51
|
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1498:215-223. [DOI: 10.1016/j.chroma.2017.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/27/2022]
|
52
|
Young C, Podtelejnikov AV, Nielsen ML. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature. J Proteome Res 2017; 16:2307-2317. [DOI: 10.1021/acs.jproteome.6b01055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Clifford Young
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | - Michael L. Nielsen
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
53
|
Juang C, Chen B, Bru JL, Nguyen K, Huynh E, Momen M, Kim J, Aswad DW. Polymorphic Variants of Human Protein l-Isoaspartyl Methyltransferase Affect Catalytic Activity, Aggregation, and Thermal Stability: IMPLICATIONS FOR THE ETIOLOGY OF NEUROLOGICAL DISORDERS AND COGNITIVE AGING. J Biol Chem 2017; 292:3656-3665. [PMID: 28100787 DOI: 10.1074/jbc.m116.765222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
Protein l-isoaspartyl methyltransferase (PIMT/PCMT1), a product of the human pcmt1 gene, catalyzes repair of abnormal l-isoaspartyl linkages in age-damaged proteins. Pcmt1 knock-out mice exhibit a profound neuropathology and die 30-60 days postnatal from an epileptic seizure. Here we express 15 reported variants of human PIMT and characterize them with regard to their enzymatic activity, thermal stability, and propensity to aggregation. One mutation, R36C, renders PIMT completely inactive, whereas two others, A7P and I58V, exhibit activity that is 80-100% higher than wild type. G175R is highly prone to aggregation and has greatly reduced activity. R17S and R17H show markedly enhanced sensitivity to thermal denaturation. Based on previous studies of moderate PIMT variation in humans and mice, we predict that heterozygosity for R36C, G175R, R17S, and R17H will prove detrimental to cognitive function and successful aging, whereas homozygosity (if it ever occurs) will lead to severe neurological problems in the young.
Collapse
Affiliation(s)
- Charity Juang
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Baihe Chen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Jean-Louis Bru
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Katherine Nguyen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Eric Huynh
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Mahsa Momen
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Jeungjin Kim
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| | - Dana W Aswad
- From the Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
54
|
Roth C, Weizenmann N, Bexten N, Saenger W, Zimmermann W, Maier T, Sträter N. Amylose recognition and ring-size determination of amylomaltase. SCIENCE ADVANCES 2017; 3:e1601386. [PMID: 28097217 PMCID: PMC5235332 DOI: 10.1126/sciadv.1601386] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/28/2016] [Indexed: 05/25/2023]
Abstract
Starch is a major carbon and energy source throughout all kingdoms of life. It consists of two carbohydrate polymers, branched amylopectin and linear amylose, which are sparingly soluble in water. Hence, the enzymatic breakdown by glycoside hydrolases (GHs) is of great biological and societal importance. Amylomaltases (AMs) are GHs specialized in the hydrolysis of α-1,4-linked sugar chains such as amylose. They are able to catalyze an intramolecular transglycosylation of a bound sugar chain yielding polymeric sugar rings, the cycloamyloses (CAs), consisting of 20 to 100 glucose units. Despite a wealth of data on short oligosaccharide binding to GHs, no structural evidence is available for their interaction with polymeric substrates that better represent the natural polysaccharide. We have determined the crystal structure of Thermus aquaticus AM in complex with a 34-meric CA-one of the largest carbohydrates resolved by x-ray crystallography and a mimic of the natural polymeric amylose substrate. In total, 15 glucose residues interact with the protein in an extended crevice with a length of more than 40 Å. A modified succinimide, derived from aspartate, mediates protein-sugar interactions, suggesting a biological role for this nonstandard amino acid. The structure, together with functional assays, provides unique insights into the interaction of GHs with their polymeric substrate and reveals a molecular ruler mechanism for minimal ring-size determination of CA products.
Collapse
Affiliation(s)
- Christian Roth
- Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Nicole Weizenmann
- Institut für Biochemie, Universität Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Nicola Bexten
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Wolfgang Zimmermann
- Institut für Biochemie, Universität Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Timm Maier
- Biozentrum, Universität Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Norbert Sträter
- Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
55
|
DeGraan-Weber N, Zhang J, Reilly JP. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2041-2053. [PMID: 27613306 PMCID: PMC5748252 DOI: 10.1007/s13361-016-1487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 05/21/2023]
Abstract
Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nick DeGraan-Weber
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Jun Zhang
- Pre-Pivotal Drug Product Technologies, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
56
|
Adav SS, Sze SK. Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol Brain 2016; 9:92. [PMID: 27809929 PMCID: PMC5094070 DOI: 10.1186/s13041-016-0272-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a syndrome associated with a wide range of clinical features including progressive cognitive decline and patient inability to self-care. Due to rapidly increasing prevalence in aging society, dementia now confers a major economic, social, and healthcare burden throughout the world, and has therefore been identified as a public health priority by the World Health Organization. Previous studies have established dementia as a 'proteinopathy' caused by detrimental changes in brain protein structure and function that promote misfolding, aggregation, and deposition as insoluble amyloid plaques. Despite clear evidence that pathological cognitive decline is associated with degenerative protein modifications (DPMs) arising from spontaneous chemical modifications to amino acid side chains, the molecular mechanisms that promote brain DPMs formation remain poorly understood. However, the technical challenges associated with DPM analysis have recently become tractable due to powerful new proteomic techniques that facilitate detailed analysis of brain tissue damage over time. Recent studies have identified that neurodegenerative diseases are associated with the dysregulation of critical repair enzymes, as well as the misfolding, aggregation and accumulation of modified brain proteins. Future studies will further elucidate the mechanisms underlying dementia pathogenesis via the quantitative profiling of the human brain proteome and associated DPMs in distinct phases and subtypes of disease. This review summarizes recent developments in quantitative proteomic technologies, describes how these techniques have been applied to the study of dementia-linked changes in brain protein structure and function, and briefly outlines how these findings might be translated into novel clinical applications for dementia patients. In this review, only spontaneous protein modifications such as deamidation, oxidation, nitration glycation and carbamylation are reviewed and discussed.
Collapse
Affiliation(s)
- Sunil S. Adav
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
57
|
Pulido MA, DerHartunian MK, Qin Z, Chung EM, Kang DS, Woodham AW, Tsou JA, Klooster R, Akbari O, Wang L, Kast WM, Liu SV, Verschuuren JJ, Aswad DW, Laird-Offringa IA. Isoaspartylation appears to trigger small cell lung cancer-associated autoimmunity against neuronal protein ELAVL4. J Neuroimmunol 2016; 299:70-78. [PMID: 27725125 PMCID: PMC5152694 DOI: 10.1016/j.jneuroim.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Autoantibodies against SCLC-associated neuronal antigen ELAVL4 (HuD) have been linked to smaller tumors and improved survival, but the antigenic epitope and mechanism of autoimmunity have never been solved. We report that recombinant human ELAVL4 protein incubated under physiological conditions acquires isoaspartylation, a type of immunogenic protein damage. Specifically, the N-terminal region of ELAVL4, previously implicated in SCLC-associated autoimmunity, undergoes isoaspartylation in vitro, is recognized by sera from anti-ELAVL4 positive SCLC patients and is highly immunogenic in subcutaneously injected mice and in vitro stimulated human lymphocytes. Our data suggest that isoaspartylated ELAVL4 is the trigger for the SCLC-associated anti-ELAVL4 autoimmune response.
Collapse
Affiliation(s)
- Mario A. Pulido
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Meleeneh Kazarian DerHartunian
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA
| | - Eric M. Chung
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Diane S. Kang
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Andrew W. Woodham
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jeffrey A. Tsou
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lina Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stephen V. Liu
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Dana W. Aswad
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA
| | - Ite A. Laird-Offringa
- Departments of Surgery and of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
58
|
Galiano MR, Goitea VE, Hallak ME. Post-translational protein arginylation in the normal nervous system and in neurodegeneration. J Neurochem 2016; 138:506-17. [PMID: 27318192 DOI: 10.1111/jnc.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Post-translational arginylation of proteins is an important regulator of many physiological pathways in cells. This modification was originally noted in protein degradation during neurodegenerative processes, with an apparently different physiological relevance between central and peripheral nervous system. Subsequent studies have identified a steadily increasing number of proteins and proteolysis-derived polypeptides as arginyltransferase (ATE1) substrates, including β-amyloid, α-synuclein, and TDP43 proteolytic fragments. Arginylation is involved in signaling processes of proteins and polypeptides that are further ubiquitinated and degraded by the proteasome. In addition, it is also implicated in autophagy/lysosomal degradation pathway. Recent studies using mutant mouse strains deficient in ATE1 indicate additional roles of this modification in neuronal physiology. As ATE1 is capable of modifying proteins either at the N-terminus or middle-chain acidic residues, determining which proteins function are modulated by arginylation represents a big challenge. Here, we review studies addressing various roles of ATE1 activity in nervous system function, and suggest future research directions that will clarify the role of post-translational protein arginylation in brain development and various neurological disorders. Arginyltransferase (ATE1), the enzyme responsible for post-translational arginylation, modulates the functions of a wide variety of proteins and polypeptides, and is also involved in the main degradation pathways of intracellular proteins. Regulatory roles of ATE1 have been well defined for certain organs. However, its roles in nervous system development and neurodegenerative processes remain largely unknown, and present exciting opportunities for future research, as discussed in this review.
Collapse
Affiliation(s)
- Mauricio R Galiano
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Victor E Goitea
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Marta E Hallak
- Centro de Investigaciones de Química Biológica de Córdoba, CIQUIBIC, Departamento de Química Biológica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
59
|
Petla BP, Kamble NU, Kumar M, Verma P, Ghosh S, Singh A, Rao V, Salvi P, Kaur H, Saxena SC, Majee M. Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. THE NEW PHYTOLOGIST 2016; 211:627-45. [PMID: 26987457 DOI: 10.1111/nph.13923] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/03/2016] [Indexed: 05/03/2023]
Abstract
PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity.
Collapse
Affiliation(s)
- Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Meenu Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Ajeet Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Prafull Salvi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Saurabh Chandra Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| |
Collapse
|
60
|
Saito H, Yamashita M, Ogasawara M, Yamada N, Niisato M, Tomoyasu M, Deguchi H, Tanita T, Ishida K, Sugai T, Yamauchi K. Chaperone protein l-isoaspartate (d-aspartyl) O-methyltransferase as a novel predictor of poor prognosis in lung adenocarcinoma. Hum Pathol 2016; 50:1-10. [DOI: 10.1016/j.humpath.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 11/27/2022]
|
61
|
Adav SS, Gallart-Palau X, Tan KH, Lim SK, Tam JP, Sze SK. Dementia-linked amyloidosis is associated with brain protein deamidation as revealed by proteomic profiling of human brain tissues. Mol Brain 2016; 9:20. [PMID: 26892330 PMCID: PMC4759965 DOI: 10.1186/s13041-016-0200-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 01/25/2023] Open
Abstract
Background Aggregation of malformed proteins is a key feature of many neurodegenerative diseases, but the mechanisms that drive proteinopathy in the brain are poorly understood. We aimed to characterize aggregated proteins in human brain tissues affected by dementia. Results To characterize amyloidal plaque purified from post-mortem brain tissue of dementia patient, we applied ultracentrifugation-electrostatic repulsion hydrophilic interaction chromatography (UC-ERLIC) coupled mass spectrometry-based proteomics technologies. Proteomics profiling of both soluble and aggregated amyloidal plaque demonstrated significant enrichment and deamidation of S100A9, ferritin, hemoglobin subunits, creatine kinase and collagen protein among the aggregated brain proteins. Amyloidal plaques were enriched in the deamidated variant of protein S100A9, and structural analysis indicated that both the low- and high-affinity calcium binding motifs of S100A9 were deamidated exclusively in the aggregated fraction, suggesting altered charge state and function of this protein in brain tissues affected by dementia. The multiple deamidated residues of S100A9 predicts introduction of negative charge that alter Ca++ binding, suggesting increased capacity to form pathological aggregates in the brain. Conclusion UC-coupled proteomics revealed that brain amyloidal plaques are enriched in deamidated proteins, and suggested that altered charge state and calcium-binding capacity of S100A9 may enhance protein aggregation and promote neurodegeneration in the human brain. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0200-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore, Singapore.
| | - Xavier Gallart-Palau
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore, Singapore.
| | - Sai Kiang Lim
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, 138648, Singapore, Singapore.
| | - James P Tam
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Siu Kwan Sze
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
62
|
Qin Z, Zhu JX, Aswad DW. The D-isoAsp-25 variant of histone H2B is highly enriched in active chromatin: potential role in the regulation of gene expression? Amino Acids 2015; 48:599-603. [PMID: 26666674 DOI: 10.1007/s00726-015-2140-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
Approximately 12 % of histone H2B in mammalian brain contains an unusual D-aspartate residue in its N-terminal tail. Most of this D-aspartate is linked to the C-flanking glycine via an isopeptide bond. To explore the possible significance of these modifications, we generated an antibody to the D-isoaspartyl form of H2B, and used it to assess its levels in H2B associated with "active" vs. "silent" chromatin. We found that the D-isoaspartyl form of H2B appears to be highly enriched in the former. This irreversible modification could serve a novel regulatory function in gene expression.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jeff X Zhu
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
- USP-China, No. 520 North Fute Road, Waigaoqlao Free Trade Zone, Shanghai, 200131, China.
| | - Dana W Aswad
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh Hall, Irvine, CA, 92697-3900, USA.
| |
Collapse
|
63
|
Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. PLANT MOLECULAR BIOLOGY 2015; 89:475-92. [PMID: 26438231 DOI: 10.1007/s11103-015-0383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/19/2015] [Indexed: 05/07/2023]
Abstract
Damaged proteins containing abnormal isoaspartyl (isoAsp) accumulate as seeds age and the abnormality is thought to undermine seed vigor. Protein-L-isoaspartyl methyltransferase (PIMT) is involved in isoAsp-containing protein repair. Two PIMT genes from rice (Oryza sativa L.), designated as OsPIMT1 and OsPIMT2, were isolated and investigated for their roles. The results indicated that OsPIMT2 was mainly present in green tissues, but OsPIMT1 largely accumulated in embryos. Confocal visualization of the transient expression of OsPIMTs showed that OsPIMT2 was localized in the chloroplast and nucleus, whereas OsPIMT1 was predominately found in the cytosol. Artificial aging results highlighted the sensitivity of the seeds of OsPIMT1 mutant line when subjected to accelerated aging. Overexpression of OsPIMT1 in transgenic seeds reduced the accumulation of isoAsp-containing protein in embryos, and increased embryo viability. The germination percentage of transgenic seeds overexpressing OsPIMT1 increased 9-15% compared to the WT seeds after 21-day of artificial aging, whereas seeds from the OsPIMT1 RNAi lines overaccumulated isoAsp in embryos and experienced rapid loss of seed germinability. Taken together, these data strongly indicated that OsPIMT1-related seed longevity improvement is probably due to the repair of detrimental isoAsp-containing proteins that over accumulate in embryos when subjected to accelerated aging.
Collapse
Affiliation(s)
- Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Lirong Diao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| |
Collapse
|
64
|
Ince HH, Konuklar FAS, Ugur I, Ozcan ÖA, Sayadi M, Feig M, Aviyente V. Role of then+1 amino acid residue on the deamidation of asparagine in pentapeptides. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1068394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Carter WG, Vigneswara V, Newlaczyl A, Wayne D, Ahmed B, Saddington S, Brewer C, Raut N, Gerdes HK, Erdozain AM, Tooth D, Bolt EL, Osna NA, Tuma DJ, Kharbanda KK. Isoaspartate, carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury. Biochem Biophys Res Commun 2015; 458:626-631. [PMID: 25684186 PMCID: PMC4355035 DOI: 10.1016/j.bbrc.2015.01.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 02/08/2023]
Abstract
We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and (3)H-S-adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ∼ 75-80 kDa, ∼ 95-100 kDa, and ∼ 155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ∼ 160 kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (∼ 2.3-fold) increase in CPS-1 levels compared to 4-week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury.
Collapse
Affiliation(s)
- Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK.
| | - Vasanthy Vigneswara
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Anna Newlaczyl
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Declan Wayne
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Bilal Ahmed
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Stephen Saddington
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Charlotte Brewer
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Nikhilesh Raut
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Henry K Gerdes
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Amaia M Erdozain
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK; Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, Spain
| | - David Tooth
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Natalie A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
66
|
Yang SH, Procaccia S, Jung HJ, Nobumori C, Tatar A, Tu Y, Bayguinov YR, Hwang SJ, Tran D, Ward SM, Fong LG, Young SG. Mice that express farnesylated versions of prelamin A in neurons develop achalasia. Hum Mol Genet 2015; 24:2826-40. [PMID: 25652409 DOI: 10.1093/hmg/ddv043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Neurons in the brain produce lamin C but almost no lamin A, a consequence of the removal of prelamin A transcripts by miR-9, a brain-specific microRNA. We have proposed that miR-9-mediated regulation of prelamin A in the brain could explain the absence of primary neurological disease in Hutchinson-Gilford progeria syndrome, a genetic disease caused by the synthesis of an internally truncated form of farnesyl-prelamin A (progerin). This explanation makes sense, but it is not entirely satisfying because it is unclear whether progerin-even if were expressed in neurons-would be capable of eliciting neuropathology. To address that issue, we created a new Lmna knock-in allele, Lmna(HG-C), which produces progerin transcripts lacking an miR-9 binding site. Mice harboring the Lmna(HG-C) allele produced progerin in neurons, but they had no pathology in the central nervous system. However, these mice invariably developed esophageal achalasia, and the enteric neurons and nerve fibers in gastrointestinal tract were markedly abnormal. The same disorder, achalasia, was observed in genetically modified mice that express full-length farnesyl-prelamin A in neurons (Zmpste24-deficient mice carrying two copies of a Lmna knock-in allele yielding full-length prelamin A transcripts lacking a miR-9 binding site). Our findings indicate that progerin and full-length farnesyl-prelamin A are toxic to neurons of the enteric nervous system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulia R Bayguinov
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | - Stephen G Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
67
|
Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 2014; 27:172-97. [PMID: 25516120 PMCID: PMC4300421 DOI: 10.1007/s12640-014-9508-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
The complexity of the genome is regulated by epigenetic mechanisms, which act on the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in various biological processes, including embryonic development, cell differentiation, neurogenesis, and adult cell renewal. In the last few years, it has become clear that the number of players identified in the regulation of chromatin structure and function is still increasing. In addition to well-known phenomena, including DNA methylation and histone modification, new, important elements, including nucleosome mobility, histone tail clipping, and regulatory ncRNA molecules, are being discovered. The present paper provides the current state of knowledge about the role of 16 different histone post-translational modifications, nucleosome positioning, and histone tail clipping in the structure and function of chromatin. We also emphasize the significance of cross-talk among chromatin marks and ncRNAs in epigenetic control.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland,
| | | |
Collapse
|
68
|
Qin Z, Dimitrijevic A, Aswad DW. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging. Neurobiol Aging 2014; 36:1029-36. [PMID: 25465735 DOI: 10.1016/j.neurobiolaging.2014.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
69
|
Chatterjee T, Chatterjee BK, Majumdar D, Chakrabarti P. Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochim Biophys Acta Gen Subj 2014; 1850:299-306. [PMID: 25450183 DOI: 10.1016/j.bbagen.2014.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND An alternative to conventional antibiotics is needed to fight against emerging multiple drug resistant pathogenic bacteria. In this endeavor, the effect of silver nanoparticle (Ag-NP) has been studied quantitatively on two common pathogenic bacteria Escherichia coli and Staphylococcus aureus, and the growth curves were modeled. METHODS The effect of Ag-NP on bacterial growth kinetics was studied by measuring the optical density, and was fitted by non-linear regression using the Logistic and modified Gompertz models. Scanning Electron Microscopy and fluorescence microscopy were used to study the morphological changes of the bacterial cells. Generation of reactive oxygen species for Ag-NP treated cells were measured by fluorescence emission spectra. RESULTS The modified Gompertz model, incorporating cell death, fits the observed data better than the Logistic model. With increasing concentration of Ag-NP, the growth kinetics of both bacteria shows a decline in growth rate with simultaneous enhancement of death rate constants. The duration of the lag phase was found to increase with Ag-NP concentration. SEM showed morphological changes, while fluorescence microscopy using DAPI showed compaction of DNA for Ag-NP-treated bacterial cells. CONCLUSIONS E. coli was found to be more susceptible to Ag-NP as compared to S. aureus. The modified Gompertz model, using a death term, was found to be useful in explaining the non-monotonic nature of the growth curve. GENERAL SIGNIFICANCE The modified Gompertz model derived here is of general nature and can be used to study any microbial growth kinetics under the influence of antimicrobial agents.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Dipanwita Majumdar
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India; Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
70
|
Adav SS, Qian J, Ang YL, Kalaria RN, Lai MKP, Chen CP, Sze SK. iTRAQ quantitative clinical proteomics revealed role of Na(+)K(+)-ATPase and its correlation with deamidation in vascular dementia. J Proteome Res 2014; 13:4635-46. [PMID: 25152327 DOI: 10.1021/pr500754j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dementia is a major public health burden characterized by impaired cognition and loss of function. There are limited treatment options due to inadequate understanding of its pathophysiology and underlying causative mechanisms. Discovery-driven iTRAQ-based quantitative proteomics techniques were applied on frozen brain samples to profile the proteome from vascular dementia (VaD) and age-matched nondementia controls to elucidate the perturbed pathways contributing to pathophysiology of VaD. The iTRAQ quantitative data revealed significant up-regulation of protein-l-isoaspartate O-methyltransferase and sodium-potassium transporting ATPase, while post-translational modification analysis suggested deamidation of catalytic and regulatory subunits of sodium-potassium transporting ATPase. Spontaneous protein deamidation of labile asparagines, generating abnormal l-isoaspartyl residues, is associated with cell aging and dementia due to Alzheimer's disease and may be a cause of neurodegeneration. As ion channel proteins play important roles in cellular signaling processes, alterations in their function by deamidation may lead to perturbations in membrane excitability and neuronal function. Structural modeling of sodium-potassium transporting ATPase revealed the close proximity of these deamidated residues to the catalytic site during E2P confirmation. The deamidated residues may disrupt electrostatic interaction during E1 phosphorylation, which may affect ion transport and signal transduction. Our findings suggest impaired regulation and compromised activity of ion channel proteins contribute to the pathophysiology of VaD.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | |
Collapse
|
71
|
Dimitrijevic A, Qin Z, Aswad DW. Isoaspartyl formation in creatine kinase B is associated with loss of enzymatic activity; implications for the linkage of isoaspartate accumulation and neurological dysfunction in the PIMT knockout mouse. PLoS One 2014; 9:e100622. [PMID: 24955845 PMCID: PMC4067349 DOI: 10.1371/journal.pone.0100622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/29/2014] [Indexed: 01/12/2023] Open
Abstract
Isoaspartate (isoAsp) formation is a common type of spontaneous protein damage that is normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). PIMT-KO (knockout) mice exhibit a pronounced neuropathology highlighted by death from an epileptic seizure at 30 to 60 days after birth. The mechanisms by which isoaspartyl damage disrupts normal brain function are incompletely understood. Proteomic analysis of the PIMT-KO mouse brain has shown that a number of key neuronal proteins accumulate high levels of isoAsp, but the extent to which their cellular functions is altered has yet to be determined. One of the major neuronal targets of PIMT is creatine kinase B (CKB), a well-characterized enzyme whose activity is relatively easy to assay. We show here that (1) the specific activity of CKB is significantly reduced in the brains of PIMT-deficient mice, (2) that in vitro aging of recombinant CKB results in significant accumulation of isoAsp sites with concomitant loss of enzymatic activity, and (3) that incubation of in vitro aged CKB with PIMT and its methyl donor S-adenosyl-L-methionine substantially repairs the aged CKB with regard to both its isoAsp content and its enzymatic activity. These results, combined with similarity in phenotypes of PIMT-KO and CKB-KO mice, suggests that loss of normal CKB structure and function contributes to the mechanisms by which isoAsp accumulation leads to CNS dysfunction in the PIMT-KO mouse.
Collapse
Affiliation(s)
- Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
72
|
Patananan AN, Capri J, Whitelegge JP, Clarke SG. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae. J Biol Chem 2014; 289:16936-53. [PMID: 24764295 DOI: 10.1074/jbc.m114.564385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.
Collapse
Affiliation(s)
- Alexander N Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| | - Joseph Capri
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Julian P Whitelegge
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| |
Collapse
|
73
|
Qin Z, Yang J, Klassen HJ, Aswad DW. Isoaspartyl protein damage and repair in mouse retina. Invest Ophthalmol Vis Sci 2014; 55:1572-9. [PMID: 24550364 DOI: 10.1167/iovs.13-13668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To determine the propensity of retinal proteins for spontaneous damage via formation of isoaspartyl sites, a common type of protein damage that could contribute to retinal disease. METHODS Tissue extracts were obtained from retinas and brains of control mice and from mice in which the gene for protein L-isoaspartate O-methyltransferase (PIMT; an enzyme that repairs isoaspartyl protein damage) was knocked out. PIMT expression in these extracts was measured by Western blot, and its specific activity was assayed by monitoring the rate of [(3)H]methyl transfer from S-adenosyl-[methyl-(3)H]L-methionine to γ-globulin. Isoaspartate levels in extracts were measured by their capacity to accept [(3)H]methyl groups via the PIMT-catalyzed methylation reaction. To compare molecular weight distributions of isoaspartyl-rich proteins in retina versus brain, proteins from PIMT knockout (KO) and control mice were separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF). Isoaspartyl proteins were (3)H-labeled on-blot using a PIMT overlay and imaged by autoradiography. RESULTS When normalized to the β-actin content of each tissue, retina was found to be nearly identical to brain with regard to expression and activity of PIMT and its propensity to accumulate isoaspartyl sites when PIMT is absent. The two tissues show distinct differences in the molecular weight distribution of isoaspartyl proteins. CONCLUSIONS The retina is rich in PIMT activity and contains a wide range of proteins that are highly susceptible to this type of protein damage. Recoverin may be one such protein. Isoaspartate formation, along with oxidation, should be considered as a potential source of protein dysfunction and autoimmunity in retinal disease.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | | | | | |
Collapse
|
74
|
Baumann M, Meri S. Techniques for studying protein heterogeneity and post-translational modifications. Expert Rev Proteomics 2014; 1:207-17. [PMID: 15966815 DOI: 10.1586/14789450.1.2.207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins often undergo several post-translational modification steps in parallel to protein folding. These modifications can be transient or of a more permanent nature. Most modifications are, however, susceptible to alteration during the lifespan of proteins. Post-translational modifications thus generate variability in proteins that are far beyond that provided by the genetic code. Co- and post-translational modifications can convert the 20 specific codon-encoded amino acids into more than 100 variant amino acids with new properties. These, and a number of other modifications, can considerably increase the information content and functional repertoire of proteins, thus making their analysis of paramount importance for diagnostic and basic research purposes. Various methods used in proteomics, such as 2D gel electrophoresis, 2D liquid chromatography, mass spectrometry, affinity-based analytical methods, interaction analyses, ligand blotting techniques, protein crystallography and structure-function predictions, are all applicable for the analysis of these numerous secondary modifications. In this review, examples of some of these techniques in studying the heterogeneity of proteins are highlighted. In the future, these methods will become increasingly useful in biomarker searches and in clinical diagnostics.
Collapse
Affiliation(s)
- Marc Baumann
- Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, PO Box 63, Haartmaninkatu 8, FIN-00014, Finland.
| | | |
Collapse
|
75
|
Qin Z, Kaufman RS, Khoury RN, Khoury MK, Aswad DW. Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLoS One 2013; 8:e80758. [PMID: 24224061 PMCID: PMC3818261 DOI: 10.1371/journal.pone.0080758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/05/2022] Open
Abstract
Isoaspartate (isoAsp) formation is a major source of protein damage that is kept in check by the repair function of protein L-isoaspartyl methyltransferase (PIMT). Mice deficient in PIMT accumulate isoAsp-containing proteins, resulting in cognitive deficits, abnormal neuronal physiology and cytoarchitecture, and fatal epileptic seizures 30–60 days after birth. Synapsins I and II, dynamin-1, collapsin response mediator protein 2 (CRMP2), and α/β-tubulin are major targets of PIMT in brain. To investigate links between isoAsp accumulation and the neurological phenotype of the KO mice, we used Western blotting to compare patterns of in vivo phosphorylation or acetylation of the major PIMT targets listed above. Phosphorylations of synapsins I and II at Ser-9 were increased in female KO vs. WT mice, and acetylation of tubulin at Lys-40 was decreased in male KO vs. WT mice. Average levels of dynamin-1 phosphorylation at Ser-778 and Ser-795 were higher in male KO vs. WT mice, but the statistical significance (P>0.1) was low. No changes in phosphorylation were found in synapsins I and II at Ser-603, in CRMP2 at Ser-522 or Thr-514, in DARPP-32 at Thr-34, or in PDK1 at Ser-241. General levels of phosphorylation assessed with Pro-Q Diamond stain, or an anti-phosphotyrosine antibody, appeared similar in the WT and KO mice. We conclude that isoAsp accumulation is associated with altered functional status of several neuronal proteins that are highly susceptible to this type of damage. We also uncovered unexpected differences in how male and female mice respond to isoAsp accumulation in the brain.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rachel S. Kaufman
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rana N. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mitri K. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
76
|
McCoy RG, Nair KS. The 2010 ESPEN Sir David Cuthbertson Lecture: new and old proteins: clinical implications. Clin Nutr 2013; 32:728-36. [PMID: 23481224 PMCID: PMC3700593 DOI: 10.1016/j.clnu.2012.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023]
Abstract
The past century had witnessed vast advances in biomedical research, particularly in the fields of genomics and proteomics, yet the translation of these discoveries into clinical practice has been hindered by gaps in mechanistic understanding of variability governing disease susceptibility and pathogenesis. Among the greatest challenges are the dynamic nature of the proteome and the imperfect methodologies currently available to study it. Here, we review key recently developed proteomic techniques that have allowed for dynamic characterization of protein quality, as well as quantity, and discuss their potential applications in understanding aging and metabolic disorders including diabetes. These methodologies revealed that senescence is characterized, in part, by decreased rates of de novo protein synthesis and potentially also degradation, in addition to concomitantly increased levels of oxidative stress, ultimately resulting in excessive accumulation of damaged and dysfunctional proteins. Insulin may be a key mediator in these pathologies, as hyperinsulinemia has been shown to hinder protein degradation while transient insulin deficiency may accelerate oxidative damage. We also discuss two interventions that have been proposed to delay, and possibly reverse, senescence by augmenting protein degradation: chronic caloric restriction and aerobic exercise.
Collapse
Affiliation(s)
- Rozalina G. McCoy
- Department of Internal Medicine, Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - K. Sreekumaran Nair
- Department of Internal Medicine, Division of Endocrinology, Endocrinology Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
77
|
Yang H, Lowenson JD, Clarke S, Zubarev RA. Brain proteomics supports the role of glutamate metabolism and suggests other metabolic alterations in protein l-isoaspartyl methyltransferase (PIMT)-knockout mice. J Proteome Res 2013; 12:4566-76. [PMID: 23947766 DOI: 10.1021/pr400688r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein l-isoaspartyl methyltransferase (PIMT) repairs the isoaspartyl residues (isoAsp) that originate from asparagine deamidation and aspartic acid (Asp) isomerization to Asp residues. Deletion of the gene encoding PIMT in mice (Pcmt1) leads to isoAsp accumulation in all tissues measured, especially in the brain. These PIMT-knockout (PIMT-KO) mice have perturbed glutamate metabolism and die prematurely of epileptic seizures. To elucidate the role of PIMT further, brain proteomes of PIMT-KO mice and controls were analyzed. The isoAsp levels from two of the detected 67 isoAsp sites (residue 98 from calmodulin and 68 from glyceraldehyde-3-phosphate dehydrogenase) were quantified and found to be significantly increased in PIMT-KO mice (p < 0.01). Additionally, the abundance of at least 151 out of the 1017 quantified proteins was found to be altered in PIMT-KO mouse brains. Gene ontology analysis revealed that many down-regulated proteins are involved in cellular amino acid biosynthesis. For example, the serine synthesis pathway was suppressed, possibly leading to reduced serine production in PIMT-KO mice. Additionally, the abundances of enzymes in the glutamate-glutamine cycle were altered toward the accumulation of glutamate. These findings support the involvement of PIMT in glutamate metabolism and suggest that the absence of PIMT also affects other processes involving amino acid synthesis and metabolism.
Collapse
Affiliation(s)
- Hongqian Yang
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17 177 Stockholm, Sweden
| | | | | | | |
Collapse
|
78
|
PCMT1 gene polymorphisms, maternal folate metabolism, and neural tube defects: a case-control study in a population with relatively low folate intake. GENES AND NUTRITION 2013; 8:581-7. [PMID: 23918616 DOI: 10.1007/s12263-013-0355-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022]
Abstract
The PCMT1 gene encodes the protein repair enzyme protein-L-isoaspartate (D-aspartate) O-methyltransferase, which is known to protect certain neural cells against Bax-induced apoptosis. Previous studies have produced inconsistent results regarding the effects of PCMT1 (rs4816 and rs4552) polymorphisms on neural tube defects (NTDs). Reduced maternal plasma folate levels and/or elevated homocysteine (Hcy) levels are considered to be risk factors for NTDs. In order to clarify the key factors contributing to the apparent discrepancy and investigate gene-environment interaction, we conducted a case-control study including 121 cases and 146 matched controls to investigate the association between the two PCMT1 polymorphisms in fetuses and the risk of NTDs in the Chinese population of Lvliang, which has low folate intake. Maternal plasma folate and Hcy levels were also measured, and the interaction between fetal PCMT1 gene status and maternal folate metabolites was assessed. Maternal plasma folate concentrations in the NTD group were lower than in controls (10.23 vs. 13.08 nmol/L, adjusted P = 0.059), and Hcy concentrations were significantly higher (14.46 vs. 11.65 μmol/L, adjusted P = 0.026). Fetuses carrying the rs4816 AG + GG genotype, combined with higher maternal plasma Hcy, had a 6.46-fold (95 % CI 1.15-36.46) increased risk of anencephaly. The results of this study imply that the fetal PCMT1 rs4816 polymorphism may play only a weak role in NTD formation and that gene-environment interactions might be more significant.
Collapse
|
79
|
Theoretical study on isomerization and peptide bond cleavage at aspartic residue. J Mol Model 2013; 19:3627-36. [DOI: 10.1007/s00894-013-1889-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
|
80
|
Nelson CS, Fuller CK, Fordyce PM, Greninger AL, Li H, DeRisi JL. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets. Nucleic Acids Res 2013; 41:5991-6004. [PMID: 23625967 PMCID: PMC3695516 DOI: 10.1093/nar/gkt259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein’s DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2’s-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.
Collapse
Affiliation(s)
- Christopher S Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94131, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Vigneswara V, Cass S, Wayne D, Bolt EL, Ray DE, Carter WG. Molecular ageing of alpha- and Beta-synucleins: protein damage and repair mechanisms. PLoS One 2013; 8:e61442. [PMID: 23630590 PMCID: PMC3632608 DOI: 10.1371/journal.pone.0061442] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Abnormal α-synuclein aggregates are hallmarks of a number of neurodegenerative diseases. Alpha synuclein and β-synucleins are susceptible to post-translational modification as isoaspartate protein damage, which is regulated in vivo by the action of the repair enzyme protein L-isoaspartyl O-methyltransferase (PIMT). We aged in vitro native α-synuclein, the α-synuclein familial mutants A30P and A53T that give rise to Parkinsonian phenotypes, and β-synuclein, at physiological pH and temperature for a time course of up to 20 days. Resolution of native α-synuclein and β-synuclein by two dimensional techniques showed the accumulation of a number of post-translationally modified forms of both proteins. The levels of isoaspartate formed over the 20 day time course were quantified by exogenous methylation with PIMT using S-Adenosyl-L-[3H-methyl]methionine as a methyl donor, and liquid scintillation counting of liberated 3H-methanol. All α-synuclein proteins accumulated isoaspartate at ∼1% of molecules/day, ∼20 times faster than for β-synuclein. This disparity between rates of isoaspartate was confirmed by exogenous methylation of synucleins by PIMT, protein resolution by one-dimensional denaturing gel electrophoresis, and visualisation of 3H-methyl esters by autoradiography. Protein silver staining and autoradiography also revealed that α-synucleins accumulated stable oligomers that were resistant to denaturing conditions, and which also contained isoaspartate. Co-incubation of approximately equimolar β-synuclein with α-synuclein resulted in a significant reduction of isoaspartate formed in all α-synucleins after 20 days of ageing. Co-incubated α- and β-synucleins, or α, or β synucleins alone, were resolved by non-denaturing size exclusion chromatography and all formed oligomers of ∼57.5 kDa; consistent with tetramerization. Direct association of α-synuclein with β-synuclein in column fractions or from in vitro ageing co-incubations was demonstrated by their co-immunoprecipitation. These results provide an insight into the molecular differences between α- and β-synucleins during ageing, and highlight the susceptibility of α-synuclein to protein damage, and the potential protective role of β-synuclein.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Simon Cass
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Declan Wayne
- School of Graduate Entry Medicine and Health, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom
| | - Edward L. Bolt
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David E. Ray
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Wayne G. Carter
- School of Graduate Entry Medicine and Health, University of Nottingham Medical School, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|
82
|
Verma P, Kaur H, Petla BP, Rao V, Saxena SC, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. PLANT PHYSIOLOGY 2013; 161:1141-57. [PMID: 23284083 PMCID: PMC3585586 DOI: 10.1104/pp.112.206243] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/01/2013] [Indexed: 05/02/2023]
Abstract
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.
Collapse
Affiliation(s)
- Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh C. Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
83
|
Dai S, Ni W, Patananan AN, Clarke SG, Karger BL, Zhou ZS. Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Anal Chem 2013; 85:2423-30. [PMID: 23327623 DOI: 10.1021/ac303428h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.
Collapse
Affiliation(s)
- Shujia Dai
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
84
|
Hooi MYS, Raftery MJ, Truscott RJW. Interconversion of the peptide isoforms of aspartate: stability of isoaspartates. Mech Ageing Dev 2013; 134:103-9. [PMID: 23385093 DOI: 10.1016/j.mad.2013.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/04/2013] [Accepted: 01/12/2013] [Indexed: 01/10/2023]
Abstract
A common modification of human long-lived proteins is spontaneous isomerisation of aspartate residues, and its biological importance can be inferred from the ubiquitous presence of protein isoaspartate methyl transferase (PIMT), that repairs this damage. Cyclisation of L-Asp residues yields four isomers: L-Asp, L-isoAsp, D-Asp and D-isoAsp, however little is known about their rate of formation or interconversion. This is important because PIMT is inactive towards D-isoAsp. Peptides containing the four Asp isoforms corresponding to a susceptible site (Asp 151) in the chaperone, αA-crystallin, were examined for their interconversion at pH 7. D-Asp formed from L-Asp readily, whereas L-isoAsp was not detected until significantly later. D-isoAsp formed very slowly, with just 1% present after 8 days at 60°C. These findings can be used to rationalise the substrate specificity of PIMT. In addition, both the D-isoAsp and L-isoAsp peptides were found to be remarkably stable, showing little conversion to other isomers, even after weeks of incubation. Therefore L-isoAsp and D-isoAsp appear to represent "terminal" stages of L-Asp modification. If PIMT is present, L-isoAsp may be reverted to L-Asp, however there appears to be no prospect of reversing D-isoAsp formation in aged proteins. Interestingly, Asp 151 in recombinant αA crystallin isomerised more rapidly than in the L-Asp peptide.
Collapse
Affiliation(s)
- Michelle Y S Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | | | | |
Collapse
|
85
|
Fanélus I, Desrosiers RR. Mitochondrial uncoupler carbonyl cyanide M-chlorophenylhydrazone induces the multimer assembly and activity of repair enzyme protein L-isoaspartyl methyltransferase. J Mol Neurosci 2013; 50:411-23. [PMID: 23319267 DOI: 10.1007/s12031-012-9946-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/21/2012] [Indexed: 12/11/2022]
Abstract
The protein L-isoaspartyl methyltransferase (PIMT) repairs damaged aspartyl residues in proteins. It is commonly described as a cytosolic protein highly expressed in brain tissues. Here, we report that PIMT is an active monomeric as well as a multimeric protein in mitochondria isolated from neuroblastoma cells. Upon treatments with mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), PIMT monomers level decreased by half while that of PIMT multimers was higher. Gel electrophoresis under reducing conditions of CCCP-induced PIMT multimers led to PIMT monomers accumulation, indicating that multimers resulted from disulfide-linked PIMT monomers. The antioxidant ascorbic acid significantly lowered CCCP-induced formation of PIMT multimers, suggesting that reactive oxygen species contributed to PIMT multimerization. In addition, the elevation of PIMT multimers catalytic activity upon treatments with CCCP was severely inhibited by the reducing agent dithiothreitol. This indicated that PIMT monomers have lower enzymatic activity following CCCP treatments and that activation of PIMT multimers is essentially dependent on the formation of disulfide-linked monomers of PIMT. Furthermore, the perturbation of mitochondrial function by CCCP promoted the accumulation of damaged aspartyl residues in proteins with high molecular weights. Thus, this study demonstrates the formation of active PIMT multimers associated with mitochondria that could play a key role in repairing damaged proteins accumulating during mitochondrial dysfunction.
Collapse
Affiliation(s)
- Irvens Fanélus
- The Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | | |
Collapse
|
86
|
Chatterjee T, Pal A, Chakravarty D, Dey S, Saha RP, Chakrabarti P. Protein l-isoaspartyl-O-methyltransferase of Vibrio cholerae: interaction with cofactors and effect of osmolytes on unfolding. Biochimie 2012; 95:912-21. [PMID: 23274130 DOI: 10.1016/j.biochi.2012.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Protein l-isoaspartyl-O-methyltransferase (PIMT) is an ubiquitous enzyme widely distributed in cells and plays a role in the repair of deamidated and isomerized proteins. In this study, we show that this enzyme is present in cytosolic extract of Vibrio cholerae, an enteric pathogenic Gram-negative bacterium and is enzymatically active. Additionally, we focus on the detailed biophysical characterization of the recombinant PIMT from V. cholerae to gain insight into its structure, stability and the cofactor binding. The equilibrium denaturation of PIMT has been studied using tryptophan fluorescence and CD spectroscopy. The far- and near-UV CD, as well as fluorescence experiments reveal the presence of a non-native intermediate in the folding pathway. Binding of the hydrophobic fluorescent probe, bis-ANS, to the intermediate occurs with high affinity because of the exposure of the hydrophobic clusters during the unfolding process. The existence of the probable intermediate has also been confirmed from limited tryptic digestion and DLS experiments. The protein shows higher binding affinity for AdoHcy, in comparison to AdoMet, and the binding increases the midpoint of thermal unfolding by 6 and 5 °C, respectively. Modeling and molecular dynamics simulations also support the higher stability of the protein in presence of AdoHcy.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | | | | | |
Collapse
|
87
|
Higher incidence of epilepsy in meningiomas located on the premotor cortex: a voxel-wise statistical analysis. Acta Neurochir (Wien) 2012; 154:2241-9. [PMID: 23086105 DOI: 10.1007/s00701-012-1511-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND A substantial number of patients with brain tumors develop recurrent seizures, known as tumor-associated epilepsy. It is important to identify specific subgroups of brain tumor patients with higher incidences of epilepsy because a meta-analysis failed to certify the effectiveness of prophylactic anti-epileptic drugs (AEDs) to abort tumor-associated epilepsy as a whole. METHODS To investigate the relationship between tumor location and incidence of epilepsy, we performed voxel-wise comparison between 3D MRI scans obtained from patients with meningioma-associated epilepsy and those from control patients using spatial normalization techniques on neuroimaging data. Variables such as age, tumor size, the degree of edema, and pathological diagnosis were also compared between the two groups. RESULTS Our results showed the highest incidence of epilepsy when the tumor was located on the premotor cortex in the frontal lobe (Z-scores >2.0, Liebermeister's quasi-exact test). The stepwise multiple regression analysis on the clinical data revealed that the tumor diameter (p < 0.001) and the patient's age (p = 0.024) were positive and negative predictors, respectively, for the onset of epilepsy. CONCLUSIONS The incidence of epilepsy was higher in meningiomas located on the premotor cortex than on the other cortex. Larger volume also contributed to the onset of epilepsy. We suggest that variations of epilepsy incidence dependent on tumor characteristics can be considered when treating tumor-associated epilepsy.
Collapse
|
88
|
Hooi MYS, Raftery MJ, Truscott RJW. Accelerated aging of Asp 58 in αA crystallin and human cataract formation. Exp Eye Res 2012; 106:34-9. [PMID: 23142040 DOI: 10.1016/j.exer.2012.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 01/10/2023]
Abstract
Racemisation of amino acids is one of the most abundant modifications in long-lived proteins. In this study racemisation of Asp 58 in the small heat shock protein, αA crystallin, was investigated. In normal human lenses, levels of l-isoAsp, d-isoAsp and d-Asp increased with age, such that by age 70 they accounted for approximately half of the total Asp at this site. Levels of d-isoAsp were significantly higher in all cataract lenses than age-matched normal lenses. The introduction of d-isoAsp in αA crystallin could therefore be associated with the development of cataract. Its more rapid formation in cataract lenses may represent an example of accelerated protein aging leading to a human age-related disease.
Collapse
Affiliation(s)
- Michelle Y S Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | | | | |
Collapse
|
89
|
MacKay KB, Lowenson JD, Clarke SG. Wortmannin reduces insulin signaling and death in seizure-prone Pcmt1-/- mice. PLoS One 2012; 7:e46719. [PMID: 23071621 PMCID: PMC3465263 DOI: 10.1371/journal.pone.0046719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/01/2012] [Indexed: 12/23/2022] Open
Abstract
L-isoaspartyl (D-aspartyl) O-methyltransferase deficient mice (Pcmt1−/−) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20–30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1−/− animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1−/− at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1−/− mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1−/− mice, but is not solely responsible for the early death observed in these animals.
Collapse
Affiliation(s)
- Kennen B. MacKay
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan D. Lowenson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
90
|
Morrison GJ, Ganesan R, Qin Z, Aswad DW. Considerations in the identification of endogenous substrates for protein L-isoaspartyl methyltransferase: the case of synuclein. PLoS One 2012; 7:e43288. [PMID: 22905247 PMCID: PMC3419188 DOI: 10.1371/journal.pone.0043288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) repairs abnormal isoaspartyl peptide bonds in age-damaged proteins. It has been reported that synuclein, a protein implicated in neurodegenerative diseases, is a major target of PIMT in mouse brain. To extend this finding and explore its possible relevance to neurodegenerative diseases, we attempted to determine the stoichiometry of isoaspartate accumulation in synuclein in vivo and in vitro. Brain proteins from PIMT knockout mice were separated by 2D electrophoresis followed by on-blot [3H]-methylation to label isoaspartyl proteins, and by immunoblotting to confirm the coincident presence of synuclein. On-blot 3H-methylation revealed numerous isoaspartyl proteins, but no signal in the position of synuclein. This finding was corroborated by immunoprecipitation of synuclein followed by on-blot 3H-methylation. To assess the propensity of synuclein to form isoaspartyl sites in vitro, samples of recombinant mouse and human α-synucleins were aged for two weeks by incubation at pH 7.5 and 37°C. The stoichiometries of isoaspartate accumulation were extremely low at 0.02 and 0.07 mol of isoaspartate per mol of protein respectively. Using a simple mathematical model based on the first order kinetics of isoaspartyl protein methyl ester hydrolysis, we ascribe the discrepancy between our results and the previous report to methodological limitations of the latter stemming from an inherent, and somewhat counterintuitive, relationship between the propensity of proteins to form isoaspartyl sites and the instability of the 3H-methyl esters used to tag them. The results presented here indicate that synuclein is not a major target of PIMT in vivo, and emphasize the need to minimize methyl ester hydrolysis when using methylation to assess the abundance of isoaspartyl sites in proteins.
Collapse
Affiliation(s)
- Gareth J. Morrison
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Ranjani Ganesan
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
91
|
Zhao H, Wang F, Wang J, Xie H, Guo J, Liu C, Wang L, Lu X, Bao Y, Wang G, Zhong R, Niu B, Zhang T. Maternal PCMT1 gene polymorphisms and the risk of neural tube defects in a Chinese population of Lvliang high-risk area. Gene 2012; 505:340-4. [PMID: 22647835 DOI: 10.1016/j.gene.2012.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/26/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
Abstract
Protein-L-isoaspartate (D-aspartate) O-methyltransferase 1 (PCMT1) gene encodes for the protein repair enzyme L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), which is known to protect certain neural cells from Bax-induced apoptosis. Previous study has shown that PCMT1 polymorphisms rs4552 and rs4816 of infant are associated with spina bifida in the Californian population. The association between maternal polymorphism and neural tube defects is still uncovered. A case-control study was conducted to investigate a possible association between maternal PCMT1 and NTDs in Lvliang high-risk area of Shanxi Province in China, using a high-resolution DNA melting analysis genotyping method. We found that increased risk for anencephaly in isolated NTDs compared with the normal control group was observed for the G (vs. A) allele (p=0.034, OR=1.896, 95% CI, 1.04-3.45) and genotypes GG+GA (p=0.025, OR=2.237, 95% CI, 1.09-4.57). Although the significance was lost after multiple comparison correction, the results implied that maternal polymorphisms in PCMT1 might be a potential genetic risk factor for isolated anencephaly in this Chinese population.
Collapse
Affiliation(s)
- Huizhi Zhao
- Capital Institute of Pediatrics, Beijing 100020, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Sambri I, Capasso R, Pucci P, Perna AF, Ingrosso D. The microRNA 15a/16-1 cluster down-regulates protein repair isoaspartyl methyltransferase in hepatoma cells: implications for apoptosis regulation. J Biol Chem 2011; 286:43690-43700. [PMID: 22033921 DOI: 10.1074/jbc.m111.290437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Asparaginyl deamidation, a spontaneous protein post-biosynthetic modification, determines isoaspartyl formation and structure-function impairment. The isoaspartyl protein carboxyl-O-methyltransferase (PCMT1; EC 2.1.1.77) catalyzes the repair of the isopeptide bonds at isoaspartyl sites, preventing deamidation-related functional impairment. Protein deamidation affects key apoptosis mediators, such as BclxL, thus increasing susceptibility to apoptosis, whereas PCMT1 activity may effectively counteract such alterations. The aim of this work was to establish the role of RNAi as a potential mechanism for regulating PCMT1 expression and its possible implications in apoptosis. We investigated the regulatory properties of the microRNA 15a/16-1 cluster on PCMT1 expression on HepG2 cells. MicroRNA 15a or microRNA 16-1 transfection, as well as their relevant antagonists, showed that PCMT1 is effectively regulated by this microRNA cluster. The direct interaction of these two microRNAs with the seed sequence at the 3' UTR of PCMT1 transcripts was demonstrated by the luciferase assay system. The role of PCMT1 down-regulation in conditioning the susceptibility to apoptosis was investigated using various specific siRNA or shRNA approaches, to prevent non-PCMT1-specific pleiotropic effects to take place. We found that PCMT1 silencing is associated with an increase of the BclxL isoform reported to be inactivated by deamidation, thus making cells more susceptible to apoptosis induced by cisplatinum. We conclude that PCMT1 is effectively regulated by the microRNA 15a/16-1 cluster and is involved in apoptosis by preserving the structural stability and biological function of BclxL from deamidation. Control of PCMT1 expression by microRNA 15a/16-1 may thus represent a late checkpoint in apoptosis regulation.
Collapse
Affiliation(s)
- Irene Sambri
- Department of Biochemistry and Biophysics, Second University of Naples, Naples 80138, Italy
| | - Rosanna Capasso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples 80138, Italy
| | - Piero Pucci
- Ceinge, Advanced Biotechnologies and School of Life Science, "Federico II" University, Naples 80138, Italy
| | - Alessandra F Perna
- First Division of Nephrology, School of Medicine and Surgery, Second University of Naples, Naples 80138, Italy
| | - Diego Ingrosso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples 80138, Italy.
| |
Collapse
|
93
|
Macromolecular deterioration as the ultimate constraint on human lifespan. Ageing Res Rev 2011; 10:397-403. [PMID: 21272671 DOI: 10.1016/j.arr.2010.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 12/25/2022]
Abstract
A number of tissues and organs in the human body contain abundant proteins that are long-lived. This includes the heart, lung, brain, bone and connective tissues. It is proposed that the accumulation of modifications to such long-lived proteins over a period of decades alters the properties of the organs and tissues in which they reside. Such insidious processes may affect human health, fitness and ultimately may limit our lifespan. The human lens, which contains proteins that do not turnover, is used to illustrate the impact of these gradual deleterious modifications. On the basis of data derived from the lens, it is postulated that the intrinsic instability of certain amino acid residues, which leads to truncation, racemisation and deamidation, is primarily responsible for the age-related deterioration of such proteins. Since these post-translational modifications accumulate over a period of many years, they can only be studied using organisms that have lifespans measured in decades. One conclusion is that there may be important aspects of human aging that can be studied only using long-lived animals.
Collapse
|
94
|
Corti A, Curnis F. Isoaspartate-dependent molecular switches for integrin-ligand recognition. J Cell Sci 2011; 124:515-22. [PMID: 21282473 DOI: 10.1242/jcs.077172] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Integrins are cell-adhesion receptors that mediate cell-extracellular-matrix (ECM) and cell-cell interactions by recognizing specific ligands. Recent studies have shown that the formation of isoaspartyl residues (isoAsp) in integrin ligands by asparagine deamidation or aspartate isomerization could represent a mechanism for the regulation of integrin-ligand recognition. This spontaneous post-translational modification, which might occur in aged proteins of the ECM, changes the length of the peptide bond and, in the case of asparagine, also of the charge. Although these changes typically have negative effects on protein function, recent studies suggested that isoAsp formation at certain Asn-Gly-Arg (NGR) sites in ECM proteins have a gain-of-function effect, because the resulting isoAsp-Gly-Arg (isoDGR) sequence can mimic Arg-Gly-Asp (RGD), a well-known integrin-binding motif. Substantial experimental evidence suggests that the NGR-to-isoDGR transition can occur in vitro in natural proteins and in drugs containing this motif, thereby promoting integrin recognition and cell adhesion. In this Commentary, we review these studies and discuss the potential effects that isoAsp formation at NGR, DGR and RGD sites might have in the recognition of integrins by natural ligands and by drugs that contain these motifs, as well as their potential biological and pharmacological implications.
Collapse
Affiliation(s)
- Angelo Corti
- Division of Molecular Oncology and IIT Network Research Unit of Molecular Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
95
|
The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans. PLoS One 2011; 6:e20850. [PMID: 21695191 PMCID: PMC3113807 DOI: 10.1371/journal.pone.0020850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/11/2011] [Indexed: 12/22/2022] Open
Abstract
The protein L-isoaspartyl-O-methyltransferase functions to initiate the repair of isomerized aspartyl and asparaginyl residues that spontaneously accumulate with age in a variety of organisms. Caenorhabditis elegans nematodes lacking the pcm-1 gene encoding this enzyme display a normal lifespan and phenotype under standard laboratory growth conditions. However, significant defects in development, egg laying, dauer survival, and autophagy have been observed in pcm-1 mutant nematodes when deprived of food and when exposed to oxidative stress. Interestingly, overexpression of this repair enzyme in both Drosophila and C. elegans extends adult lifespan under thermal stress. In this work, we show the involvement of the insulin/insulin-like growth factor-1 signaling (IIS) pathway in PCM-1-dependent lifespan extension in C. elegans. We demonstrate that reducing the levels of the DAF-16 downstream transcriptional effector of the IIS pathway by RNA interference reduces the lifespan extension resulting from PCM-1 overexpression. Using quantitative real-time PCR analysis, we show the up-regulation of DAF-16-dependent stress response genes in the PCM-1 overexpressor animals compared to wild-type and pcm-1 mutant nematodes under mild thermal stress conditions. Additionally, similar to other long-lived C. elegans mutants in the IIS pathway, including daf-2 and age-1 mutants, PCM-1 overexpressor adult animals display increased resistance to severe thermal stress, whereas pcm-1 mutant animals survive less long under these conditions. Although we observe a higher accumulation of damaged proteins in pcm-1 mutant nematodes, the basal level of isoaspartyl residues detected in wild-type animals was not reduced by PCM-1 overexpression. Our results support a signaling role for the protein L-isoaspartyl methyltransferase in lifespan extension that involves the IIS pathway, but that may be independent of its function in overall protein repair.
Collapse
|
96
|
Kargiotis O, Markoula S, Kyritsis AP. Epilepsy in the cancer patient. Cancer Chemother Pharmacol 2011; 67:489-501. [PMID: 21305288 DOI: 10.1007/s00280-011-1569-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Epileptic seizures in patients with malignancies usually occur as a consequence of brain metastases from systemic cancer or the presence of a primary brain tumor. Other less-frequent causes include metabolic disorders such as electrolyte abnormalities, hypoglycemia, hypoxia and liver failure, paraneoplastic encephalitis, leptomeningeal carcinomatosis, side effects of certain chemotherapeutic agents, central nervous system infections, and pre-existing epilepsy. METHODS We reviewed all published literature in the English language regarding the use of antiepileptic drugs in patients with cancer. RESULTS In patients with brain metastases or primary brain tumors that had never experienced seizures, prophylactic anticonvulsant treatment is justified only for a period up to 6 months postoperatively after surgical excision of a cerebral tumor, since approximately half of the patients will never develop seizures and the anti-epileptic drugs may cause toxicity and interactions with antineoplastic therapies. For brief prophylaxis, newer antiepileptic drugs such as levetiracetam and oxcarbazepine are superior to older agents like phenytoin. In patients with a malignancy and seizures, certain antiepileptic drugs that express tumor inhibitory properties should be used such as valproic acid and levetiracetam, followed by oxcarbazepine and topiramate that exhibit good tolerance, efficient seizure control and absence of significant interactions with the chemotherapy. CONCLUSIONS Future clinical trials in patients with cancer and epilepsy should focus on combinations of chemotherapeutic interventions with antiepileptic drugs that demonstrate antineoplastic activities.
Collapse
Affiliation(s)
- Odysseas Kargiotis
- Neurosurgical Research Institute, University of Ioannina, Ioannina, Greece.
| | | | | |
Collapse
|
97
|
Ni W, Dai S, Karger BL, Zhou ZS. Analysis of isoaspartic Acid by selective proteolysis with Asp-N and electron transfer dissociation mass spectrometry. Anal Chem 2011; 82:7485-91. [PMID: 20712325 DOI: 10.1021/ac101806e] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A ubiquitous yet underappreciated protein post-translational modification, isoaspartic acid (isoAsp, isoD, or beta-Asp), generated via the deamidation of asparagine or isomerization of aspartic acid in proteins, plays a diverse and crucial role in aging, as well as autoimmune, cancer, neurodegeneration, and other diseases. In addition, formation of isoAsp is a major concern in protein pharmaceuticals, as it may lead to aggregation or activity loss. The scope and significance of isoAsp have, up to now, not been fully explored, as an unbiased screening of isoAsp at low abundance remains challenging. This difficulty is due to the subtle difference in the physicochemical properties between isoAsp and Asp, e.g., identical mass. In contrast, endoprotease Asp-N (EC 3.4.24.33) selectively cleaves aspartyl peptides but not the isoaspartyl counterparts. As a consequence, isoaspartyl peptides can be differentiated from those containing Asp and also enriched by Asp-N digestion. Subsequently, the existence and site of isoaspartate can be confirmed by electron transfer dissociation (ETD) mass spectrometry. As little as 0.5% of isoAsp was detected in synthetic beta-amyloid and cytochrome c peptides, even though both were initially assumed to be free of isoAsp. Taken together, our approach should expedite the unbiased discovery of isoAsp.
Collapse
Affiliation(s)
- Wenqin Ni
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
98
|
Jaspert N, Throm C, Oecking C. Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects. FRONTIERS IN PLANT SCIENCE 2011; 2:96. [PMID: 22639620 PMCID: PMC3355631 DOI: 10.3389/fpls.2011.00096] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/24/2011] [Indexed: 05/18/2023]
Abstract
14-3-3 Dimers are well known to interact with diverse target proteins throughout eukaryotes. Most notably, association of 14-3-3s commonly requires phosphorylation of a serine or threonine residue within a specific sequence motif of the client protein. Studies with a focus on individual target proteins have unequivocally demonstrated 14-3-3s to be the crucial factors modifying the client's activity state upon phosphorylation and, thus, finishing the job initiated by a kinase. In this respect, a recent in-depth analysis of the rice transcription factor FLOWERING LOCUS D1 (OsFD1) revealed 14-3-3s to be essential players in floral induction. Such fascinating discoveries, however, can often be ascribed to the random identification of 14-3-3 as an interaction partner of the favorite protein. In contrast, our understanding of 14-3-3 function in higher organisms is frustratingly limited, mainly due to an overwhelming spectrum of putative targets in combination with the existence of a multigene 14-3-3 family. In this review we will discuss our current understanding of the function of plant 14-3-3 proteins, taking into account recent surveys of the Arabidopsis 14-3-3 interactome.
Collapse
Affiliation(s)
- Nina Jaspert
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
| | - Christian Throm
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
| | - Claudia Oecking
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
- *Correspondence: Claudia Oecking, Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany. e-mail:
| |
Collapse
|
99
|
Ogé L, Broyart C, Collet B, Godin B, Jallet D, Bourdais G, Job D, Grappin P. Protein damage and repair controlling seed vigor and longevity. Methods Mol Biol 2011; 773:369-384. [PMID: 21898266 DOI: 10.1007/978-1-61779-231-1_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.
Collapse
Affiliation(s)
- Laurent Ogé
- AgroParisTech, Unité de Formation et de Recherche de Physiologie Végétale, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Dorts J, Kestemont P, Dieu M, Raes M, Silvestre F. Proteomic Response to Sublethal Cadmium Exposure in a Sentinel Fish Species, Cottus gobio. J Proteome Res 2010; 10:470-8. [DOI: 10.1021/pr100650z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer Dorts
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Patrick Kestemont
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Martine Raes
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Frédéric Silvestre
- Unité de Recherche en Biologie des Organismes (URBO), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium, and Unité de Recherche en Biologie Cellulaire (URBC), The University of Namur (FUNDP), Rue de Bruxelles 61, B-5000, Namur, Belgium
| |
Collapse
|