
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan Present address: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 295 Congress Avenue, BCMM 133, New Haven, CT 06536, USA Present address: Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan Corresponding author e-mail:
| |
Collapse
|
73
|
Sasaki Y, Kozaki A, Ohmori A, Iguchi H, Nagano Y. Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants. J Biol Chem 2001; 276:3937-40. [PMID: 11078738 DOI: 10.1074/jbc.m008166200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA editing is an important post-transcriptional process in chloroplasts and is thought to be functionally significant. Here we show a requirement of RNA editing for a functional enzyme. In peas, acetyl-CoA carboxylase (ACCase), a key enzyme of fatty acid synthesis, is composed of biotin carboxylase with the biotin carboxyl carrier protein and carboxyltransferase (CT). CT is composed of the nuclear-encoded alpha polypeptide and the chloroplast-encoded beta polypeptide in peas. One nucleotide of the beta polypeptide mRNA, which is edited in pea chloroplasts, converts the serine codon to the leucine codon. We show that this RNA editing is required for functional CT by comparing the unedited and edited recombinant enzymes. In plants not having a leucine codon at the same position, editing was shown to take place so as to create the leucine codon, indicating that editing is needed for in vivo CT activity and therefore for ACCase. To our knowledge, ACCase is an essential enzyme, suggesting that the chloroplast RNA editing is necessary for these plants.
Collapse
Affiliation(s)
- Y Sasaki
- Laboratory of Plant Molecular Biology, Graduate School of Agricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
74
|
Wakasugi T, Tsudzuki T, Sugiura M. The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing. PHOTOSYNTHESIS RESEARCH 2001; 70:107-18. [PMID: 16228365 DOI: 10.1023/a:1013892009589] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The entire nucleotide sequence of the chloroplast genome has been determined from 12 land plants. The gene content and arrangement are relatively uniform from species to species, and the genome contains an average of 111 identified gene species (except Epifagus). Chloroplast genes can be classified into three main categories: Genes for the photosynthetic apparatus, those for the transcription/translation system, and those related to biosyntheses. The genes encoding components of the photosynthesis apparatus have been identified by protein chemical analyses from higher plants, Chlamydomonas and cyanobacteria, and then by chloroplast transformation techniques using tobacco and Chlamydomonas. The genes for subunits of RNA polymerases and of ribosomes were initially deduced similarity to those in E. coli, and later confirmed by protein analyses. Coding information is often modified at the level of transcripts by RNA editing (mostly C-U changes), resulting in amino acid substitutions and creation of novel reading frames. Perspectives of chloroplast genomics are discussed.
Collapse
Affiliation(s)
- T Wakasugi
- Department of Biology, Toyama University, Toyama, 930-8555, Japan
| | | | | |
Collapse
|
75
|
Tsumura Y, Suyama Y, Yoshimura K. Chloroplast DNA inversion polymorphism in populations of Abies and Tsuga. Mol Biol Evol 2000; 17:1302-12. [PMID: 10958847 DOI: 10.1093/oxfordjournals.molbev.a026414] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polymorphism for a 42-kb chloroplast DNA inversion was detected in five species of Abies and two species of Tsuga based on a sample of 1,281 individuals and both Southern hybridization and polymerase chain reaction (PCR) analyses. Two haplotypes were observed in all populations and species. The 42-kb inversion is associated with a short inverted repeat that includes trnS, psaM, and trnG. The frequencies of the two haplotypes within species were very similar among the five species of Abies This polymorphism has been maintained within populations and species in both Abies and Tsuga, probably because the mutation rate of the inversion is high. Haplotype frequencies had no geographical tendencies for any species except Abies mariesii, in which haplotype frequencies varied clinally, possibly as a result of rapid dissemination after the most recent glacial period and random genetic drift.
Collapse
MESH Headings
- Blotting, Southern
- Chromosome Inversion
- Cycadopsida/genetics
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Frequency
- Genetic Variation
- Genetics, Population
- Haplotypes
- Japan
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Y Tsumura
- Genetics Section, Bio-resources Technology Division, Forestry and Forest Products Research Institute, Kukizaki, Ibaraki, Japan.
| | | | | |
Collapse
|
76
|
Abstract
Plastid transcripts can be subject to an RNA processing mechanism changing the identity of individual nucleotides and thus altering the information content of the mRNA. This processing step was termed RNA editing and adds a novel mechanism to the multitude of RNA maturation events required before mRNAs can serve as faithful templates in plastid protein biosynthesis. RNA editing in chloroplasts proceeds by the conversion of individual cytidine residues to uridine and, in some bryophytes, also by the reverse event, uridine-to-cytidine transitions. The discovery of RNA editing in chloroplasts has provided researchers with a wealth of molecular and evolutionary puzzles, many of which are not yet solved. However, recent work employing chloroplast transformation technologies has shed some light on the molecular mechanisms by which RNA editing sites are recognized with extraordinarily high precision. Also, extensive phylogenetic studies have provided intriguing insights in the evolutionary dynamics with which editing sites may come and go. This review summarizes the state-of-the-art in the field of chloroplast RNA editing, discusses mechanistic and evolutionary aspects of editing and points out some of the important open questions surrounding this enigmatic RNA processing step.
Collapse
Affiliation(s)
- R Bock
- Institut für Biologie III, Universität Freiburg, Schänzlestrabetae 1, 79104, Freiburg, Germany.
| |
Collapse
|
77
|
Abstract
mRNAs in plant cell organelles can be subject to RNA editing, an RNA processing step altering the identity of single nucleotide residues. In higher plant chloroplasts, editing proceeds by C-to-U conversions at highly specific sites. All known plastid RNA editing sites are located in protein-coding regions and, typically, change the coding properties of the mRNA. To gain more insight into the evolution of editing, we have determined the molecular structure and RNA editing pattern of the psbE operon of the primitive seed plant Ginkgo biloba. We report here the identification of altogether four sites of C-to-U editing, two of which are unique to Ginkgo and have not been found in other species. Surprisingly, one of the sites is located in an intercistronic spacer, thus being the first chloroplast editing site detected outside a protein-coding region. This indicates that the plastid editing machinery can operate also in untranslated regions and without having apparent functional consequences.
Collapse
Affiliation(s)
- J Kudla
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | | |
Collapse
|
78
|
Hirose T, Ideue T, Wakasugi T, Sugiura M. The chloroplast infA gene with a functional UUG initiation codon. FEBS Lett 1999; 445:169-72. [PMID: 10069394 DOI: 10.1016/s0014-5793(99)00123-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All chloroplast genes reported so far possess ATG start codons and sometimes GTGs as an exception. Sequence alignments suggested that the chloroplast infA gene encoding initiation factor 1 in the green alga Chlorella vulgaris has TTG as a putative initiation codon. This gene was shown to be transcribed by RT-PCR analysis. The infA mRNA was translated accurately from the UUG codon in a tobacco chloroplast in vitro translation system. Mutation of the UUG codon to AUG increased translation efficiency approximately 300-fold. These results indicate that the UUG is functional for accurate translation initiation of Chlorella infA mRNA but it is an inefficient initiation codon.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Japan
| | | | | | | |
Collapse
|
79
|
Abstract
The entire sequence (120-190 kb) of chloroplast genomes has been determined from a dozen plant species. The genome contains from 87 to 183 known genes, of which half encode components involved in translation. These include a complete set of rRNAs and about 30 tRNAs, which are likely to be sufficient to support translation in chloroplasts. RNA editing (mostly C to U base changes) occurs in some chloroplast transcripts, creating start and stop codons and changing codons to retain conserved amino acids. Many components that constitute the chloroplast translational machinery are similar to those of Escherichia coli, whereas only one third of the chloroplast mRNAs contain Shine-Dalgarno-like sequences at the correct positions. Analyses conducted in vivo and in vitro have revealed the existence of multiple mechanisms for translational initiation in chloroplasts.
Collapse
Affiliation(s)
- M Sugiura
- Center for Gene Research, Nagoya University, Japan.
| | | | | |
Collapse
|
80
|
Richardson N, Navaratnam N, Scott J. Secondary structure for the apolipoprotein B mRNA editing site. Au-binding proteins interact with a stem loop. J Biol Chem 1998; 273:31707-17. [PMID: 9822632 DOI: 10.1074/jbc.273.48.31707] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C to U editing of apolipoprotein B (apoB) mRNA converts a glutamine codon in apoB100 mRNA into a stop translation codon thereby generating apoB48. The catalytic subunit of the editing enzyme, APOBEC-1, is an RNA-binding cytidine deaminase that requires auxiliary factors for the editing of apoB mRNA. Computer modeling and ribonuclease probing of the wild-type and mutant apoB RNA substrates reveal a stem loop at the editing site. This structure incorporates the essential sequence motifs required for editing. The localization of the edited cytidine within the loop suggests how it could be presented to the active site of APOBEC-1 for deamination. We have identified 43/45 kDa proteins from chick enterocytes and show evidence for their involvement in auxiliary editing activity. p43/45 demonstrates preferential binding to AU-rich RNA and to the Caauuug motif that forms the loop and proximal stem of the apoB mRNA.
Collapse
Affiliation(s)
- N Richardson
- MRC Molecular Medicine Group, Clinical Science Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | | | |
Collapse
|
81
|
Hirose T, Kusumegi T, Sugiura M. Translation of tobacco chloroplast rps14 mRNA depends on a Shine-Dalgarno-like sequence in the 5'-untranslated region but not on internal RNA editing in the coding region. FEBS Lett 1998; 430:257-60. [PMID: 9688550 DOI: 10.1016/s0014-5793(98)00673-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of Shine-Dalgarno-like sequences in mRNAs from higher plant chloroplasts has not been analyzed experimentally so far. In vitro translation analysis has revealed that the Shine-Dalgarno-like sequence is essential for translation of tobacco chloroplast rps14 mRNA. Two RNA editing sites have been identified in the protein-coding region of the rps14 mRNA. Editing of the second site was found to be partial and hence the partially edited transcripts are accumulated in tobacco green leaves. In vitro translation assays using the fully edited, partially edited and unedited rps14 mRNAs indicated that editing does not directly influence translational efficiency.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
82
|
Lu MZ, Szmidt AE, Wang XR. RNA editing in gymnosperms and its impact on the evolution of the mitochondrial coxI gene. PLANT MOLECULAR BIOLOGY 1998; 37:225-234. [PMID: 9617796 DOI: 10.1023/a:1005972513322] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sequence analysis of the mitochondrial coxI gene in eight gymnosperm species revealed a high rate of nonsynonymous nucleotide substitutions with a strong (98%) predominance of C-T substitutions. Further analysis of the corresponding coxI cDNA sequences showed that all the non-synonymous C-T changes in the coxI genomic DNA sequences were eliminated by RNA editing resulting in nearly identical mRNA (amino acid) sequences among the species. Pronounced variation in the number and location of edited sites was found among species. Most species had a relatively large number of edited sites (from 25 to 34). However, no RNA editing of the coxI sequence was found in Gingko biloba or Larix sibirica. The sequence composition of the investigated coxI fragment suggests that the coxI gene in G. biloba and L. sibirica originated from edited mitochondrial coxI transcripts by reverse transcription followed by insertion into the nuclear genome or back into the mitochondrial genome. Our results also demonstrate that where there are a large number of edited sites, RNA editing can accelerate the divergence of nucleotide sequences among species.
Collapse
Affiliation(s)
- M Z Lu
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå
| | | | | |
Collapse
|
83
|
Abstract
During this decade, there have been major advancements in the understanding of genetic loci involved in synthesis of the family of Mg-tetrapyrroles known as chlorophylls and bacteriochlorophylls. Molecular genetic analysis of Mg-tetrapyrrole biosynthesis was initiated by the performance of detailed sequence and mutational analysis of the photosynthesis gene cluster from Rhodobacter capsulatus. These studies provided the first detailed understanding of genes involved in bacteriochlorophyll a biosynthesis. In the short time since these studies were initiated, most of the chlorophyll biosynthesis genes have been identified by virtue of their ability to complement bacteriochlorophyll a biosynthesis mutants as well as by sequence homology comparisons. This review is centered on a discussion of our current understanding of bacterial, algal, and plant genes that code for enzymes in the Mg-branch of the tetrapyrrole biosynthetic pathway that are responsible for synthesis of chlorophylls and bacteriochlorophylls.
Collapse
Affiliation(s)
- J Y Suzuki
- Center for Gene Research, Nagoya University, Japan
| | | | | |
Collapse
|
84
|
Yoshinaga K, Kakehi T, Shima Y, Iinuma H, Masuzawa T, Ueno M. Extensive RNA editing and possible double-stranded structures determining editing sites in the atpB transcripts of hornwort chloroplasts. Nucleic Acids Res 1997; 25:4830-4. [PMID: 9365264 PMCID: PMC147111 DOI: 10.1093/nar/25.23.4830] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three nonsense codons and an unusual initiation codon were located within the putative coding region of the atpB gene of chloroplast DNA of the hornwort Anthoceros formosae. Nucleotide sequencing of cDNA prepared from transcripts revealed extensive RNA editing. The unusual initiation codon ACG was changed to AUG and three nonsense codons were converted into sense codons. In total 15 C residues of the genomic DNA were replaced by U residues in the mRNA sequences, while 14 U residues were replaced by C residues. This is the highest number of editing events for a chloroplast mRNA reported so far. Partial editing was also shown in a cDNA clone where 23 sites were edited but six sites remained unedited, representing the existence of premature mRNA. The expected two-dimensional structure of the mRNA shows the existence of a sequence complementary to every editing site, which can produce continuous base pairing longer than 5 bp, suggesting that mispairing in the double strand is the site determinant for RNA editing in Anthoceros chloroplasts. Comparison of the cDNA sequence with other chloroplast genes suggests that the mechanism arose in the first land plants and has been reduced during evolution.
Collapse
Affiliation(s)
- K Yoshinaga
- Faculty of Science, Shizuoka University, Shizuoka 422, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
Hirose T, Sugiura M. Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 1997; 16:6804-11. [PMID: 9362494 PMCID: PMC1170284 DOI: 10.1093/emboj/16.22.6804] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tobacco chloroplast genes encoding a photosystem I component (psaC) and a NADH dehydrogenase subunit (ndhD) are transcribed as a dicistronic pre-mRNA which is then cleaved into short mRNAs. An RNA protection assay revealed that the cleavage occurs at multiple sites in the intercistronic region. There are two possible initiation codons in the tobacco ndhD mRNA: the upstream AUG and the AUG created by RNA editing from the in-frame ACG located 25 nt downstream. Using the chloroplast in vitro translation system, we found that translation begins only from the edited AUG. The extent of ACG to AUG editing is partial and depends on developmental and environmental conditions. In addition, the in vitro assay showed that the psaC/ndhD dicistronic mRNA is not functional and that the intercistronic cleavage is a prerequisite for both ndhD and psaC translation. Using a series of mutant mRNAs, we showed that an intramolecular interaction between an 8 nt sequence in the psaC coding region and its complementary 8 nt sequence in the 5' ndhD UTR is the negative element for translation of the dicistronic mRNA. A possible mechanism in which the differential expression of the chloroplast operon consists of functionally unrelated genes is discussed.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-01, Japan
| | | |
Collapse
|
86
|
Vogel J, Hübschmann T, Börner T, Hess WR. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor. J Mol Biol 1997; 270:179-87. [PMID: 9236120 DOI: 10.1006/jmbi.1997.1115] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Group II introns frequently require assistance by specific factors, maturases, for folding and effective splicing in vivo. The only putative maturase of higher plant chloroplasts is encoded by matK, located in the intron of trnK. We show that in barley matK transcripts are modified at a first codon base by C-to-U RNA editing. The resulting H --> Y substitution restores a sequence motif that is present in maturases of yeast and plant mitochondria and of Lactococcus ltrA and that is positioned within the X domain. Processing of trnK-matK transcripts was further investigated in plastids lacking functional ribosomes due to a mutation. Absence of the intron-encoded matK gene product in these plastids is correlated with the accumulation of precursor transcripts for tRNALys(UUU)-matK, processed to different degrees, and by the lack of mature and spliced tRNA molecules. These results suggest an essential role of MatK for splicing of its own transcript in vivo. Processing of the 5' end of trnK exon 1 was found to proceed efficiently also in the mutant plastids although the two tRNA exons were separated by the 2481 nt intron. Consequently, presence of the intron does not interfere with the formation of mature 5' termini.
Collapse
Affiliation(s)
- J Vogel
- Humboldt-University, Department of Biology, Berlin, Germany
| | | | | | | |
Collapse
|
87
|
Freyer R, Kiefer-Meyer MC, Kössel H. Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci U S A 1997; 94:6285-90. [PMID: 9177209 PMCID: PMC21041 DOI: 10.1073/pnas.94.12.6285] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA editing changes posttranscriptionally single nucleotides in chloroplast-encoded transcripts. Although much work has been done on mechanistic and functional aspects of plastid editing, little is known about evolutionary aspects of this RNA processing step. To gain a better understanding of the evolution of RNA editing in plastids, we have investigated the editing patterns in ndhB and rbcL transcripts from various species comprising all major groups of land plants. Our results indicate that RNA editing occurs in plastids of bryophytes, fern allies, true ferns, gymnosperms, and angiosperms. Both editing frequencies and editing patterns show a remarkable degree of interspecies variation. Furthermore, we have found that neither plastid editing frequencies nor the editing pattern of a specific transcript correlate with the phylogenetic tree of the plant kingdom. The poor evolutionary conservation of editing sites among closely related species as well as the occurrence of single species-specific editing sites suggest that the differences in the editing patterns and editing frequencies are probably due both to independent loss and to gain of editing sites. In addition, our results indicate that RNA editing is a relatively ancient process that probably predates the evolution of land plants. This supposition is in good agreement with the phylogenetic data obtained for plant mitochondrial RNA editing, thus providing additional evidence for common evolutionary roots of the two plant organellar editing systems.
Collapse
Affiliation(s)
- R Freyer
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
88
|
Affiliation(s)
- M W Gray
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifa NS, Canada.
| |
Collapse
|