51
|
McClain WH, Lai LB, Gopalan V. Trials, travails and triumphs: an account of RNA catalysis in RNase P. J Mol Biol 2010; 397:627-46. [PMID: 20100492 DOI: 10.1016/j.jmb.2010.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
Abstract
Last December marked the 20th anniversary of the Nobel Prize in Chemistry to Sidney Altman and Thomas Cech for their discovery of RNA catalysts in bacterial ribonuclease P (an enzyme catalyzing 5' maturation of tRNAs) and a self-splicing rRNA of Tetrahymena, respectively. Coinciding with the publication of a treatise on RNase P, this review provides a historical narrative, a brief report on our current knowledge, and a discussion of some research prospects on RNase P.
Collapse
Affiliation(s)
- William H McClain
- Department of Bacteriology, College of Agriculture & Life Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
52
|
Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2009; 584:287-96. [PMID: 19931535 DOI: 10.1016/j.febslet.2009.11.048] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 12/16/2022]
Abstract
For an enzyme functioning predominantly in a seemingly housekeeping role of 5' tRNA maturation, RNase P displays a remarkable diversity in subunit make-up across the three domains of life. Despite the protein complexity of this ribonucleoprotein enzyme increasing dramatically from bacteria to eukarya, the catalytic function rests with the RNA subunit during evolution. However, the recent demonstration of a protein-only human mitochondrial RNase P has added further intrigue to the compositional variability of this enzyme. In this review, we discuss some possible reasons underlying the structural diversity of the active sites, and use them as thematic bases for elaborating new directions to understand how functional variations might have contributed to the complex evolution of RNase P.
Collapse
Affiliation(s)
- Lien B Lai
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
53
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
54
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
55
|
|
56
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that catalyzes the 5' endonucleolytic cleavage of precursor transfer RNAs (pretRNAs). It is found in all phylogenetic domains: bacteria, archaea and eukaryotes. The bacterial enzyme consists of a single, catalytic RNA subunit and one small protein, while the archaeal and eukaryotic enzymes have 4-10 proteins in addition to a similar RNA subunit. The bacterial RNA acts as a ribozyme at high salt in vitro; however the added protein optimizes kinetics and makes specific contacts with the pre-tRNA substrate. The bacterial protein subunit also appears to be required for the processing of non-tRNA substrates by broadening recognition tolerance. In addition, the immense increase in protein content in the eukaryotic enzymes suggests substantially enlarged capacity for recognition of additional substrates. Recently intron-encoded box C/D snoRNAs were shown to be likely substrates for RNase P, with several lines of evidence suggesting that the nuclear holoenzyme binds tightly to, and can cleave single-stranded RNA in a sequence dependent fashion. The possible involvement of RNase P in additional RNA processing or turnover pathways would be consistent with previous findings that RNase MRP, a variant of RNase P that has evolved to participate in ribosomal RNA processing, is also involved in turnover of specific messenger RNAs. Here, involvement of RNase P in multiple RNA processing pathways is discussed.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry; University of Michigan School of Medicine; Ann Arbor, Michigan USA
| | - David R. Engelke
- Department of Biological Chemistry; University of Michigan School of Medicine; Ann Arbor, Michigan USA
| |
Collapse
|
57
|
Vourekas A, Stamatopoulou V, Toumpeki C, Tsitlaidou M, Drainas D. Insights into functional modulation of catalytic RNA activity. IUBMB Life 2008; 60:669-83. [PMID: 18636557 DOI: 10.1002/iub.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
RNA molecules play critical roles in cell biology, and novel findings continuously broaden their functional repertoires. Apart from their well-documented participation in protein synthesis, it is now apparent that several noncoding RNAs (i.e., micro-RNAs and riboswitches) also participate in the regulation of gene expression. The discovery of catalytic RNAs had profound implications on our views concerning the evolution of life on our planet at a molecular level. A characteristic attribute of RNA, probably traced back to its ancestral origin, is the ability to interact with and be modulated by several ions and molecules of different sizes. The inhibition of ribosome activity by antibiotics has been extensively used as a therapeutical approach, while activation and substrate-specificity alteration have the potential to enhance the versatility of ribozyme-based tools in translational research. In this review, we will describe some representative examples of such modulators to illustrate the potential of catalytic RNAs as tools and targets in research and clinical approaches.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Biological Chemistry, School of Medicine, University of Patras, Rio-Patras, Greece
| | | | | | | | | |
Collapse
|
58
|
Suwa S, Nagai Y, Fujimoto A, Kikuchi Y, Tanaka T. Analysis on substrate specificity of Escherichia coli ribonuclease P using shape variants of pre-tRNA: proposal of subsites model for substrate shape recognition. J Biochem 2008; 145:151-60. [PMID: 19008262 DOI: 10.1093/jb/mvn150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We prepared a series of shape variants of a pre-tRNA and examined substrate shape recognition by bacterial RNase P ribozyme and holoenzyme. Cleavage site analysis revealed two new subsites for accepting the T-arm and the bottom half of pre-tRNA in the substrate-binding site of the enzyme. These two subsites take part in cleavage site selection of substrate by the enzyme: the cleavage site is not always selected according to the relative position of the 3'-CCA sequence of the substrate. Kinetic studies indicated that the substrate shape is recognized mainly in the transition state of the reaction, and neither the shape nor position of either the T-arm or the bottom half of the substrate affected the Michaelis complex formation. These results strongly suggest that the 5' and 3' termini of a substrate are trapped by the enzyme first, then the position and the shape of the T-arm and the bottom half are examined by the cognate subsites. From these facts, we propose a new substrate recognition model that can explain many experimental facts that have been seen as enigmatic.
Collapse
Affiliation(s)
- Satoshi Suwa
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | | | | | | | | |
Collapse
|
59
|
Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci U S A 2008; 105:12218-23. [PMID: 18713869 DOI: 10.1073/pnas.0801906105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for the 5'-end maturation of precursor tRNAs. Bacterial RNase P also processes precursor 4.5S RNA, tmRNA, 30S preribosomal RNA, and several reported protein-coding RNAs. Eukaryotic nuclear RNase P is far more complex than in the bacterial form, employing multiple essential protein subunits in addition to the catalytic RNA subunit. RNomic studies have shown that RNase P binds other RNAs in addition to tRNAs, but no non-tRNA substrates have previously been identified. Additional substrates were identified by using a multipronged approach in the budding yeast Saccharomyces cerevisiae. First, RNase P-dependant changes in RNA abundance were examined on whole-genome microarrays by using strains containing temperature sensitive (TS) mutations in two of the essential RNase P subunits, Pop1p and Rpr1r. Second, RNase P was rapidly affinity-purified, and copurified RNAs were identified by using a genome-wide microarray. Third, to identify RNAs that do not change abundance when RNase P is depleted but accumulate as larger precursors, >80 potential small RNA substrates were probed directly by Northern blot analysis with RNA from the RNase P TS mutants. Numerous potential substrates were identified, of which we characterized the box C/D intron-encoded small nucleolar RNAs (snoRNAs), because these both copurify with RNase P and accumulate larger forms in the RNase P temperature-sensitive mutants. It was previously known that two pathways existed for excising these snoRNAs, one using the pre-mRNA splicing path and the other that was independent of splicing. RNase P appears to participate in the splicing-independent path for the box C/D intron-encoded snoRNAs.
Collapse
|
60
|
Pettersson BMF, Kirsebom LA. The presence of a C-1/G+73 pair in a tRNA precursor influences processing and expression in vivo. J Mol Biol 2008; 381:1089-97. [PMID: 18625241 DOI: 10.1016/j.jmb.2008.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
To understand whether 5' and 3' structural elements of the region corresponding to the mature tRNA affect the expression of the tRNA, we examined several bacterial genomes for tRNA genes where the expression might be potentially affected by structural elements located outside of the mature tRNA. In Pseudomonas aeruginosa, our analysis suggested that the tRNA(Trp) is transcribed together with a putative stem-loop structure followed by a uridine tract immediately downstream of the tRNA region. This structural element, resembling a Rho-independent transcription terminator, might therefore influence the expression and processing of tRNA(Trp). Moreover, the secondary structure suggested that the discriminator base in the tRNA(Trp) precursor can pair with either the C at position -1, the 3' terminal residue in the 5' leader, or the C immediately 5' of the uridine tract of the putative Rho-independent transcription terminator. Here, we present in vivo data demonstrating the importance of residue -1 and the positioning of the putative transcription terminator for the expression of correctly 5' processed P. aeruginosa tRNA(Trp) in Escherichia coli. Interestingly, we also detected a difference in the appearance of correctly 5' processed P. aeruginosa tRNA(Trp) in E. coli compared to the situation in P. aeruginosa.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
61
|
Trang P, Liu F. Mapping the regions of RNase P catalytic RNA that are potentially in close contact with its protein cofactor. Methods Mol Biol 2008; 488:267-277. [PMID: 18982298 DOI: 10.1007/978-1-60327-475-3_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ribonuclease P (RNase P) from Escherichia coli is a transfer RNA (tRNA)-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1 RNA, can cleave a target messenger RNA (mRNA) efficiently in vitro and inhibit its expression effectively in cultured cells. It has been shown that C5 protein can significantly increase the activities of M1 ribozyme and M1GS RNA in cleaving a natural tRNA substrate and a target mRNA, respectively. Understanding how C5 binds to M1GS RNA and affects the specific interactions between the ribozyme and its target mRNA substrates may facilitate the development of gene-targeting ribozymes that function effectively in vivo in the presence of cellular proteins. We describe the methods to determine the regions of a M1GS ribozyme that are potentially in close proximity to C5 protein. Specifically, methods are described in detail in using Fe(II)-ethylenediaminetetraacetic acid (EDTA) cleavage and nuclease footprint analyses to map the regions of the ribozyme in the absence and presence of C5 protein. These methods intend to provide experimental protocols for studying the regions of RNase P ribozyme that are in close contact with C5 protein.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | | |
Collapse
|
62
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
63
|
Kovalev NA, Medvedeva DA, Zenkova MA, Vlassov VV. Cleavage of RNA by an amphiphilic compound lacking traditional catalytic groups. Bioorg Chem 2007; 36:33-45. [PMID: 18061645 DOI: 10.1016/j.bioorg.2007.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 12/23/2022]
Abstract
Recently, in experiments with combinatorial libraries of amphiphilic compounds lacking groups, known as catalysts of transesterification reaction, we discovered novel RNA-cleaving compounds [N. Kovalev, E. Burakova, V. Silnikov, M. Zenkova, V. Vlassov, Bioorg. Chem. 34 (2006) 274-286]. In the present study, we investigate cleavage of RNA by the most active representative of these libraries, compound named Dp12. Sequence-specificity of RNA cleavage and influence of reaction conditions on cleavage rate suggested that Dp12 enormously accelerates spontaneous RNA cleavage. Light scattering experiments revealed that the RNA cleavage proceeds within multiplexes formed by assembles of RNA and Dp12 molecules, at Dp12 concentration far below critical concentration of micelle formation. Under these conditions, Dp12 is presented in the solution as individual molecules, but addition of RNA to this solution triggers formation of the multiplexes. The obtained data suggest a possible mechanism of RNA cleavage, which includes interaction of the compound with RNA sugar-phosphate backbone resulting in changing of ribose conformation. This leads to juxtaposition of the 2'-hydroxyl group and internucleotide phosphorus atom at a distance needed for the transesterification to occur.
Collapse
Affiliation(s)
- N A Kovalev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | | | | | | |
Collapse
|
64
|
Gösringer M, Hartmann RK. Function of heterologous and truncated RNase P proteins in Bacillus subtilis. Mol Microbiol 2007; 66:801-13. [PMID: 17919279 DOI: 10.1111/j.1365-2958.2007.05962.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial RNase P is composed of an RNA subunit and a single protein (encoded by the rnpB and rnpA genes respectively). The Bacillus subtilis rnpA knockdown strain d7 was used to screen for functional conservation among bacterial RNase P proteins from a representative spectrum of bacterial subphyla. We demonstrate conserved function of bacterial RNase P (RnpA) proteins despite low sequence conservation. Even rnpA genes from psychrophilic and thermophilic bacteria rescued growth of B. subtilis d7 bacteria; likewise, terminal extensions and insertions between beta strands 2 and 3, in the so-called metal binding loop, were compatible with RnpA function in B. subtilis. A deletion analysis of B. subtilis RnpA defined the structural elements essential for bacterial RNase P function in vivo. We further extended our complementation analysis in B. subtilis strain d7 to the four individual RNase P protein subunits from three different Archaea, as well as to human Rpp21 and Rpp29 as representatives of eukaryal RNase P. None of these non-bacterial RNase P proteins showed any evidence of being able to replace the B. subtilis RNase P protein in vivo, supporting the notion that archaeal/eukaryal RNase P proteins are evolutionary unrelated to the bacterial RnpA protein.
Collapse
Affiliation(s)
- Markus Gösringer
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany
| | | |
Collapse
|
65
|
Kim K, Liu F. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences. ACTA ACUST UNITED AC 2007; 1769:603-12. [PMID: 17976837 DOI: 10.1016/j.bbaexp.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
66
|
Sun L, Harris ME. Evidence that binding of C5 protein to P RNA enhances ribozyme catalysis by influencing active site metal ion affinity. RNA (NEW YORK, N.Y.) 2007; 13:1505-15. [PMID: 17652407 PMCID: PMC1950769 DOI: 10.1261/rna.571007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.
Collapse
Affiliation(s)
- Lei Sun
- Center for RNA Molecular Biology, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
67
|
Abstract
Major progress in the study of RNase P has resulted from crystallography of bacterial catalytic subunits and the discovery of catalytic activity in eukaryotes. Several new substrates have also been identified, primarily in bacteria but also in yeast. Our current world should be called the "RNA-protein world" rather than the "protein world".
Collapse
Affiliation(s)
- Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, CT 06511, USA.
| |
Collapse
|
68
|
Yang L, Altman S. A noncoding RNA in Saccharomyces cerevisiae is an RNase P substrate. RNA (NEW YORK, N.Y.) 2007; 13:682-90. [PMID: 17379814 PMCID: PMC1852816 DOI: 10.1261/rna.460607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ribonuclease P (RNase P) is involved in regulation of noncoding RNA (ncRNA) expression in Saccharomyces cerevisiae. A hidden-in-reading-frame antisense-1 (HRA1) RNA in S. cerevisiae, which belongs to a class of ncRNAs located in the antisense strand to verified protein coding regions, was cloned for further use in RNase P assays. Escherichia coli RNase P assays in vitro of HRA1 RNA show two cleavage sites, one major and one minor in terms of rates. The same result was observed with a partially purified S. cerevisiae RNase P activity, both at 30 degrees C and 37 degrees C. These latter cells are normally grown at 30 degrees C. Predictions of the secondary structure of HRA1 RNA in silico show the cleavage sites are canonical RNase P recognition sites. A relatively small amount of endogenous HRA1 RNA was identified by RT-PCR in yeast cells. The endogenous HRA1 RNA is increased in amount in strains that are deficient in RNase P activity. A deletion of 10 nucleotides in the HRA1 gene that does not overlap with the gene coding for a protein (DRS2) in the sense strand shows no defective growth in galactose or glucose. These data indicate that HRA1 RNA is a substrate for RNase P and does not appear as a direct consequence of separate regulatory effects of the enzyme on ncRNAs.
Collapse
Affiliation(s)
- Li Yang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
69
|
Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA. Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. RNA (NEW YORK, N.Y.) 2007; 13:521-35. [PMID: 17299131 PMCID: PMC1831860 DOI: 10.1261/rna.308707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/21/2006] [Indexed: 05/03/2023]
Abstract
Bacterial ribonuclease P (RNase P) is a ribonucleoprotein complex composed of one catalytic RNA (PRNA) and one protein subunit (P protein) that together catalyze the 5' maturation of precursor tRNA. High-resolution X-ray crystal structures of the individual P protein and PRNA components from several species have been determined, and structural models of the RNase P holoenzyme have been proposed. However, holoenzyme models have been limited by a lack of distance constraints between P protein and PRNA in the holoenzyme-substrate complex. Here, we report the results of extensive cross-linking and affinity cleavage experiments using single-cysteine P protein variants derivatized with either azidophenacyl bromide or 5-iodoacetamido-1,10-o-phenanthroline to determine distance constraints and to model the Bacillus subtilis holoenzyme-substrate complex. These data indicate that the evolutionarily conserved RNR motif of P protein is located near (<15 Angstroms) the pre-tRNA cleavage site, the base of the pre-tRNA acceptor stem and helix P4 of PRNA, the putative active site of the enzyme. In addition, the metal binding loop and N-terminal region of the P protein are proximal to the P3 stem-loop of PRNA. Studies using heterologous holoenzymes composed of covalently modified B. subtilis P protein and Escherichia coli M1 RNA indicate that P protein binds similarly to both RNAs. Together, these data indicate that P protein is positioned close to the RNase P active site and may play a role in organizing the RNase P active site.
Collapse
|
70
|
Tsai HY, Pulukkunat DK, Woznick WK, Gopalan V. Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc Natl Acad Sci U S A 2006; 103:16147-52. [PMID: 17053064 PMCID: PMC1637551 DOI: 10.1073/pnas.0608000103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNase P, which catalyzes the magnesium-dependent 5'-end maturation of tRNAs in all three domains of life, is composed of one essential RNA and a varying number of protein subunits depending on the source: at least one in bacteria, four in archaea, and nine in eukarya. To address why multiple protein subunits are needed for archaeal/eukaryal RNase P catalysis, in contrast to their bacterial relative, in vitro reconstitution of these holoenzymes is a prerequisite. Using recombinant subunits, we have reconstituted in vitro the RNase P holoenzyme from the thermophilic archaeon Pyrococcus furiosus (Pfu) and furthered our understanding regarding its functional organization and assembly pathway(s). Whereas Pfu RNase P RNA (RPR) alone is capable of multiple turnover, addition of all four RNase P protein (Rpp) subunits to Pfu RPR results in a 25-fold increase in its k(cat) and a 170-fold decrease in K(m). In fact, even in the presence of only one of two specific pairs of Rpps, the RPR displays activity at lower substrate and magnesium concentrations. Moreover, a pared-down, mini-Pfu RNase P was identified with an RPR deletion mutant. Results from our kinetic and footprinting studies on Pfu RNase P, together with insights from recent structures of bacterial RPRs, provide a framework for appreciating the role of multiple Rpps in archaeal RNase P.
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- *Molecular, Cellular and Developmental Biology Graduate Program
- Department of Biochemistry, Ohio State University, Columbus, OH 43210
| | - Dileep K. Pulukkunat
- Ohio State Biochemistry Program, and
- Department of Biochemistry, Ohio State University, Columbus, OH 43210
| | - Walter K. Woznick
- Department of Biochemistry, Ohio State University, Columbus, OH 43210
| | - Venkat Gopalan
- *Molecular, Cellular and Developmental Biology Graduate Program
- Ohio State Biochemistry Program, and
- Department of Biochemistry, Ohio State University, Columbus, OH 43210
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
71
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
72
|
Kluger R. CIC Medal Award Lecture — Molecular keystones: Lessons from bioorganic reaction mechanisms. CAN J CHEM 2006. [DOI: 10.1139/v06-149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The work of the author is reviewed in terms of "keystone molecules" that serve as figurative points of support to understand the interactions of smaller molecules within biological macromolecules. The review emphasizes lessons learned in carboxylation of biotin, reactions of cyclic phosphates, the uses of acyl phosphate monoesters, and the mechanism of decarboxylation of thiamin-derived intermediates.Key words: CIC medal, biotin, ATP, mechanisms, cyclic phosphates, thiamin, acyl phosphates, catalysis.
Collapse
|
73
|
Sun L, Campbell FE, Zahler NH, Harris ME. Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P. EMBO J 2006; 25:3998-4007. [PMID: 16932744 PMCID: PMC1560353 DOI: 10.1038/sj.emboj.7601290] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 07/27/2006] [Indexed: 11/09/2022] Open
Abstract
The ribonucleoprotein enzyme RNase P processes all pre-tRNAs, yet some substrates apparently lack consensus elements for recognition. Here, we compare binding affinities and cleavage rates of Escherichia coli pre-tRNAs that exhibit the largest variation from consensus recognition sequences. These results reveal that the affinities of both consensus and nonconsensus substrates for the RNase P holoenzyme are essentially uniform. Comparative analyses of pre-tRNA and tRNA binding to the RNase P holoenzyme and P RNA alone reveal differential contributions of the protein subunit to 5' leader and tRNA affinity. Additionally, these studies reveal that uniform binding results from variations in the energetic contribution of the 5' leader, which serve to compensate for weaker tRNA interactions. Furthermore, kinetic analyses reveal uniformity in the rates of substrate cleavage that result from dramatic (> 900-fold) contributions of the protein subunit to catalysis for some nonconsensus pre-tRNAs. Together, these data suggest that an important biological function of RNase P protein is to offset differences in pre-tRNA structure such that binding and catalysis are uniform.
Collapse
Affiliation(s)
- Lei Sun
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Frank E Campbell
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nathan H Zahler
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Michael E Harris
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. Tel: +216 368 4779; Fax: +216 368 2010; E-mail:
| |
Collapse
|
74
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
75
|
Xiao S, Hsieh J, Nugent RL, Coughlin DJ, Fierke CA, Engelke DR. Functional characterization of the conserved amino acids in Pop1p, the largest common protein subunit of yeast RNases P and MRP. RNA (NEW YORK, N.Y.) 2006; 12:1023-37. [PMID: 16618965 PMCID: PMC1464857 DOI: 10.1261/rna.23206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
76
|
Khan AU. Ribozyme: A clinical tool. Clin Chim Acta 2006; 367:20-7. [PMID: 16426595 DOI: 10.1016/j.cca.2005.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 01/15/2023]
Abstract
Catalytic RNAs (ribozymes) are capable of specifically cleaving RNA molecules, a property that enables them to act as potential antiviral and anti-cancer agents, as well as powerful tools for functional genomic studies. Recently, ribozymes have been used successfully to inhibit gene expression in a variety of biological systems in vitro and in vivo. Phase I clinical trials using ribozyme gene therapy to treat AIDS patients have been conducted. Despite initial success, there are many areas that require further investigation. These include stability of ribozymes in cells and designing highly active ribozymes in vivo, identification of target sequence sites and co-localization of ribozymes and substrates, and their delivery to specific tissues and maintenance of its stable long-term expression. This review gives a brief introduction to ribozyme structure, catalysis and its potential applications in biological systems as therapeutic agents.
Collapse
Affiliation(s)
- Asad U Khan
- Interdisciplinary Biotechnology unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
77
|
Wilson RC, Bohlen CJ, Foster MP, Bell CE. Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A 2006; 103:873-8. [PMID: 16418270 PMCID: PMC1347986 DOI: 10.1073/pnas.0508004103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
We have used NMR spectroscopy and x-ray crystallography to determine the three-dimensional structure of PF1378 (Pfu Pop5), one of four protein subunits of archaeal RNase P that shares a homolog in the eukaryotic enzyme. RNase P is an essential and ubiquitous ribonucleoprotein enzyme required for maturation of tRNA. In bacteria, the enzyme's RNA subunit is responsible for cleaving the single-stranded 5' leader sequence of precursor tRNA molecules (pre-tRNA), whereas the protein subunit assists in substrate binding. Although in bacteria the RNase P holoenzyme consists of one large catalytic RNA and one small protein subunit, in archaea and eukarya the enzyme contains several (> or =4) protein subunits, each of which lacks sequence similarity to the bacterial protein. The functional role of the proteins is poorly understood, as is the increased complexity in comparison to the bacterial enzyme. Pfu Pop5 has been directly implicated in catalysis by the observation that it pairs with PF1914 (Pfu Rpp30) to functionally reconstitute the catalytic domain of the RNA subunit. The protein adopts an alpha-beta sandwich fold highly homologous to the single-stranded RNA binding RRM domain. Furthermore, the three-dimensional arrangement of Pfu Pop5's structural elements is remarkably similar to that of the bacterial protein subunit. NMR spectra have been used to map the interaction of Pop5 with Pfu Rpp30. The data presented permit tantalizing hypotheses regarding the role of this protein subunit shared by archaeal and eukaryotic RNase P.
Collapse
Affiliation(s)
- Ross C Wilson
- Ohio State Biochemistry Program, Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
78
|
Buck AH, Kazantsev AV, Dalby AB, Pace NR. Structural perspective on the activation of RNase P RNA by protein. Nat Struct Mol Biol 2005; 12:958-64. [PMID: 16228004 DOI: 10.1038/nsmb1004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/13/2005] [Indexed: 11/09/2022]
Abstract
Ribonucleoprotein particles are central to numerous cellular pathways, but their study in vitro is often complicated by heterogeneity and aggregation. We describe a new technique to characterize these complexes trapped as homogeneous species in a nondenaturing gel. Using this technique, in conjunction with phosphorothioate footprinting analysis, we identify the protein-binding site and RNA folding states of ribonuclease P (RNase P), an RNA-based enzyme that, in vivo, requires a protein cofactor to catalyze the 5' maturation of precursor transfer RNA (pre-tRNA). Our results show that the protein binds to a patch of conserved RNA structure adjacent to the active site and influences the conformation of the RNA near the tRNA-binding site. The data are consistent with a role of the protein in substrate recognition and support a new model of the holoenzyme that is based on a recently solved crystal structure of RNase P RNA.
Collapse
Affiliation(s)
- Amy H Buck
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
79
|
Söderbom F, Svärd SG, Kirsebom LA. RNase E cleavage in the 5' leader of a tRNA precursor. J Mol Biol 2005; 352:22-7. [PMID: 16081101 DOI: 10.1016/j.jmb.2005.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/04/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022]
Abstract
In this study, we have used various tRNA(Tyr)Su3 precursor (pSu3) derivatives that are processed less efficiently by RNase P to investigate if the 5' leader is a target for RNase E. We present data that suggest that RNase E cleaves the 5' leader of pSu3 both in vivo and in vitro. The site of cleavage in the 5' leader corresponds to the cleavage site for a previously identified endonuclease activity referred to as RNase P2/O. Thus, our findings suggest that RNase P2/O and RNase E activities are of the same origin. These data are in keeping with the suggestion that the structure of the 5' leader influences tRNA expression by affecting tRNA processing and indicate the involvement of RNase E in the regulation of cellular tRNA levels.
Collapse
Affiliation(s)
- Fredrik Söderbom
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
80
|
Buck AH, Dalby AB, Poole AW, Kazantsev AV, Pace NR. Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 2005; 24:3360-8. [PMID: 16163391 PMCID: PMC1276167 DOI: 10.1038/sj.emboj.7600805] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/15/2005] [Indexed: 11/08/2022] Open
Abstract
Bacterial ribonuclease P (RNase P) belongs to a class of enzymes that utilize both RNAs and proteins to perform essential cellular functions. The bacterial RNase P protein is required to activate bacterial RNase P RNA in vivo, but previous studies have yielded contradictory conclusions regarding its specific functions. Here, we use biochemical and biophysical techniques to examine all of the proposed functions of the protein in both Escherichia coli and Bacillus subtilis RNase P. We demonstrate that the E. coli protein, but not the B. subtilis protein, stabilizes the global structure of RNase P RNA, although both proteins influence holoenzyme dimer formation and precursor tRNA recognition to different extents. By comparing each protein in complex with its cognate and noncognate RNA, we show that differences between the two types of holoenzymes reside primarily in the RNA and not the protein components of each. Our results reconcile previous contradictory conclusions regarding the role of the protein and support a model where the protein activates local RNA structures that manifest multiple holoenzyme properties.
Collapse
Affiliation(s)
- Amy H Buck
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Andrew B Dalby
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexander W Poole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Norman R Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, CO 80309, USA. Tel.: +1 303 735 1808; Fax: +1 303 492 7744; E-mail:
| |
Collapse
|
81
|
Sharin E, Schein A, Mann H, Ben-Asouli Y, Jarrous N. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis. Nucleic Acids Res 2005; 33:5120-32. [PMID: 16155184 PMCID: PMC1201335 DOI: 10.1093/nar/gki828] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.
Collapse
Affiliation(s)
| | | | | | | | - Nayef Jarrous
- To whom correspondence should be addressed. Tel: +972 2 6758233; Fax: +972 2 6784010;
| |
Collapse
|
82
|
Fredrik Pettersson BM, Ardell DH, Kirsebom LA. The length of the 5' leader of Escherichia coli tRNA precursors influences bacterial growth. J Mol Biol 2005; 351:9-15. [PMID: 16002088 DOI: 10.1016/j.jmb.2005.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 04/30/2005] [Accepted: 05/10/2005] [Indexed: 11/29/2022]
Abstract
Based on a computational analysis of the 5' regions of tRNA-encoding genes, the average length of the 5' leaders in tRNA precursors in Escherichia coli appears to be 17-18 residues long. An in vivo assay based on tRNA nonsense suppression was developed and used to investigate the function of the 5' leader of the tRNA precursors on tRNA processing and bacterial growth. Our data indicate that the 5' leader influences bacterial growth but is surprisingly not absolutely necessary for growth. These findings are consistent with previous in vitro data where it was demonstrated that the 5' leader plays a role in the interaction with RNase P, the endoribonuclease responsible for removing the 5' leader in the cell. We discuss the plausible role of the 5' leader in processing and tRNA gene expression.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
83
|
Zahler NH, Sun L, Christian EL, Harris ME. The pre-tRNA nucleotide base and 2'-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 2004; 345:969-85. [PMID: 15644198 DOI: 10.1016/j.jmb.2004.10.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/20/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Fidelity in tRNA processing by the RNase P RNA from Escherichia coli depends, in part, on interactions with the nucleobase and 2' hydroxyl group of N(-1), the nucleotide immediately upstream of the site of RNA strand cleavage. Here, we report a series of biochemical and structure-function studies designed to address how these interactions contribute to cleavage site selection. We find that simultaneous disruption of cleavage site nucleobase and 2' hydroxyl interactions results in parallel reactions leading to correct cleavage and mis-cleavage one nucleotide upstream (5') of the correct site. Changes in Mg(2+) concentration and pH can influence the fraction of product that is incorrectly processed, with pH effects attributable to differences in the rate-limiting steps for the correct and mis-cleavage reaction pathways. Additionally, we provide evidence that interactions with the 2' hydroxyl group adjacent to the reactive phosphate group also contribute to catalysis at the mis-cleavage site. Finally, disruption of the adjacent 2'-hydroxyl contact has a greater effect on catalysis when pairing between the ribozyme and N(-1) is also disrupted, and the effects of simultaneously disrupting these contacts on binding are also non-additive. One implication of these results is that mis-cleavage will result from any combination of active site modifications that decrease the rate of correct cleavage beyond a certain threshold. Indeed, we find that inhibition of correct cleavage and corresponding mis-cleavage also results from disruption of any combination of active site contacts including metal ion interactions and conserved pairing interactions with the 3' RCCA sequence. Such redundancy in interactions needed for maintaining fidelity may reflect the necessity for multiple substrate recognition in vivo. These studies provide a framework for interpreting effects of substrate modifications on RNase P cleavage fidelity and provide evidence for interactions with the nucleobase and 2' hydroxyl group adjacent to the reactive phosphate group in the transition state.
Collapse
Affiliation(s)
- Nathan H Zahler
- Department of Biochemistry, Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4973, USA
| | | | | | | |
Collapse
|
84
|
Brännvall M, Kikovska E, Kirsebom LA. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 2004; 32:5418-29. [PMID: 15477392 PMCID: PMC524293 DOI: 10.1093/nar/gkh883] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2'OH at the RNase P cleavage site (at -1) and/or at position +73 had been replaced with a 2' amino group (or 2'H). Our data showed that the presence of 2' modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2' amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at -1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2' amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3' end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2'OH at the cleavage site as an inner or outer sphere ligand.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
85
|
Day-Storms JJ, Niranjanakumari S, Fierke CA. Ionic interactions between PRNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA (NEW YORK, N.Y.) 2004; 10:1595-608. [PMID: 15337847 PMCID: PMC1370646 DOI: 10.1261/rna.7550104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the cleavage of the 5' end of precursor tRNA. To characterize the interface between the Bacillus subtilis RNA (PRNA) and protein (P protein) components, the intraholoenzyme KD is determined as a function of ionic strength using a magnetocapture-based assay. Three distinct phases are evident. At low ionic strength, the affinity of PRNA for P protein is enhanced as the ionic strength increases mainly due to stabilization of the PRNA structure by cations. Lithium substitution in lieu of potassium enhances the affinity at low ionic strength, whereas the addition of ATP, known to stabilize the structure of P protein, does not affect the affinity. At high ionic strength, the observed affinity decreases as the ionic strength increases, consistent with disruption of ionic interactions. These data indicate that three to four ions are released on formation of holoenzyme, reflecting the number of ion pairs that occur between the P protein and PRNA. At moderate ionic strength, the two effects balance so that the apparent KD is not dependent on the ionic strength. The KD between the catalytic domain (C domain) and P protein has a similar triphasic dependence on ionic strength. Furthermore, the intraholoenzyme KD is identical to or tighter than that of full-length PRNA, demonstrating that the P protein binds solely to the C domain. Finally, pre-tRNAasp (but not tRNAasp) stabilizes the PRNA*P protein complex, as predicted by the direct interaction between the P protein and pre-tRNA leader.
Collapse
Affiliation(s)
- Jeremy J Day-Storms
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
86
|
Abstract
RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5' end that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR-ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme-based technology as a promising gene targeting approach for basic research and clinical therapeutic application.
Collapse
Affiliation(s)
- Phong Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
87
|
Barrera A, Pan T. Interaction of the Bacillus subtilis RNase P with the 30S ribosomal subunit. RNA (NEW YORK, N.Y.) 2004; 10:482-492. [PMID: 14970393 PMCID: PMC1370943 DOI: 10.1261/rna.5163104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/14/2003] [Indexed: 05/24/2023]
Abstract
Ribonuclease P (RNase P) is a ribozyme required for the 5' maturation of all tRNA. RNase P and the ribosome are the only known ribozymes conserved in all organisms. We set out to determine whether this ribonucleoprotein enzyme interacts with other cellular components, which may imply other functions for this conserved ribozyme. Incubation of the Bacillus subtilis RNase P holoenzyme with fractionated B. subtilis cellular extracts and purified ribosomal subunits results in the formation of a gel-shifted complex with the 30S ribosomal subunit at a binding affinity of approximately 40 nM in 0.1 M NH(4)Cl and 10 mM MgCl(2). The complex does not form with the RNase P RNA alone and is disrupted by a mRNA mimic polyuridine, but is stable in the presence of high concentrations of mature tRNA. Endogenous RNase P can also be detected in the 30S ribosomal fraction. Cleavage of a pre-tRNA substrate by the RNase P holoenzyme remains the same in the presence of the 30S ribosome, but the cleavage of an artificial non-tRNA substrate is inhibited eightfold. Hydroxyl radical protection and chemical modification identify several protected residues located in a highly conserved region in the RNase P RNA. A single mutation within this region significantly reduces binding, providing strong support on the specificity of the RNase P-30S ribosome complex. Our results also suggest that the dimeric form of the RNase P is primarily involved in 30S ribosome binding. We discuss several models on a potential function of the RNase P-30S ribosome complex.
Collapse
Affiliation(s)
- Alessandra Barrera
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
88
|
Hsieh J, Andrews AJ, Fierke CA. Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 2004; 73:79-89. [PMID: 14691942 DOI: 10.1002/bip.10521] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.
Collapse
Affiliation(s)
- John Hsieh
- Chemistry Department, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
89
|
Harlow LS, Kadziola A, Jensen KF, Larsen S. Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 2004; 13:668-77. [PMID: 14767080 PMCID: PMC2286726 DOI: 10.1110/ps.03477004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RNase PH is a member of the family of phosphorolytic 3' --> 5' exoribonucleases that also includes polynucleotide phosphorylase (PNPase). RNase PH is involved in the maturation of tRNA precursors and especially important for removal of nucleotide residues near the CCA acceptor end of the mature tRNAs. Wild-type and triple mutant R68Q-R73Q-R76Q RNase PH from Bacillus subtilis have been crystallized and the structures determined by X-ray diffraction to medium resolution. Wild-type and triple mutant RNase PH crystallize as a hexamer and dimer, respectively. The structures contain a rare left-handed beta alpha beta-motif in the N-terminal portion of the protein. This motif has also been identified in other enzymes involved in RNA metabolism. The RNase PH structure and active site can, despite low sequence similarity, be overlayed with the N-terminal core of the structure and active site of Streptomyces antibioticus PNPase. The surface of the RNase PH dimer fit the shape of a tRNA molecule.
Collapse
Affiliation(s)
- Lene S Harlow
- Department of Biological Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
90
|
Mikulík K. Structure and functional properties of prokaryotic small noncoding RNAs. Folia Microbiol (Praha) 2003; 48:443-68. [PMID: 14533476 DOI: 10.1007/bf02931326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most biochemical, computational and genetic approaches to gene finding assume the Central Dogma and look for genes that make mRNA and have ORFs. These approaches essentially do not work for one class of genes--the noncoding RNA. In all living organisms RNA is involved in a number of essential cell processes. Functional analysis of genome sequences has largely ignored RNA genes and their structures. Different RNA species including rRNA, tRNA, mRNA and sRNA (small RNA) are important structural, transfer, informational, and regulatory molecules containing complex folded conformations that participate in recognition and catalytic processes. Noncoding RNAs play an number of important structural, catalytic and regulatory roles in the cell. The size of the sRNA genes ranges from 70 to 500 nucleotides. Several transcripts of these genes are processed by RNAases and their final products are smaller. The encoding genes are localized between two ORFs and do not overlap with ORFs on the complementary DNA strand. As aptamers, some sRNA bind small molecular components (metal ions, peptides and nucleotides). This review summarizes recent data on the functions of prokaryotic sRNAs and approaches to their identification.
Collapse
Affiliation(s)
- K Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| |
Collapse
|
91
|
Boomershine WP, McElroy CA, Tsai HY, Wilson RC, Gopalan V, Foster MP. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P. Proc Natl Acad Sci U S A 2003; 100:15398-403. [PMID: 14673079 PMCID: PMC307579 DOI: 10.1073/pnas.2535887100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms.
Collapse
|
92
|
Abstract
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Hagit Mann
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
93
|
Kazantsev AV, Krivenko AA, Harrington DJ, Carter RJ, Holbrook SR, Adams PD, Pace NR. High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 2003; 100:7497-502. [PMID: 12799461 PMCID: PMC164615 DOI: 10.1073/pnas.0932597100] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of RNase P protein from the hyperthermophilic bacterium Thermotoga maritima was determined at 1.2-A resolution by using x-ray crystallography. This protein structure is from an ancestral-type RNase P and bears remarkable similarity to the recently determined structures of RNase P proteins from bacteria that have the distinct, Bacillus type of RNase P. These two types of protein span the extent of bacterial RNase P diversity, so the results generalize the structure of the bacterial RNase P protein. The broad phylogenetic conservation of structure and distribution of potential RNA-binding elements in the RNase P proteins indicate that all of these homologous proteins bind to their cognate RNAs primarily by interaction with the phylogenetically conserved core of the RNA. The protein is found to dimerize through an extensive, well-ordered interface. This dimerization may reflect a mechanism of thermal stability of the protein before assembly with the RNA moiety of the holoenzyme.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Zahler NH, Christian EL, Harris ME. Recognition of the 5' leader of pre-tRNA substrates by the active site of ribonuclease P. RNA (NEW YORK, N.Y.) 2003; 9:734-45. [PMID: 12756331 PMCID: PMC1370440 DOI: 10.1261/rna.5220703] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 03/13/2003] [Indexed: 05/20/2023]
Abstract
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Adenosine/genetics
- Base Sequence
- Binding Sites
- Catalysis
- Conserved Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Models, Biological
- Mutation
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribonuclease P
- Sequence Analysis, RNA
- Substrate Specificity
Collapse
Affiliation(s)
- Nathan H Zahler
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4973, USA
| | | | | |
Collapse
|
95
|
Harris ME, Christian EL. Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol 2003; 13:325-33. [PMID: 12831883 DOI: 10.1016/s0959-440x(03)00069-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In bacteria, the tRNA-processing endonuclease ribonuclease P is composed of a large ( approximately 400 nucleotide) catalytic RNA and a smaller ( approximately 100 amino acid) protein subunit that is essential for substrate recognition. Current biochemical and biophysical investigations are providing fresh insights into the modular architecture of the ribozyme, the mechanisms of substrate specificity and the role of essential metal ions in catalysis. Together with recent high-resolution structures of portions of the ribozyme, these findings are beginning to reveal how the functions of RNA and protein are coordinated in this ribonucleoprotein enzyme.
Collapse
Affiliation(s)
- Michael E Harris
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, 44106, Cleveland, OH 44106, USA.
| | | |
Collapse
|
96
|
Ikawa Y, Tsuda K, Matsumura S, Atsumi S, Inoue T. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP. Nucleic Acids Res 2003; 31:1488-96. [PMID: 12595557 PMCID: PMC149818 DOI: 10.1093/nar/gkg225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A hypothetical evolutionary pathway from a ribozyme to a catalytic RNA-protein complex (RNP) is proposed and examined. In this hypothesis for an early phase of molecular evolution, one RNA-RNA interaction in the starting ribozyme is replaced with an RNA-protein interaction via two intermediary stages. At each stage, the original RNA-RNA interaction and a newly introduced RNA-protein interaction are designed to coexist. The catalytic RNPs corresponding to the intermediary stages were constructed by employing the Tetrahymena ribozyme together with molecular modeling. Analyses of the RNPs indicate that the protein can fully replace the original role of the RNA-RNA interaction in the starting ribozyme and that the association of a protein with a ribozyme might be beneficial for improving the ribozymatic activity.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
97
|
Tsai HY, Masquida B, Biswas R, Westhof E, Gopalan V. Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 2003; 325:661-75. [PMID: 12507471 DOI: 10.1016/s0022-2836(02)01267-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Catalytic Domain
- Computer Simulation
- Cysteine/chemistry
- DNA Footprinting
- DNA, Bacterial/genetics
- Edetic Acid
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Evolution, Molecular
- Ferrous Compounds
- Holoenzymes/chemistry
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Hydroxyl Radical/chemistry
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- Ribonuclease P
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
98
|
Lee JH, Kim H, Ko J, Lee Y. Interaction of C5 protein with RNA aptamers selected by SELEX. Nucleic Acids Res 2002; 30:5360-8. [PMID: 12490703 PMCID: PMC140078 DOI: 10.1093/nar/gkf694] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA aptamers binding to C5 protein, the protein component of Escherichia coli RNase P, were selected and characterized as an initial step in elucidating the mechanism of action of C5 protein as an RNA-binding protein. Sequence analyses of the RNA aptamers suggest that C5 protein binds various RNA molecules with dissociation constants comparable to that of M1 RNA, the RNA component of RNase P. The dominant sequence, W2, was chosen for further study. Interactions between W2 and C5 protein were independent of Mg2+, in contrast to the Mg2+ dependency of M1 RNA-C5 protein interactions. The affinity of W2 for C5 protein increased with increasing concentration of monovalent NH4+, suggesting interactions via hydrophobic attraction. W2 forms a fairly stable complex with C5 protein, although the stability of this complex is lower than that of the complex of M1 RNA with C5 protein. The core RNA motif essential for interaction with C5 protein was identified as a stem-loop structure, comprising a 5 bp stem and a 20 nt loop. Our results strongly imply that C5 protein is an interacting partner protein of some cellular RNA species apart from M1 RNA.
Collapse
Affiliation(s)
- June Hyung Lee
- Department of Chemistry, Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | |
Collapse
|
99
|
Jovanovic M, Sanchez R, Altman S, Gopalan V. Elucidation of structure-function relationships in the protein subunit of bacterial RNase P using a genetic complementation approach. Nucleic Acids Res 2002; 30:5065-73. [PMID: 12466529 PMCID: PMC137979 DOI: 10.1093/nar/gkf670] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNase P is a ribonucleoprotein involved in tRNA biosynthesis in all living organisms. Bacterial RNase P is comprised of a catalytic RNA subunit and a lone protein cofactor which plays a supporting, albeit essential, role in the tRNA processing reaction in vivo. In this study, we have searched various databases to identify homologs of the protein subunit of RNase P from diverse bacteria and used an alignment of their primary sequences to determine the most highly conserved residues, and thereby extend earlier predictions of which residues might play an important role in RNA recognition. By employing a genetic complementation assay, we have also gained insights into structure- function relationships in the protein subunit of bacterial RNase P.
Collapse
Affiliation(s)
- Milan Jovanovic
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
100
|
Christian EL, Zahler NH, Kaye NM, Harris ME. Analysis of substrate recognition by the ribonucleoprotein endonuclease RNase P. Methods 2002; 28:307-22. [PMID: 12431435 DOI: 10.1016/s1046-2023(02)00238-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ribonuclease P (RNase P), is a ribonucleoprotein complex that catalyzes the site-specific cleavage of pre-tRNA and a wide variety of other substrates. Although RNase P RNA is the catalytic subunit of the holoenzyme, the protein subunit plays a critical role in substrate binding. Thus, RNase P is an excellent model system for studying ribonucleoprotein function. In this review we describe methods applied to the in vitro study of substrate recognition by bacterial RNase P, covering general considerations of reaction conditions, quantitative measurement of substrate binding equilibria, enzymatic and chemical protection, cross-linking, modification interference, and analysis of site-specific substitutions. We describe application of these methods to substrate binding by RNase P RNA alone and experimental considerations for examining the holoenzyme. The combined use of these approaches has shown that the RNA and protein subunits cooperate to bind different portions of the substrate structure, with the RNA subunit predominantly interacting with the mature domain of tRNA and the protein interacting with the 5(') leader sequence. However, important questions concerning the interface between the two subunits and the coordination of RNA and protein subunits in binding and catalysis remain.
Collapse
Affiliation(s)
- Eric L Christian
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|