51
|
Steinberger J, Chu J, Maïga RI, Sleiman K, Pelletier J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell Mol Life Sci 2017; 74:1681-1692. [PMID: 28004147 PMCID: PMC11107644 DOI: 10.1007/s00018-016-2430-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jennifer Chu
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Katia Sleiman
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada.
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
52
|
Emmott E, Sorgeloos F, Caddy SL, Vashist S, Sosnovtsev S, Lloyd R, Heesom K, Locker N, Goodfellow I. Norovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors. Mol Cell Proteomics 2017; 16:S215-S229. [PMID: 28087593 PMCID: PMC5393397 DOI: 10.1074/mcp.m116.062448] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/12/2017] [Indexed: 11/25/2022] Open
Abstract
Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded viral protein genome-linked (VPg) protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However, the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyze changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.
Collapse
Affiliation(s)
- Edward Emmott
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK;
| | - Frederic Sorgeloos
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - Sarah L Caddy
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - Surender Vashist
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - Stanislav Sosnovtsev
- §Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard Lloyd
- ¶Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Kate Heesom
- ‖Proteomics facility, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Nicolas Locker
- **Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Ian Goodfellow
- From the ‡Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK;
| |
Collapse
|
53
|
Regulation Mechanisms of Viral IRES-Driven Translation. Trends Microbiol 2017; 25:546-561. [PMID: 28242053 DOI: 10.1016/j.tim.2017.01.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry sites (IRESs) can be found in the mRNA of many viruses as well as in cellular genes involved in the stress response, cell cycle, and apoptosis. IRES-mediated translation can occur when dominant cap-dependent translation is inhibited, and viruses can take advantage of this to subvert host translation machinery. In this review, we focus on the four major types of IRES identified in RNA viruses, and outline their distinct structural properties and requirements of translational factors. We further discuss auxiliary host factors known as IRES trans-acting factors (ITAFs), which are involved in the modulation of optimal IRES activity. Currently known strategies employed by viruses to harness ITAFs and regulate IRES activity are also highlighted.
Collapse
|
54
|
Chan YM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure 2016; 24:509-517. [PMID: 27050688 DOI: 10.1016/j.str.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The 3C protein is a master regulator of the picornaviral infection cycle, responsible for both cleaving viral and host proteins, and interacting with genomic RNA replication elements. Here we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to show that 3C is conformationally dynamic across multiple timescales. Binding of peptide and RNA lead to structural dynamics changes at both the protease active site and the RNA-binding site, consistent with these sites being dynamically coupled. Indeed, binding of RNA influences protease activity, and likewise, interactions at the active site affect RNA binding. We propose that RNA and peptide binding re-shapes the conformational energy landscape of 3C to regulate subsequent functions, including formation of complexes with other viral proteins. The observed channeling of the 3C energy landscape may be important for regulation of the viral infection cycle.
Collapse
Affiliation(s)
- Yan M Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
55
|
Widespread and dynamic translational control of red blood cell development. Blood 2016; 129:619-629. [PMID: 27899360 DOI: 10.1182/blood-2016-09-741835] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/19/2016] [Indexed: 11/20/2022] Open
Abstract
Cell development requires tight yet dynamic control of protein production. Here, we use parallel RNA and ribosome profiling to study translational regulatory dynamics during murine terminal erythropoiesis. Our results uncover pervasive translational control of protein synthesis, with widespread alternative translation initiation and termination, robust discrimination of long noncoding from micropeptide-encoding RNAs, and dynamic use of upstream open reading frames. Further, we identify hundreds of messenger RNAs (mRNAs) whose translation efficiency is dynamically controlled during erythropoiesis and that enrich for target sites of RNA-binding proteins that are specific to hematopoietic cells, thus unraveling potential regulators of erythroid translational programs. A major such program involves enhanced decoding of specific mRNAs that are depleted in terminally differentiating/enucleating cells with decreasing transcriptional capacity. We find that RBM38, an erythroid-specific RNA-binding protein previously implicated in splicing, interacts with the general translation initiation factor eIF4G and promotes translation of a subset of these irreplaceable mRNAs. Inhibition of RBM38 compromises translation in erythroblasts and impairs their maturation, highlighting a key function for this protein during erythropoiesis. These findings thus reveal critical roles for dynamic translational control in supporting specialized mammalian cell formation.
Collapse
|
56
|
Hung CT, Kung YA, Li ML, Brewer G, Lee KM, Liu ST, Shih SR. Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathog 2016; 12:e1005959. [PMID: 27780225 PMCID: PMC5079569 DOI: 10.1371/journal.ppat.1005959] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection. Many RNA viruses utilize internal ribosome entry sites (IRES) located in the 5’ untranslated region of genomic RNA to translate viral proteins in a cap-independent manner. Host proteins that are recruited to assist in viral IRES-driven translation are known as ITAFs (IRES trans-acting factors), of which far upstream element-binding protein 1 (FBP1) is an example. In this study, we describe a novel regulatory mechanism involving ITAF cleavage, in which FBP1 is cleaved by EV71 viral proteinase 2A to yield a cleavage product, FBP11-371, which in turn acts additively with full-length FBP1 to enhance viral IRES-mediated translation and virus yield. Footprinting and gel mobility shift analyses reveal that both full-length FBP1 and its cleavage product bind to the linker region of EV71 5′ UTR, but at different sites. To the best of our understanding, these results shed light on a novel interaction between host ITAFs and picornaviruses, and provide important implications for other virus-host interactions.
Collapse
Affiliation(s)
- Chuan-Tien Hung
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-An Kung
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Jersey, United States Of America
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Jersey, United States Of America
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shih-Tung Liu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (STL); (SRS)
| | - Shin-Ru Shih
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- * E-mail: (STL); (SRS)
| |
Collapse
|
57
|
Asnani M, Pestova TV, Hellen CUT. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Res 2016; 44:9902-9917. [PMID: 27387282 PMCID: PMC5175331 DOI: 10.1093/nar/gkw609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
The cadicivirus IRES diverges structurally from canonical Type 1 IRESs (e.g. poliovirus) but nevertheless also contains an essential GNRA tetraloop in a subdomain (d10c) that is homologous to poliovirus dIVc. In addition to canonical initiation factors, the canonical Type 1 and divergent cadicivirus IRESs require the same IRES trans-acting factor, poly(C)-binding protein 2 (PCBP2). PCBP2 has three KH domains and binds poliovirus IRES domain dIV in the vicinity of the tetraloop. How PCBP2 binds the cadicivirus IRES, and the roles of PCBP2 and the tetraloop in Type 1 IRES function are unknown. Here, directed hydroxyl radical probing showed that KH1 also binds near the cadicivirus tetraloop. KH2 and KH3 bind adjacently to an IRES subdomain (d10b) that is unrelated to dIV, with KH3 in an inverted orientation. KH3 is critical for PCBP2's binding to this IRES whereas KH1 is essential for PCBP2's function in promoting initiation. PCBP2 enforced the wild-type structure of d10c when it contained minor destabilizing substitutions, exposing the tetraloop. Strikingly, PCBP2 enhanced initiation on mutant IRESs that retained consensus GNRA tetraloops, whereas mutants with divergent sequences did not respond to PCBP2. These studies show that PCBP2 enables the IRES to exploit the GNRA tetraloop to enhance initiation.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| |
Collapse
|
58
|
Lloyd RE. Enterovirus Control of Translation and RNA Granule Stress Responses. Viruses 2016; 8:93. [PMID: 27043612 PMCID: PMC4848588 DOI: 10.3390/v8040093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 12/24/2022] Open
Abstract
Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
59
|
Asnani M, Pestova TV, Hellen CUT. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus. Nucleic Acids Res 2016; 44:3390-407. [PMID: 26873921 PMCID: PMC4838371 DOI: 10.1093/nar/gkw074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/29/2016] [Indexed: 01/03/2023] Open
Abstract
Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5'-terminal IRES. We report that the 982-nt long 5'UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341-950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction.
Collapse
Affiliation(s)
- Mukta Asnani
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, MSC44, Brooklyn, NY 11203, USA
| |
Collapse
|
60
|
Leen EN, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, Xu Y, Graham SC, Matthews SJ, Goodfellow IG, Curry S. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog 2016; 12:e1005379. [PMID: 26734730 PMCID: PMC4703368 DOI: 10.1371/journal.ppat.1005379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022] Open
Abstract
Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy. Norovirus infections cause acute gastroenteritis and are a growing worldwide problem in human health. A critical early step in infection is translation of the viral RNA genome to produce the proteins needed to assemble new virus particles. In mouse noroviruses (MNV), which provide a useful model for studying human noroviruses, the VPg protein attached to the viral RNA is essential for this process because it interacts with a cellular protein, eIF4G, that is normally involved in initiating protein synthesis from the messenger RNA of host genes. We have used a variety of biochemical and biophysical experiments to measure how well MNV VPg binds to eIF4G and to identify the parts of both proteins that are involved in this interaction. We show that a sequence of about 20 amino acids at one end of MNV VPg–the C terminus– allows it to bind to a well-defined domain within eIF4G (called HEAT-1), and that it may adopt a helical structure when doing so. Our data suggest that this interaction is common to all noroviruses, including types that infect humans. We have also shown that the MNV VPg C-terminal peptide can inhibit norovirus protein synthesis, which raises the possibility that the VPg-eIF4G interaction could be targeted in the design of antiviral drugs.
Collapse
Affiliation(s)
- Eoin N Leen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Frédéric Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Samantha Correia
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fabien Cannac
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chiara Pastore
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Stephen J Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Stephen Curry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
61
|
Fatscher T, Boehm V, Gehring NH. Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 2015; 72:4523-44. [PMID: 26283621 PMCID: PMC11113733 DOI: 10.1007/s00018-015-2017-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent, multistep process that degrades irregular or faulty messenger RNAs (mRNAs). NMD mainly targets mRNAs with a truncated open reading frame (ORF) due to premature termination codons (PTCs). In addition, NMD also regulates the expression of different types of endogenous mRNA substrates. A multitude of factors are involved in the tight regulation of the NMD mechanism. In this review, we focus on the molecular mechanism of mammalian NMD. Based on the published data, we discuss the involvement of translation termination in NMD initiation. Furthermore, we provide a detailed overview of the core NMD machinery, as well as several peripheral NMD factors, and discuss their function. Finally, we present an overview of diseases associated with NMD factor mutations and summarize the current state of treatment for genetic disorders caused by nonsense mutations.
Collapse
Affiliation(s)
- Tobias Fatscher
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
62
|
A Conserved Inhibitory Mechanism of a Lycorine Derivative against Enterovirus and Hepatitis C Virus. Antimicrob Agents Chemother 2015; 60:913-24. [PMID: 26596952 DOI: 10.1128/aac.02274-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Enterovirus 71 (EV71) (Picornaviridae family) and hepatitis C virus (HCV) (Flaviviridae family) are the causative agents of human hand, foot, and mouth disease (HFMD) and hepatitis C, resulting in a severe pandemic involving millions of infections in the Asia-Pacific region and worldwide. The great impact of EV71 and HCV on public health highlights the need to further our understanding of the biology of these two viruses and develop effective therapeutic antivirals. Here, we evaluated a total of 32 lycorine derivatives and demonstrated that 1-acetyllycorine suppressed the proliferation of multiple strains of EV71 in various cells. The results of the drug resistance analysis revealed that 1-acetyllycorine targeted a phenylalanine (F76) in EV71 2A protease (2A(pro)) to stabilize the conformation of a unique zinc finger. Most interestingly, the zinc binding site in EV71 2A(pro) is the exclusive homolog of HCV NS3 among all viruses. Further analysis revealed that 1-acetyllycorine also inhibits HCV with high efficacy, and the mutation on R118 in HCV NS3, which corresponds to F76 in EV71 2A(pro), confers the resistance of HCV to 1-acetyllycorine. These results revealed a conserved mechanism of 1-acetyllycorine against EV71 and HCV through targeting viral proteases. We also documented the significant synergistic anti-EV71 and anti-HCV effects of 1-acetyllycorine with reported inhibitors, supporting potential combination therapy for the treatment of EV71 and HCV infections.
Collapse
|
63
|
Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes. Cell Death Differ 2015; 23:828-40. [PMID: 26586572 DOI: 10.1038/cdd.2015.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
Cleavage of eukaryotic translation initiation factor 4G (eIF4G) by enterovirus proteases during infection leads to the shutoff of cellular cap-dependent translation, but does not affect the initiation of cap-independent translation of mRNAs containing an internal ribosome entry site (IRES). Death-associated protein 5 (DAP5), a structural homolog of eIF4G, is a translation initiation factor specific for IRES-containing mRNAs. Coxsackievirus B3 (CVB3) is a positive single-stranded RNA virus and a primary causal agent of human myocarditis. Its RNA genome harbors an IRES within the 5'-untranslated region and is translated by a cap-independent, IRES-driven mechanism. Previously, we have shown that DAP5 is cleaved during CVB3 infection. However, the protease responsible for cleavage, cleavage site and effects on the translation of target genes during CVB3 infection have not been investigated. In the present study, we demonstrated that viral protease 2A but not 3C is responsible for DAP5 cleavage, generating 45- and 52-kDa N- (DAP5-N) and C-terminal (DAP5-C) fragments, respectively. By site-directed mutagenesis, we found that DAP5 is cleaved at amino acid G434. Upon cleavage, DAP5-N largely translocated to the nucleus at the later time points of infection, whereas the DAP5-C largely remained in the cytoplasm. Overexpression of these DAP5 truncates demonstrated that DAP5-N retained the capability of initiating IRES-driven translation of apoptosis-associated p53, but not the prosurvival Bcl-2 (B-cell lymphoma 2) when compared with the full-length DAP5. Similarly, DAP5-N expression promoted CVB3 replication and progeny release; on the other hand, DAP5-C exerted a dominant-negative effect on cap-dependent translation. Taken together, viral protease 2A-mediated cleavage of DAP5 results in the production of two truncates that exert differential effects on protein translation of the IRES-containing genes, leading to enhanced host cell death.
Collapse
|
64
|
Shi Z, Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 2015; 31:31-54. [PMID: 26443190 DOI: 10.1146/annurev-cellbio-100814-125346] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| | - Maria Barna
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| |
Collapse
|
65
|
Aumayr M, Fedosyuk S, Ruzicska K, Sousa-Blin C, Kontaxis G, Skern T. NMR analysis of the interaction of picornaviral proteinases Lb and 2A with their substrate eukaryotic initiation factor 4GII. Protein Sci 2015; 24:1979-96. [PMID: 26384734 PMCID: PMC4815241 DOI: 10.1002/pro.2807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022]
Abstract
Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap-binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut-off host-cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot-and-mouth disease virus (FMDV) leader proteinase (Lb(pro)), human rhinovirus 2 (HRV2) 2A proteinase (2A(pro)) and coxsackievirus B4 (CVB4) 2A(pro) with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed (13)C/(15) N sequential backbone assignment of human eIF4GII residues 551-745 and examined their binding to murine eIF4E. eIF4GII551-745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain-like Lb(pro) only forms a stable complex with eIF4GII(551-745) in the presence of eIF4E, with KD values in the low nanomolar range; Lb(pro) contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin-like 2A(pro) from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with K(D) values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut-off.
Collapse
Affiliation(s)
- Martina Aumayr
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Sofiya Fedosyuk
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Katharina Ruzicska
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Carla Sousa-Blin
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna, A-1030, Austria
| | - Tim Skern
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| |
Collapse
|
66
|
Abstract
Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While several studies point to the likelihood of such correlation, epidemiological evidence in its support is inconclusive or in some instances even against it. Hence, it is still unknown if and how EVs are involved in the development of T1D. Here we review recent findings concerning the biology of EV in beta cells and the potential implications of this knowledge for the understanding of beta cell dysfunction and autoimmune destruction in T1D.
Collapse
Affiliation(s)
- Antje Petzold
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- />Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Klaus-Peter Knoch
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
67
|
Gamil AAA, Mutoloki S, Evensen Ø. A piscine birnavirus induces inhibition of protein synthesis in CHSE-214 cells primarily through the induction of eIF2α phosphorylation. Viruses 2015; 7:1987-2005. [PMID: 25885006 PMCID: PMC4411686 DOI: 10.3390/v7041987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/01/2015] [Accepted: 04/10/2015] [Indexed: 01/19/2023] Open
Abstract
Inhibition of protein synthesis represents one of the antiviral mechanisms employed by cells and it is also used by viruses for their own propagation. To what extent members of the Birnaviridae family employ such strategies is not well understood. Here we use a type-strain of the Aquabirnavirus, infectious pancreatic necrosis virus (IPNV), to investigate this phenomenon in vitro. CHSE-214 cells were infected with IPNV and at 3, 12, 24, and 48 hours post infection (hpi) before the cells were harvested and labeled with S35 methionine to assess protein synthesis. eIF2α phosphorylation was examined by Western blot while RT-qPCR was used to assess virus replication and the expression levels of IFN-α, Mx1 and PKR. Cellular responses to IPNV infection were assessed by DNA laddering, Caspase-3 assays and flow cytometry. The results show that the onset and kinetics of eIF2α phosphorylation was similar to that of protein synthesis inhibition as shown by metabolic labeling. Increased virus replication and virus protein formation was observed by 12 hpi, peaking at 24 hpi. Apoptosis was induced in a small fraction (1−2%) of IPNV-infected CHSE cells from 24 hpi while necrotic/late apoptotic cells increased from 10% by 24 hpi to 59% at 48 hpi, as shown by flow cytometry. These results were in accordance with a small decline in cell viability by 24hpi, dropping below 50% by 48 hpi. IPNV induced IFN-α mRNA upregulation by 24 hpi while no change was observed in the expression of Mx1 and PKR mRNA. Collectively, these findings show that IPNV induces inhibition of protein synthesis in CHSE cells through phosphorylation of eIF2α with minimal involvement of apoptosis. The anticipation is that protein inhibition is used by the virus to evade the host innate antiviral responses.
Collapse
Affiliation(s)
- Amr A A Gamil
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Stephen Mutoloki
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Øystein Evensen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
68
|
Li MMH, MacDonald MR, Rice CM. To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends Cell Biol 2015; 25:320-9. [PMID: 25748385 PMCID: PMC4441850 DOI: 10.1016/j.tcb.2015.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
Translational regulation of viral and host mRNA is an important function of a subset of interferon-stimulated genes (ISGs). These ISGs repress translation through binding to viral RNA, direct interaction with, or perturbation of the translation machinery components. Several ISGs localize to cytoplasmic granules such as stress granules (SGs) and processing bodies (PBs), and interfere with the processing or function of microRNAs (miRNAs).
Type I interferon (IFN) is one of the first lines of cellular defense against viral pathogens. As a result of IFN signaling, a wide array of IFN-stimulated gene (ISG) products is upregulated to target different stages of the viral life cycle. We review recent findings implicating a subset of ISGs in translational regulation of viral and host mRNAs. Translation inhibition is mediated either by binding to viral RNA or by disrupting physiological interactions or levels of the translation complex components. In addition, many of these ISGs localize to translationally silent cytoplasmic granules, such as stress granules and processing bodies, and intersect with the microRNA (miRNA)-mediated silencing pathway to regulate translation of cellular mRNAs.
Collapse
Affiliation(s)
- Melody M H Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
69
|
Verdaguer N, Ferrero D, Murthy MRN. Viruses and viral proteins. IUCRJ 2014; 1:492-504. [PMID: 25485129 PMCID: PMC4224467 DOI: 10.1107/s205225251402003x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 05/30/2023]
Abstract
For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.
Collapse
Affiliation(s)
- Nuria Verdaguer
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Diego Ferrero
- Institut de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri i Reixac 15, 08028-Barcelona, Spain
| | - Mathur R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
70
|
Ubiquitin-Like Protein ISG15 (Interferon-Stimulated Gene of 15 kDa) in Host Defense Against Heart Failure in a Mouse Model of Virus-Induced Cardiomyopathy. Circulation 2014; 130:1589-600. [DOI: 10.1161/circulationaha.114.009847] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Common causative agents in the development of inflammatory cardiomyopathy include cardiotropic viruses such as coxsackievirus B3 (CVB3). Here, we investigated the role of the ubiquitin-like modifier interferon-stimulated gene of 15 kDa (ISG15) in the pathogenesis of viral cardiomyopathy.
Methods and Results—
In CVB3-infected mice, the absence of protein modification with ISG15 was accompanied by a profound exacerbation of myocarditis and by a significant increase in mortality and heart failure. We found that ISG15 in cardiomyocytes contributed significantly to the suppression of viral replication. In the absence of an intact ISG15 system, virus titers were markedly elevated by postinfection day 8, and viral RNA persisted in ISG15
−/−
mice at postinfection day 28. Ablation of the ISG15 protein modification system in CVB3 infection predisposed mice to long-term disease with deposition of collagen fibers, all leading to inflammatory cardiomyopathy. We found that ISG15 acts as part of the intrinsic immunity in cardiomyocytes and detected no significant effects of ISG15 modification on the cellular immune response. ISG15 modification of CVB3 2A protease counterbalanced CVB3-induced cleavage of the host cell eukaryotic initiation factor of translation eIF4G in cardiomyocytes, thereby counterbalancing the shutoff of host cell translation in CVB3 infection. We demonstrate that ISG15 suppressed infectious virus yield in human cardiac myocytes and the induction of ISG15 in patients with viral cardiomyopathy.
Conclusions—
The ISG15 conjugation system represents a critical innate response mechanism in cardiomyocytes to fight the battle against invading pathogens, limiting inflammatory cardiomyopathy, heart failure, and death. Interference with the ISG15 system might be a novel therapeutic approach in viral cardiomyopathy.
Collapse
|
71
|
Moral-López P, Alvarez E, Redondo N, Skern T, Carrasco L. L protease from foot and mouth disease virus confers eIF2-independent translation for mRNAs bearing picornavirus IRES. FEBS Lett 2014; 588:4053-9. [PMID: 25268112 DOI: 10.1016/j.febslet.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/21/2014] [Indexed: 12/26/2022]
Abstract
The leader protease (L(pro)) from foot-and-mouth disease virus (FMDV) has the ability to cleave eIF4G, leading to a blockade of cellular protein synthesis. In contrast to previous reports, our present findings demonstrate that FMDV L(pro) is able to increase translation driven by FMDV IRES. Additionally, inactivation of eIF2 subsequent to phosphorylation induced by arsenite or thapsigargin in BHK cells blocks protein synthesis directed by FMDV IRES, whereas in the presence of L(pro), significant translation is found under these conditions. This phenomenon was also observed in cell-free systems after induction of eIF2 phosphorylation by addition of poly(I:C).
Collapse
Affiliation(s)
- Pablo Moral-López
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Enrique Alvarez
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Redondo
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
72
|
Tam JCH, Bidgood SR, McEwan WA, James LC. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 2014; 345:1256070. [PMID: 25190799 DOI: 10.1126/science.1256070] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol.
Collapse
Affiliation(s)
- Jerry C H Tam
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Susanna R Bidgood
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - William A McEwan
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
73
|
Wang QS, Jan E. Switch from cap- to factorless IRES-dependent 0 and +1 frame translation during cellular stress and dicistrovirus infection. PLoS One 2014; 9:e103601. [PMID: 25089704 PMCID: PMC4121135 DOI: 10.1371/journal.pone.0103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.
Collapse
Affiliation(s)
- Qing S. Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
74
|
Au HHT, Jan E. Novel viral translation strategies. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:779-801. [PMID: 25045163 PMCID: PMC7169809 DOI: 10.1002/wrna.1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/06/2023]
Abstract
Viral genomes are compact and encode a limited number of proteins. Because they do not encode components of the translational machinery, viruses exhibit an absolute dependence on the host ribosome and factors for viral messenger RNA (mRNA) translation. In order to recruit the host ribosome, viruses have evolved unique strategies to either outcompete cellular transcripts that are efficiently translated by the canonical translation pathway or to reroute translation factors and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral responses and escape immune surveillance. This review focuses on some recent major findings that have revealed unconventional strategies that viruses utilize, which include usurping the host translational machinery, modulating canonical translation initiation factors to specifically enhance or repress overall translation for the purpose of viral production, and increasing viral coding capacity. The discovery of these diverse viral strategies has provided insights into additional translational control mechanisms and into the viral host interactions that ensure viral protein synthesis and replication. WIREs RNA 2014, 5:779–801. doi: 10.1002/wrna.1246 This article is categorized under:
Translation > Translation Mechanisms Translation > Translation Regulation
Collapse
Affiliation(s)
- Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
75
|
Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 2014; 9:e96635. [PMID: 24804975 PMCID: PMC4013096 DOI: 10.1371/journal.pone.0096635] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/09/2014] [Indexed: 11/22/2022] Open
Abstract
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Robert B. Quast
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Rita Sachse
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Corina Schulze
- Beuth Hochschule für Technik Berlin - University of Applied Sciences Berlin, Life Sciences and Technology, Berlin, Germany
| | - Doreen A. Wüstenhagen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| |
Collapse
|
76
|
Szeberényi J. Problem-solving test: the mechanism of poliovirus-induced block of host protein synthesis in human cells. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:270-273. [PMID: 24599587 DOI: 10.1002/bmb.20786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Terms to be familiar with before you start to solve the test: translation/protein synthesis, 5'-cap, internal ribosome entry site, initiation of translation, [(35) S]methionine, SDS-polyacrylamide gel electrophoresis, autoradiography, Western blotting, proteases.
Collapse
Affiliation(s)
- József Szeberényi
- Department of Medical Biology Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
77
|
The 5' untranslated region of the human T-cell lymphotropic virus type 1 mRNA enables cap-independent translation initiation. J Virol 2014; 88:5936-55. [PMID: 24623421 DOI: 10.1128/jvi.00279-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The human T-cell leukemia virus type 1 (HTLV-1) is a complex human retrovirus that causes adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis. The mRNA of some complex retroviruses, including the human and simian immunodeficiency viruses (HIV and SIV), can initiate translation using a canonical cap-dependent mechanism or through an internal ribosome entry site (IRES). In this study, we present strong evidence showing that like HIV-1 and SIV, the 5'-untranslated region (5'UTR) of the HTLV-1 full-length mRNA harbors an IRES. Cap-independent translational activity was evaluated and demonstrated using dual luciferase bicistronic mRNAs in rabbit reticulocyte lysate, in mammalian cell culture, and in Xenopus laevis oocytes. Characterization of the HTLV-1 IRES shows that its activity is dependent on the ribosomal protein S25 (RPS25) and that its function is highly sensitive to the drug edeine. Together, these findings suggest that the 5'UTR of the HTLV-1 full-length mRNA enables internal recruitment of the eukaryotic translation initiation complex. However, the recognition of the initiation codon requires ribosome scanning. These results suggest that, after internal recruitment by the HTLV-1 IRES, a scanning step takes place for the 40S ribosomal subunit to be positioned at the translation initiation codon. IMPORTANCE The mechanism by which retroviral mRNAs recruit the 40S ribosomal subunit internally is not understood. This study provides new insights into the mechanism of translation initiation used by the human T-cell lymphotropic virus type 1 (HTLV-1). The results show that the HTLV-1 mRNA can initiate translation via a noncanonical mechanism mediated by an internal ribosome entry site (IRES). This study also provides evidence showing the involvement of cellular proteins in HTLV-1 IRES-mediated translation initiation. Together, the data presented in this report significantly contribute to the understanding of HTLV-1 gene expression.
Collapse
|
78
|
Amorim R, Costa SM, Cavaleiro NP, da Silva EE, da Costa LJ. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease. PLoS One 2014; 9:e88619. [PMID: 24520405 PMCID: PMC3919812 DOI: 10.1371/journal.pone.0088619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.
Collapse
Affiliation(s)
- Raquel Amorim
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Mesquita Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pereira Cavaleiro
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Elias da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
79
|
Mielech AM, Chen Y, Mesecar AD, Baker SC. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res 2014; 194:184-90. [PMID: 24512893 PMCID: PMC4125544 DOI: 10.1016/j.virusres.2014.01.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/14/2022]
Abstract
Coronaviruses and arteriviruses encode papain-like protease domains that process the replicase polyprotein and are required for viral replication. Many viral papain-like proteases are multifunctional and have protease, deubiquitinating and deISGylating activity. Structural and enzymatic studies revealed the multifunctional nature of coronavirus and arterivirus papain-like proteases. Viral DUB and deISGylating activity is proposed to modulate the innate immune response. An arterivirus papain-like protease has been shown to modulate the innate immune response to viral infection.
Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs’ enzymatic activity and their role in virus pathogenesis.
Collapse
Affiliation(s)
- Anna M Mielech
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States
| | - Yafang Chen
- Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States.
| |
Collapse
|
80
|
Sagar V, Murray KE. The mammalian orthoreovirus bicistronic M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require interaction of 5'-3' untranslated regions. Virus Res 2014; 183:30-40. [PMID: 24486484 DOI: 10.1016/j.virusres.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Mammalian orthoreovirus mRNAs possess short 5' UTR, lack 3' poly(A) tails, and may lack 5' cap structures at late times post-infection. As such, the mechanisms by which these viral mRNAs recruit ribosomes remain completely unknown. Toward addressing this question, we used bicistronic MRV M3 mRNA to analyze the role of 5' and 3' UTRs during MRV protein synthesis. The 5' UTR was found to be dispensable for translation initiation; however, reducing its length promoted increased downstream initiation. Modifying start site Kozak context altered the ratio of upstream to downstream initiation, whereas mutations in the 3' UTR did not. Moreover, an M3 mRNA lacking a 3' UTR was able to rescue MRV infection to WT levels in an siRNA trans-complementation assay. Together, these data allow us to propose a model in which the MRV M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require the viral mRNA 3' UTR or 5'-3' UTRs interaction.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States.
| | - Kenneth E Murray
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
81
|
Plank TDM, Whitehurst JT, Cencic R, Pelletier J, Kieft JS. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure. ACTA ACUST UNITED AC 2014; 2:e27694. [PMID: 26779399 PMCID: PMC4705822 DOI: 10.4161/trla.27694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
Abstract
Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG.
Collapse
Affiliation(s)
- Terra-Dawn M Plank
- Department of Biochemistry and Molecular Genetics and University of Colorado Denver School of Medicine, Aurora, CO USA
| | - James T Whitehurst
- Department of Pharmacology, University of Colorado Denver, School of Medicine, Aurora, CO USA
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec, QC Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, QC Canada; The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC Canada
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics and University of Colorado Denver School of Medicine, Aurora, CO USA; Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, CO USA
| |
Collapse
|
82
|
Abstract
The purpose of this assay is to measure the incorporation of radiolabeled [(35)S]-methionine into newly synthesized proteins in exponentially growing yeast cells. This allows for a quantitative in vivo measurement of total protein synthesis.
Collapse
|
83
|
Sweeney TR, Abaeva IS, Pestova TV, Hellen CUT. The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 2013; 33:76-92. [PMID: 24357634 DOI: 10.1002/embj.201386124] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Picornavirus Type 1 IRESs comprise five principal domains (dII-dVI). Whereas dV binds eIF4G, a conserved AUG in dVI was suggested to stimulate attachment of 43S ribosomal preinitiation complexes, which then scan to the initiation codon. Initiation on Type 1 IRESs also requires IRES trans-acting factors (ITAFs), and several candidates have been proposed. Here, we report the in vitro reconstitution of initiation on three Type 1 IRESs: poliovirus (PV), enterovirus 71 (EV71), and bovine enterovirus (BEV). All of them require eIF2, eIF3, eIF4A, eIF4G, eIF4B, eIF1A, and a single ITAF, poly(C) binding protein 2 (PCBP2). In each instance, initiation starts with binding of eIF4G/eIF4A. Subsequent recruitment of 43S complexes strictly requires direct interaction of their eIF3 constituent with eIF4G. The following events can differ between IRESs, depending on the stability of dVI. If it is unstructured (BEV), all ribosomes scan through dVI to the initiation codon, requiring eIF1 to bypass its AUG. If it is structured (PV, EV71), most initiation events occur without inspection of dVI, implying that its AUG does not determine ribosomal attachment.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
84
|
Sharathchandra A, Katoch A, Das S. IRES mediated translational regulation of p53 isoforms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:131-9. [PMID: 24343861 DOI: 10.1002/wrna.1202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/14/2013] [Accepted: 09/21/2013] [Indexed: 01/08/2023]
Abstract
p53 is a well known tumor suppressor protein that plays a critical role in cell cycle arrest and apoptosis. It has several isoforms which are produced by transcriptional and posttranscriptional regulatory mechanisms. p53 mRNA has been demonstrated to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform ΔN-p53 by the use of alternative translation initiation sites. The mechanism of translation regulation of these two isoforms was further elucidated by the discovery of IRES elements in the p53 mRNA. These two IRESs were shown to regulate the translation of p53 and ΔN-p53 in a distinct cell-cycle phase-dependent manner. This review focuses on the current understanding of the regulation of p53 IRES mediated translation and the role of cis and trans acting factors that influence expression of p53 isoforms.
Collapse
|
85
|
Kim JT, Lee SJ, Kim BY, Lee CH, Yeom YI, Choe YK, Yoon DY, Chae SK, Kim JW, Yang Y, Lim JS, Lee HG. Caspase-mediated cleavage and DNase activity of the translation initiation factor 3, subunit G (eIF3g). FEBS Lett 2013; 587:3668-74. [DOI: 10.1016/j.febslet.2013.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
|
86
|
An open conformation determined by a structural switch for 2A protease from coxsackievirus A16. Protein Cell 2013; 4:782-92. [PMID: 24026848 DOI: 10.1007/s13238-013-3914-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 01/23/2023] Open
Abstract
Coxsackievirus A16 belongs to the family Picornaviridae, and is a major agent of hand-foot-and-mouth disease that infects mostly children, and to date no vaccines or antiviral therapies are available. 2A protease of enterovirus is a nonstructural protein and possesses both self-cleavage activity and the ability to cleave the eukaryotic translation initiation factor 4G. Here we present the crystal structure of coxsackievirus A16 2A protease, which interestingly forms hexamers in crystal as well as in solution. This structure shows an open conformation, with its active site accessible, ready for substrate binding and cleavage activity. In conjunction with a previously reported "closed" state structure of human rhinovirus 2, we were able to develop a detailed hypothesis for the conformational conversion triggered by two "switcher" residues Glu88 and Tyr89 located within the bll2-cII loop. Substrate recognition assays revealed that amino acid residues P1', P2 and P4 are essential for substrate specificity, which was verified by our substrate binding model. In addition, we compared the in vitro cleavage efficiency of 2A proteases from coxsackievirus A16 and enterovirus 71 upon the same substrates by fluorescence resonance energy transfer (FRET), and observed higher protease activity of enterovirus 71 compared to that of coxsackievirus A16. In conclusion, our study shows an open conformation of coxsackievirus A16 2A protease and the underlying mechanisms for conformational conversion and substrate specificity. These new insights should facilitate the future rational design of efficient 2A protease inhibitors.
Collapse
|
87
|
Crystal structure of 2A proteinase from hand, foot and mouth disease virus. J Mol Biol 2013; 425:4530-43. [PMID: 23973886 DOI: 10.1016/j.jmb.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 11/22/2022]
Abstract
EV71 is responsible for several epidemics worldwide; however, the effective antiviral drug is unavailable to date. The 2A proteinase (2A(pro)) of EV71 presents a promising drug target due to its multiple roles in virus replication, inhibition of host protein synthesis and evasion of innate immunity. We determined the crystal structure of EV71 2A(pro) at 1.85Å resolution, revealing that the proteinase maintains a chymotrypsin-like fold. The active site is composed of the catalytic triads C110A, H21 and D39 with the geometry similar to that in other picornaviral 2A(pro), 3C(pro) and serine proteinases. The cI-to-eI2 loop at the N-terminal domain of EV71 2A(pro) adopts a highly stable conformation and contributes to the hydrophilic surface property, which are strikingly different in HRV2 2A(pro) but are similar in CVB4 2A(pro). We identified a hydrophobic motif "LLWL" followed by an acidic motif "DEE" at the C-terminus of EV71 2A(pro). The "LLWL" motif is folded into the β-turn structure that is essential for the positioning of the acidic motif. Our structural and mutagenesis study demonstrated that both the negative charging and the correct positioning of the C-terminus are essential for EV71 replication. Deletion of the "LLWL" motif abrogated the proteolytic activity, indicating that the motif is critical for maintaining the active proteinase conformation. Our findings provide the structural and functional insights into EV71 2A(pro) and establish a framework for structure-based inhibitor design.
Collapse
|
88
|
Monette A, Valiente-Echeverría F, Rivero M, Cohen ÉA, Lopez-Lastra M, Mouland AJ. Dual mechanisms of translation initiation of the full-length HIV-1 mRNA contribute to gag synthesis. PLoS One 2013; 8:e68108. [PMID: 23861855 PMCID: PMC3702555 DOI: 10.1371/journal.pone.0068108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/25/2013] [Indexed: 01/01/2023] Open
Abstract
The precursor group-specific antigen (pr55Gag) is central to HIV-1 assembly. Its expression alone is sufficient to assemble into virus-like particles. It also selects the genomic RNA for encapsidation and is involved in several important virus-host interactions for viral assembly and restriction, making its synthesis essential for aspects of viral replication. Here, we show that the initiation of translation of the HIV-1 genomic RNA is mediated through both a cap-dependent and an internal ribosome entry site (IRES)-mediated mechanisms. In support of this notion, pr55Gag synthesis was maintained at 70% when cap-dependent translation initiation was blocked by the expression of eIF4G- and PABP targeting viral proteases in two in vitro systems and in HIV-1-expressing cells directly infected with poliovirus. While our data reveal that IRES-dependent translation of the viral genomic RNA ensures pr55Gag expression, the synthesis of other HIV-1 proteins, including that of pr160Gag/Pol, Vpr and Tat is suppressed early during progressive poliovirus infection. The data presented herein implies that the unspliced HIV-1 genomic RNA utilizes both cap-dependent and IRES-dependent translation initiation to supply pr55Gag for virus assembly and production.
Collapse
MESH Headings
- Cell Line
- Gene Expression Regulation, Viral
- Gene Order
- Genetic Vectors/genetics
- Genome, Viral
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Peptide Chain Initiation, Translational
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Ribonucleic Acid
- gag Gene Products, Human Immunodeficiency Virus/biosynthesis
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- vpr Gene Products, Human Immunodeficiency Virus/genetics
- vpr Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Fernando Valiente-Echeverría
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Matias Rivero
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail: (MLL); (AJM)
| | - Andrew J. Mouland
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- * E-mail: (MLL); (AJM)
| |
Collapse
|
89
|
Abstract
The 2A proteinase (2A(pro)) is an enterovirally encoded cysteine protease that plays essential roles in both the processing of viral precursor polyprotein and the hijacking of host cell translation and other processes in the virus life cycle. Crystallographic studies of 2A(pro) from enterovirus 71 (EV71) and its interaction with the substrate are reported here. EV71 2A(pro) was comprised of an N-terminal domain of a four-stranded antiparallel β sheet and a C-terminal domain of a six-stranded antiparallel β barrel with a tightly bound zinc atom. Unlike in other 2A(pro) structures, there is an open cleft across the surface of the protein in an open conformation. As demonstrated by the crystallographic studies and modeling of the complex structure, the open cleft could be fitted with the substrate. On comparison 2A(pro) of EV71 to those of the human rhinovirus 2 and coxsackievirus B4, the open conformation could be closed with a hinge motion in the bII2 and cII β strands. This was supported by molecular dynamic simulation. The structural variation among different 2A(pro) structures indicates a conformational flexibility in the substrate-binding cleft. The open structure provides an accessible framework for the design and development of therapeutics against the viral target.
Collapse
|
90
|
Patel RK, Burnham AJ, Gebhart NN, Sokoloski KJ, Hardy RW. Role for subgenomic mRNA in host translation inhibition during Sindbis virus infection of mammalian cells. Virology 2013; 441:171-81. [PMID: 23601784 DOI: 10.1016/j.virol.2013.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/15/2013] [Accepted: 03/24/2013] [Indexed: 01/25/2023]
Abstract
Sindbis virus subgenomic mRNA is efficiently translated in infected vertebrate cells whereas host translation is shut-off. Deletions in the 5'UTR of the subgenomic mRNA were made to investigate its role in viral gene expression. Deletion of nucleotides 1-10 and 11-20 caused a small plaque phenotype, reduced levels of subgenomic mRNA and structural proteins, and increased expression of nonstructural proteins. Whereas deletion 1-10 virus inhibited cellular protein synthesis, deletion 11-20 did so inefficiently. A large plaque revertant of deletion 11-20, possessing a duplication of the subgenomic promoter region, produced subgenomic mRNA at WT levels and restored inhibition of host protein synthesis. Further analysis of the mutant and revertant 5'UTR sequences showed the ability to shut-off host cell translation correlated with the efficiency of translation of subgenomic mRNA. We propose that the translational efficiency and quantity of the subgenomic mRNA play a role in inhibition of host cell translation.
Collapse
Affiliation(s)
- Rohini K Patel
- Department of Biology, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405-7003, USA
| | | | | | | | | |
Collapse
|
91
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
92
|
Chen YJ, Chang SC, Tsao KC, Shih SR, Yang SL, Lin TY, Huang YC. Comparative genomic analysis of coxsackievirus A6 strains of different clinical disease entities. PLoS One 2012; 7:e52432. [PMID: 23300669 PMCID: PMC3530459 DOI: 10.1371/journal.pone.0052432] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
Background Studies regarding coxsackievirus A6 (CVA6) infection were limited. In Taiwan, outbreaks of CVA6 occurred in 2009 and 2010, respectively, but the clinical manifestations were markedly different. We conducted a study to compare the clinical features and genomic sequence between the two years. Methodology/Principal Findings In 2009 and 2010, 205 patients with coxsackievirus A6 (CVA6) infection were treated at Chang Gung Memorial Hospital. Detailed clinical features were obtained from 126 inpatients, 62 in 2009 and 64 in 2010. Between the inpatients in 2009 and 2010, no statistically significant difference was noted in terms of demographics, length of hospital stay and laboratory data. Significantly more patients in 2009 presented with herpangina (82%) while more patients in 2010 presented with hand-foot-mouth disease (HFMD; 67%) and skin rash beyond the typical sites for HFMD. Complete genomic sequences were determined and compared for three isolates from patients with herpangina in 2009 and three isolates from patients with HFMD in 2010. The complete sequences showed that 2009 and 2010 CVA6 isolates were indistinguishable by partial VP1 genes, but there were 5 unique nucleotide changes in 3′ UTR, and 23 out of 2201 (1%) amino acids were different. 2010 viruses underwent the largest number of amino acid changes in 3CD protein, which is the precursor of both 3C protease and 3D polymerase. Conclusions Since 2008 in Finland, outbreaks of HFMD due to CVA6 were noted internationally. CVA6 of different genetic background may cause different clinical manifestations such as herpangina and HFMD.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
93
|
Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog 2012; 8:e1003046. [PMID: 23209416 PMCID: PMC3510256 DOI: 10.1371/journal.ppat.1003046] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 10/06/2012] [Indexed: 12/30/2022] Open
Abstract
The autophagic pathway acts as part of the immune response against a variety of pathogens. However, several pathogens subvert autophagic signaling to promote their own replication. In many cases it has been demonstrated that these pathogens inhibit or delay the degradative aspect of autophagy. Here, using poliovirus as a model virus, we report for the first time bona fide autophagic degradation occurring during infection with a virus whose replication is promoted by autophagy. We found that this degradation is not required to promote poliovirus replication. However, vesicular acidification, which in the case of autophagy precedes delivery of cargo to lysosomes, is required for normal levels of virus production. We show that blocking autophagosome formation inhibits viral RNA synthesis and subsequent steps in the virus cycle, while inhibiting vesicle acidification only inhibits the final maturation cleavage of virus particles. We suggest that particle assembly, genome encapsidation, and virion maturation may occur in a cellular compartment, and we propose the acidic mature autophagosome as a candidate vesicle. We discuss the implications of our findings in understanding the late stages of poliovirus replication, including the formation and maturation of virions and egress of infectious virus from cells. The autophagic degradation pathway is a well-known agent of innate immunity. Several pathogens, including poliovirus (PV), a model for several medically important RNA viruses, subvert this pathway for their own benefit. In doing so, pathogens often inhibit the degradative portion of the pathway, presumably to prevent their own destruction. We show here that, surprisingly, PV infection results in high levels of degradative autophagy. However, we find that autophagic degradation is dispensable for PV replication. Inhibiting the formation of autophagosomes inhibits virus RNA replication and subsequent steps in virus production. Inhibiting the acidification of vesicles, which in the case of autophagosomes precedes fusion with lysosomes and autophagic degradation, inhibits a much later step in virus production. Our data suggest an important role for an acidic compartment of the cell in the final maturation step, cleaving a capsid protein to generate infectious virus. Importantly, these data also call into question the long-standing hypothesis that all steps in the production of infectious poliovirus are cytosolic.
Collapse
Affiliation(s)
| | - William T. Jackson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
94
|
Kobayashi M, Arias C, Garabedian A, Palmenberg AC, Mohr I. Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication. J Virol 2012; 86:10686-94. [PMID: 22837200 PMCID: PMC3457283 DOI: 10.1128/jvi.00896-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022] Open
Abstract
Although picornavirus RNA genomes contain a 3'-terminal poly(A) tract that is critical for their replication, the impact of encephalomyocarditis virus (EMCV) infection on the host poly(A)-binding protein (PABP) remains unknown. Here, we establish that EMCV infection stimulates site-specific PABP proteolysis, resulting in accumulation of a 45-kDa N-terminal PABP fragment in virus-infected cells. Expression of a functional EMCV 3C proteinase was necessary and sufficient to stimulate PABP cleavage in uninfected cells, and bacterially expressed 3C cleaved recombinant PABP in vitro in the absence of any virus-encoded or eukaryotic cellular cofactors. N-terminal sequencing of the resulting C-terminal PABP fragment identified a 3C(pro) cleavage site on PABP between amino acids Q437 and G438, severing the C-terminal protein-interacting domain from the N-terminal RNA binding fragment. Single amino acid substitution mutants with changes at Q437 were resistant to 3C(pro) cleavage in vitro and in vivo, validating that this is the sole detectable PABP cleavage site. Finally, while ongoing protein synthesis was not detectably altered in EMCV-infected cells expressing a cleavage-resistant PABP variant, viral RNA synthesis and infectious virus production were both reduced. Together, these results establish that the EMCV 3C proteinase mediates site-specific PABP cleavage and demonstrate that PABP cleavage by 3C regulates EMCV replication.
Collapse
Affiliation(s)
- Mariko Kobayashi
- Department of Microbiology & NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Carolina Arias
- Department of Microbiology & NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Alexandra Garabedian
- Department of Microbiology & NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | - Ann C. Palmenberg
- Institute for Molecular Virology & Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Ian Mohr
- Department of Microbiology & NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
95
|
Wang QS, Au HHT, Jan E. Methods for studying IRES-mediated translation of positive-strand RNA viruses. Methods 2012; 59:167-79. [PMID: 23009811 DOI: 10.1016/j.ymeth.2012.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/25/2012] [Accepted: 09/13/2012] [Indexed: 02/05/2023] Open
Abstract
Internal ribosome entry sites are RNA elements that mediate translation in a cap-independent manner. A subset of positive strand RNA viruses utilize an IRES mechanism as a viral strategy to ensure efficient viral protein synthesis. IRES elements vary in sequence, structure, and factor requirements between virus families. Here, we describe methods to determine IRES activity and approaches to study the regulation and function of IRES-mediated translation both in vitro and in vivo. Finally, we describe a new IRES-directed reporter system which exploits the 2A 'self-cleavage' or 'stop-go' peptide for optimal detection of IRES activity.
Collapse
Affiliation(s)
- Qing S Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
96
|
Yip L, Creusot RJ, Pager CT, Sarnow P, Fathman CG. Reduced DEAF1 function during type 1 diabetes inhibits translation in lymph node stromal cells by suppressing Eif4g3. J Mol Cell Biol 2012; 5:99-110. [PMID: 22923498 DOI: 10.1093/jmcb/mjs052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcriptional regulator deformed epidermal autoregulatory factor 1 (DEAF1) has been suggested to play a role in maintaining peripheral tolerance by controlling the transcription of peripheral tissue antigen genes in lymph node stromal cells (LNSCs). Here, we demonstrate that DEAF1 also regulates the translation of genes in LNSCs by controlling the transcription of the poorly characterized eukaryotic translation initiation factor 4 gamma 3 (Eif4g3) that encodes eIF4GII. Eif4g3 gene expression was reduced in the pancreatic lymph nodes of Deaf1-KO mice, non-obese diabetic mice, and type 1 diabetes patients, where functional Deaf1 is absent or diminished. Silencing of Deaf1 reduced Eif4g3 expression, but increased the expression of Caspase 3, a serine protease that degrades eIF4GII. Polysome profiling showed that reduced Eif4g3 expression in LNSCs resulted in the diminished translation of various genes, including Anpep, the gene for aminopeptidase N, an enzyme involved in fine-tuning antigen presentation on major histocompatibility complex (MHC) class II. Together these findings suggest that reduced DEAF1 function, and subsequent loss of Eif4g3 transcription may affect peripheral tissue antigen (PTA) expression in LNSCs and contribute to the pathology of T1D.
Collapse
Affiliation(s)
- Linda Yip
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
97
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
98
|
Jiang H, Schwertz H, Schmid DI, Jones BB, Kriesel J, Martinez ML, Weyrich AS, Zimmerman GA, Kraiss LW. Different mechanisms preserve translation of programmed cell death 8 and JunB in virus-infected endothelial cells. Arterioscler Thromb Vasc Biol 2012; 32:997-1004. [PMID: 22328780 DOI: 10.1161/atvbaha.112.245324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRESs). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (ECs) is unknown. METHODS AND RESULTS We performed microarray analysis of polyribosomal mRNA from ECs to identify IRES-containing mRNAs. Cap-dependent translation was disabled by poliovirus (PV) infection and confirmed by loss of polysome peaks, detection of eukaryotic initiation factor (eIF) 4G cleavage, and decreased protein synthesis. We found that 87.4% of mRNAs were dissociated from polysomes in virus-infected ECs. Twelve percent of mRNAs remained associated with polysomes, and 0.6% were enriched ≥2-fold in polysome fractions from infected ECs. Quantitative reverse transcription-polymerase chain reaction confirmed the microarray findings for 31 selected mRNAs. We found that enriched polysome associations of programmed cell death 8 (PDCD8) and JunB mRNA resulted in increased protein expression in PV-infected ECs. The presence of IRESs in the 5' untranslated region of PDCD8 mRNA, but not of JunB mRNA, was confirmed by dicistronic analysis. CONCLUSIONS We show that microarray profiling of polyribosomal mRNA transcripts from PV-infected ECs successfully identifies mRNAs whose translation is preserved in the face of stress-induced, near complete cessation of cap-dependent initiation. Nevertheless, internal ribosome entry is not the only mechanism responsible for this privileged translation.
Collapse
Affiliation(s)
- Huimiao Jiang
- Division of Vascular Surgery, University of Utah, Salt Lake City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Chase AJ, Semler BL. Viral subversion of host functions for picornavirus translation and RNA replication. Future Virol 2012; 7:179-191. [PMID: 23293659 DOI: 10.2217/fvl.12.2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Picornavirus infections lead to symptoms that can have serious health and economic implications. The viruses in this family (Picornaviridae) have a small genomic RNA and must rely on host proteins for efficient viral gene expression and RNA replication. To ensure their effectiveness as pathogens, picornaviruses have evolved to utilize and/or alter host proteins for the benefit of the virus life cycle. This review discusses the host proteins that are subverted during infection to aid in virus replication. It will also describe proteins and functions that are altered during infection for the benefit of the virus.
Collapse
Affiliation(s)
- Amanda J Chase
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
100
|
Burkart C, Fan JB, Zhang DE. Two independent mechanisms promote expression of an N-terminal truncated USP18 isoform with higher DeISGylation activity in the nucleus. J Biol Chem 2011; 287:4883-93. [PMID: 22170061 DOI: 10.1074/jbc.m111.255570] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expression of the ISG15 specific protease USP18 is highly induced by type I interferons. The two main functions of USP18, i.e. its enzymatic activity and down-regulation of type I interferon signaling, are well characterized. However, to date all functional studies focused on full-length USP18. Here, we report that translation of human USP18 is initiated by a rare start codon (CUG). Usage of this non-canonical initiation site with its weak translation initiation efficiency promotes expression of an N-terminal truncated isoform (USP18-sf). In addition, an internal ribosome entry site (IRES) located in the 5'-coding region of USP18 also contributes to translation of USP18-sf. Functionally, both isoforms exhibit enzymatic activity and interfere with type I interferon signaling. However, USP18-sf shows different subcellular distribution compared with the full-length protein and enhanced deISGylation activity in the nucleus. Taken together, we report the existence of an N-terminal truncated isoform of USP18, whose expression is controlled on translational level by two independent mechanisms providing translational flexibility as well as cell type-specific resistance to inhibition of cap-dependent translation.
Collapse
Affiliation(s)
- Christoph Burkart
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|