51
|
Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice. Proc Natl Acad Sci U S A 2015; 112:E4929-38. [PMID: 26283356 DOI: 10.1073/pnas.1503911112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.
Collapse
|
52
|
Rose SJ, Yu XY, Heinzer AK, Harrast P, Fan X, Raike RS, Thompson VB, Pare JF, Weinshenker D, Smith Y, Jinnah HA, Hess EJ. A new knock-in mouse model of l-DOPA-responsive dystonia. Brain 2015. [PMID: 26220941 DOI: 10.1093/brain/awv212] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abnormal dopamine neurotransmission is associated with many different genetic and acquired dystonic disorders. For instance, mutations in genes critical for the synthesis of dopamine, including GCH1 and TH cause l-DOPA-responsive dystonia. Despite evidence that implicates abnormal dopamine neurotransmission in dystonia, the precise nature of the pre- and postsynaptic defects that result in dystonia are not known. To better understand these defects, we generated a knock-in mouse model of l-DOPA-responsive dystonia (DRD) mice that recapitulates the human p.381Q>K TH mutation (c.1141C>A). Mice homozygous for this mutation displayed the core features of the human disorder, including reduced TH activity, dystonia that worsened throughout the course of the active phase, and improvement in the dystonia in response to both l-DOPA and trihexyphenidyl. Although the gross anatomy of the nigrostriatal dopaminergic neurons was normal in DRD mice, the microstructure of striatal synapses was affected whereby the ratio of axo-spinous to axo-dendritic corticostriatal synaptic contacts was reduced. Microinjection of l-DOPA directly into the striatum ameliorated the dystonic movements but cerebellar microinjections of l-DOPA had no effect. Surprisingly, the striatal dopamine concentration was reduced to ∼1% of normal, a concentration more typically associated with akinesia, suggesting that (mal)adaptive postsynaptic responses may also play a role in the development of dystonia. Administration of D1- or D2-like dopamine receptor agonists to enhance dopamine signalling reduced the dystonic movements, whereas administration of D1- or D2-like dopamine receptor antagonists to further reduce dopamine signalling worsened the dystonia, suggesting that both receptors mediate the abnormal movements. Further, D1-dopamine receptors were supersensitive; adenylate cyclase activity, locomotor activity and stereotypy were exaggerated in DRD mice in response to the D1-dopamine receptor agonist SKF 81297. D2-dopamine receptors exhibited a change in the valence in DRD mice with an increase in adenylate cyclase activity and blunted behavioural responses after challenge with the D2-dopamine receptor agonist quinpirole. Together, our findings suggest that the development of dystonia may depend on a reduction in dopamine in combination with specific abnormal receptor responses.
Collapse
Affiliation(s)
- Samuel J Rose
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xin Y Yu
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann K Heinzer
- 2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Porter Harrast
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xueliang Fan
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert S Raike
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Valerie B Thompson
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jean-Francois Pare
- 3 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA 4 Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA 30329, USA
| | - David Weinshenker
- 5 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- 3 Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA 4 Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA 30329, USA 6 Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyder A Jinnah
- 5 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA 6 Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA 7 Department of Pediatrics Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ellen J Hess
- 1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA 6 Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
53
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
54
|
Kalyanasundar B, Perez CI, Luna A, Solorio J, Moreno MG, Elias D, Simon SA, Gutierrez R. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell. J Neurophysiol 2015; 114:585-607. [PMID: 25972577 DOI: 10.1152/jn.00012.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds.
Collapse
Affiliation(s)
- B Kalyanasundar
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Claudia I Perez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Alvaro Luna
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico; Department of Bioelectronics, CINVESTAV, Mexico City, Mexico
| | - Jessica Solorio
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Mario G Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - David Elias
- Department of Bioelectronics, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico;
| |
Collapse
|
55
|
Hagino Y, Kasai S, Fujita M, Setogawa S, Yamaura H, Yanagihara D, Hashimoto M, Kobayashi K, Meltzer HY, Ikeda K. Involvement of cholinergic system in hyperactivity in dopamine-deficient mice. Neuropsychopharmacology 2015; 40:1141-50. [PMID: 25367503 PMCID: PMC4367456 DOI: 10.1038/npp.2014.295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/16/2022]
Abstract
Dopaminergic systems have been known to be involved in the regulation of locomotor activity and development of psychosis. However, the observations that some Parkinson's disease patients can move effectively under appropriate conditions despite low dopamine levels (eg, kinesia paradoxia) and that several psychotic symptoms are typical antipsychotic resistant and atypical antipsychotic sensitive indicate that other systems beyond the dopaminergic system may also affect locomotor activity and psychosis. The present study showed that dopamine-deficient (DD) mice, which had received daily L-DOPA injections, could move effectively and even be hyperactive 72 h after the last L-DOPA injection when dopamine was almost completely depleted. Such hyperactivity was ameliorated by clozapine but not haloperidol or ziprasidone. Among multiple actions of clozapine, muscarinic acetylcholine (ACh) activation markedly reduced locomotor activity in DD mice. Furthermore, the expression of choline acetyltransferase, an ACh synthase, was reduced and extracellular ACh levels were significantly reduced in DD mice. These results suggest that the cholinergic system, in addition to the dopaminergic system, may be involved in motor control, including hyperactivity and psychosis. The present findings provide additional evidence that the cholinergic system may be targeted for the treatment of Parkinson's disease and psychosis.
Collapse
Affiliation(s)
- Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinya Kasai
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masayo Fujita
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Susumu Setogawa
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroshi Yamaura
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Dai Yanagihara
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan,Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | - Makoto Hashimoto
- Parkinson's Disease Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan, Tel: +81 3 6834 2379, Fax: +81 3 6834 2390, E-mail:
| |
Collapse
|
56
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
57
|
Melis M, Greco B, Tonini R. Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. Eur J Neurosci 2014; 39:1189-201. [PMID: 24712998 DOI: 10.1111/ejn.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Synaptic neuromodulation acts across different functional domains to regulate cognitive processing and behavior. Recent challenges are related to elucidating the molecular and cellular mechanisms through which neuromodulatory pathways act on multiple time scales to signal state-dependent contingencies at the synaptic level or to stabilise synaptic connections during behavior. Here, we present a framework with the synaptic neuromodulators endocannabinoids (eCBs) as key players in dynamic synaptic changes. Modulation of various molecular components of the eCB pathway yields interconnected functional activation states of eCB signaling (prior, tonic, and persistent), which may contribute to metaplastic control of synaptic and behavioral functions in health and disease. The emerging picture supports aberrant metaplasticity as a contributor to cognitive dysfunction associated with several pathological states in which eCB signaling, or other neuromodulatory pathways, are deregulated.
Collapse
Affiliation(s)
- Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
58
|
Dopamine dependency for acquisition and performance of Pavlovian conditioned response. Proc Natl Acad Sci U S A 2014; 111:2764-9. [PMID: 24550305 DOI: 10.1073/pnas.1400332111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During Pavlovian conditioning, pairing of a neutral conditioned stimulus (CS) with a reward leads to conditioned reward-approach responses (CRs) that are elicited by presentation of the CS. CR behaviors can be sign tracking, in which animals engage the CS, or goal tracking, in which animals go to the reward location. We investigated CR behaviors in mice with only ∼5% of normal dopamine in the striatum using a Pavlovian conditioning paradigm. These mice had severely impaired acquisition of the CR, which was ameliorated by pharmacological restoration of dopamine synthesis with l-dopa. Surprisingly, after they had learned the CR, its expression decayed only gradually in following sessions that were conducted without l-dopa treatment. To assess specific contributions of dopamine signaling in the dorsal or ventral striatum, we performed virus-mediated restoration of dopamine synthesis in completely dopamine-deficient (DD) mice. Mice with dopamine signaling only in the dorsal striatum did not acquire a CR, whereas mice with dopamine signaling only in in the ventral striatum acquired a CR. The CR in mice with dopamine signaling only in the dorsal striatum was restored by subjecting the mice to instrumental training in which they had to interact with the CS to obtain rewards. We conclude that dopamine is essential for learning and performance of CR behavior that is predominantly goal tracking. Furthermore, although dopamine signaling in the ventral striatum is sufficient to support a CR, dopamine signaling only in the dorsal striatum can also support a CR under certain circumstances.
Collapse
|
59
|
Barros AGDA, Bridi JC, de Souza BR, de Castro Júnior C, de Lima Torres KC, Malard L, Jorio A, de Miranda DM, Ashrafi K, Romano-Silva MA. Dopamine signaling regulates fat content through β-oxidation in Caenorhabditis elegans. PLoS One 2014; 9:e85874. [PMID: 24465759 PMCID: PMC3899111 DOI: 10.1371/journal.pone.0085874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022] Open
Abstract
The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots.
Collapse
Affiliation(s)
- Alexandre Guimarães de Almeida Barros
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jessika Cristina Bridi
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Rezende de Souza
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Célio de Castro Júnior
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karen Cecília de Lima Torres
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro Malard
- Departamento de Física, Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ado Jorio
- Departamento de Física, Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Marques de Miranda
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States
| | - Marco Aurélio Romano-Silva
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
60
|
Kim SN, Doo AR, Park JY, Choo HJ, Shim I, Park JJ, Chae Y, Lee B, Lee H, Park HJ. Combined treatment with acupuncture reduces effective dose and alleviates adverse effect of L-dopa by normalizing Parkinson's disease-induced neurochemical imbalance. Brain Res 2013; 1544:33-44. [PMID: 24321617 DOI: 10.1016/j.brainres.2013.11.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/16/2022]
Abstract
This study first showed the behavioural benefits of novel combination therapy of L-dopa with acupuncture on Parkinson's disease, and its underlying mechanisms within basal ganglia. The previous study reported that acupuncture may improve the motor function of a Parkinson's disease (PD) mouse model by increasing the dopamine efflux and turnover ratio of dopamine. Hence, we hypothesised that combining L-dopa with acupuncture would have a behavioural benefit for those with PD. We performed unilateral injections of 6-OHDA into the striatum of C57Bl/6 mice to model hemi-Parkinsonian attributes. To test motor function and dyskinetic anomalies, we examined cylinder behaviour and abnormal involuntary movement (AIM), respectively. We found that (1) a 50% reduced dose of L-dopa (7.5 mg/kg) combined with acupuncture showed an improvement in motor function that was comparable to mice given the standard dose of L-dopa treatment (15 mg/kg) only, and that (2) the combination treatment (L-dopa +acupuncture) was significantly superior in reducing AIM scores when equivalent doses of L-dopa were used. The combination treatment also significantly reduces the abnormal increase of GABA contents in the substantia nigra compared to the standard L-dopa treatment. Furthermore, abnormal expression of FosB, the immediate early gene of L-dopa induced dyskinesia (LID), was mitigated in the striatum by the combination treatment. All of these results indicate that acupuncture enhances the benefits of L-dopa on motor function with reduced dose of L-dopa and alleviating LID by normalising neurochemical imbalance within the basal ganglia.
Collapse
Affiliation(s)
- Seung-Nam Kim
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Ah-Reum Doo
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Ji-Yeun Park
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyunwoo J Choo
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Insop Shim
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Jongbae J Park
- Department of Physical Medicine and Rehabilitation, UNC-Chapel Hill, School of Medicine, UNC Hospitals, Campus Box #7200, Chapel Hill, NC 27599, USA; Regional Centre for Neurosensory Disorders, UNC School of Dentistry, Chapel Hill, NC 27599, USA
| | - Younbyoung Chae
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Bena Lee
- Department of Physical Medicine and Rehabilitation, UNC-Chapel Hill, School of Medicine, UNC Hospitals, Campus Box #7200, Chapel Hill, NC 27599, USA
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Centre (AMSRC), Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
61
|
Henschen CW, Palmiter RD, Darvas M. Restoration of dopamine signaling to the dorsal striatum is sufficient for aspects of active maternal behavior in female mice. Endocrinology 2013; 154:4316-27. [PMID: 23959937 PMCID: PMC5398593 DOI: 10.1210/en.2013-1257] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Striatal dopamine (DA) is important for motivated behaviors, including maternal behavior. Recent evidence linking the dorsal striatum with goal-directed behavior suggests that DA signaling in the dorsal striatum, not just the nucleus accumbens, could be involved in maternal behavior. To investigate this question, we tested the maternal behavior of mice with DA genetically restricted to the dorsal striatum. These mice had a mild deficit in pup retrieval but had normal licking/grooming and nursing behavior; consequently, pups were weaned successfully. We also tested a separate group of mice with severely depleted DA in all striatal areas. They had severe deficits in pup retrieval and licking/grooming behavior, whereas nursing behavior was left intact; again, pups survived to weaning at normal rates. We conclude that DA signaling in the striatum is a part of the circuitry mediating maternal behavior and is specifically relevant for active, but not passive, maternal behaviors. In addition, DA in the dorsal striatum is sufficient to allow for active maternal behavior.
Collapse
Affiliation(s)
- Charles W Henschen
- Department of Biochemistry, 1959 Northeast Pacific Street, Box 357370, University of Washington, Seattle, WA 98195.
| | | | | |
Collapse
|
62
|
Lockie SH, Andrews ZB. The hormonal signature of energy deficit: Increasing the value of food reward. Mol Metab 2013; 2:329-36. [PMID: 24327949 DOI: 10.1016/j.molmet.2013.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023] Open
Abstract
Energy deficit is characterised by high ghrelin levels, and low leptin and insulin levels and we suggest that this provides a metabolic signature sensed by the brain to increase motivated behaviour to obtain food. We believe that the hormonal profile of negative energy balance serves to increase the incentive salience (or the value) of a food reinforcer, which in turn leads to increased motivation to obtain this reinforcer. These processes are mediated by a number of alterations in the mesolimbic dopamine system which serves to increase dopamine availability in the forebrain during energy deficit. The currently available evidence suggests that changes in motivational state, rather than hedonic enjoyment of taste, are primarily affected by reduced energy availability. This review aims to clarify the term 'reward' in the metabolic literature and promote more focused discussion in future studies.
Collapse
Affiliation(s)
- Sarah H Lockie
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
63
|
Homma D, Katoh S, Tokuoka H, Ichinose H. The role of tetrahydrobiopterin and catecholamines in the developmental regulation of tyrosine hydroxylase level in the brain. J Neurochem 2013; 126:70-81. [PMID: 23647001 DOI: 10.1111/jnc.12287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022]
Abstract
Tyrosine hydroxylase (TH) is a rate-limiting enzyme for dopamine synthesis and requires tetrahydrobiopterin (BH4) as an essential cofactor. BH4 deficiency leads to the loss of TH protein in the brain, although the underlying mechanism is poorly understood. To give insight into the role of BH4 in the developmental regulation of TH protein level, in this study, we investigated the effects of acute and subchronic administrations of BH4 or dopa on the TH protein content in BH4-deficient mice lacking sepiapterin reductase. We found that BH4 administration persistently elevated the BH4 and dopamine levels in the brain and fully restored the loss of TH protein caused by the BH4 deficiency in infants. On the other hand, dopa administration less persistently increased the dopamine content and only partially but significantly restored the TH protein level in infant BH4-deficient mice. We also found that the effects of BH4 or dopa administration on the TH protein content were attenuated in young adulthood. Our data demonstrate that BH4 and catecholamines are required for the post-natal augmentation of TH protein in the brain, and suggest that BH4 availability in early post-natal period is critical for the developmental regulation of TH protein level.
Collapse
Affiliation(s)
- Daigo Homma
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
64
|
Adaptive Lévy processes and area-restricted search in human foraging. PLoS One 2013; 8:e60488. [PMID: 23577118 PMCID: PMC3618454 DOI: 10.1371/journal.pone.0060488] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions.
Collapse
|
65
|
Lee NC, Shieh YD, Chien YH, Tzen KY, Yu IS, Chen PW, Hu MH, Hu MK, Muramatsu SI, Ichinose H, Hwu WL. Regulation of the dopaminergic system in a murine model of aromatic l-amino acid decarboxylase deficiency. Neurobiol Dis 2013; 52:177-90. [DOI: 10.1016/j.nbd.2012.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 01/22/2023] Open
|
66
|
Ye L, Guan X, Tian J, Zhang J, Du G, Yu X, Yu P, Cen X, Liu W, Li Y. Three-month subchronic intramuscular toxicity study of rotigotine-loaded microspheres in SD rats. Food Chem Toxicol 2013; 56:81-92. [PMID: 23454207 DOI: 10.1016/j.fct.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/10/2012] [Accepted: 02/10/2013] [Indexed: 12/18/2022]
Abstract
Continuous dopaminergic stimulation (CDS) has been an important strategy of drug development for the treatment of Parkinson's disease (PD). Rotigotine is a non-ergoline D3/D2/D1 dopamine agonist for treating PD. As a new treatment option for CDS, rotigotine-loaded microspheres (RoMS), a long-acting sustained-release microspheres for injection with poly(lactide-co-glycolide) as drug carrier, are now being evaluated in clinical trial. In this study, subchronic toxicity of RoMS in SD rats has been characterized via intramuscular administration with RoMS (0-240 mg/kg/week) on a consecutive weekly dosing schedule for 3 months followed by 1-month recovery period. The No Observed Adverse Effect Level (NOAEL) was 45 mg/kg/week. One male at 240 mg/kg died from an extensive pulmonary embolism. The major toxicological effects were associated with the dopamine agonist-related pharmacodynamic properties of rotigotine (e.g. hyperactivity and stereotype, enlarged ovary, sporadic gastric mucous membrane lesions, decreased body weight, food consumption and prolactin, and increased mononuclear cell, neutrophil granulocyte, aspartate aminotransferase and alanine aminotransferase) and foreign body removal reaction induced by poly(lactide-co-glycolide) and carboxymethycellulose sodium. At the end of recovery period, all findings had recovered to a normal level or to a certain degree except foreign body reaction at injection sites. RoMS has exhibited high safety on SD rats.
Collapse
Affiliation(s)
- Liang Ye
- School of Pharmacy, Yantai University & State Key Laboratory of Long-acting and Targeting Drug Delivery Technologies, Yantai, Shandong 264003, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013; 70:599-630. [PMID: 22782111 PMCID: PMC11113580 DOI: 10.1007/s00018-012-1065-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Billett
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|
68
|
|
69
|
Tenore A, Tenore A. A pathophysiologic approach to growth problems in children with attention-deficit/hyperactivity disorder. Endocrinol Metab Clin North Am 2012; 41:761-84. [PMID: 23099269 DOI: 10.1016/j.ecl.2012.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years there has been an increasing trend in the diagnosis and treatment of children with attention-deficit/hyperactivity disorder (ADHD) worldwide. One of the most frequently discussed side effects of these treatments is related to problems of growth. In order to better understand what ADHD is and the mechanisms by which it could affect growth, this article reviews relevant data from a clinical and neurophysiologic perspective to improve understanding of this controversial issue.
Collapse
Affiliation(s)
- Alfred Tenore
- Division of Pediatric Endocrinology, Department of Pediatrics, DSMSC, University of Udine, Udine 33100, Italy.
| | | |
Collapse
|
70
|
Abstract
Foraging- and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor behavior and cognition and reveal an evolutionary progression toward increasing internal connections between prefrontal cortex and striatum in moving from amphibian to primate. The basal ganglia in higher vertebrates show the ability to transfer dopaminergic activity from unconditioned stimuli to conditioned stimuli. The evolutionary role of dopamine in the modulation of goal-directed behavior and cognition is further supported by pathologies of human goal-directed cognition, which have motor and cognitive dysfunction and organize themselves, with respect to dopaminergic activity, along the gradient described by ARS, from perseverative to unfocused. The evidence strongly supports the evolution of goal-directed cognition out of mechanisms initially in control of spatial foraging but, through increasing cortical connections, eventually used to forage for information.
Collapse
Affiliation(s)
- Thomas T Hills
- Department of Psychological and Brain Sciences, Indiana University
| |
Collapse
|
71
|
Dutia R, Kim AJ, Mosharov E, Savontaus E, Chua SC, Wardlaw SL. Regulation of prolactin in mice with altered hypothalamic melanocortin activity. Peptides 2012; 37:6-12. [PMID: 22800691 PMCID: PMC3465950 DOI: 10.1016/j.peptides.2012.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 11/15/2022]
Abstract
This study used two mouse models with genetic manipulation of the melanocortin system to investigate prolactin regulation. Mice with overexpression of the melanocortin receptor (MC-R) agonist, α-melanocyte-stimulating hormone (Tg-MSH) or deletion of the MC-R antagonist agouti-related protein (AgRP KO) were studied. Male Tg-MSH mice had lower blood prolactin levels at baseline (2.9±0.3 vs. 4.7±0.7ng/ml) and after restraint stress (68±6.5 vs. 117±22ng/ml) vs. WT (p<0.05); however, pituitary prolactin content was not different. Blood prolactin was also decreased in male AgRP KO mice at baseline (4.2±0.5 vs. 7.6±1.3ng/ml) and after stress (60±4.5 vs. 86.1±5.7ng/ml) vs. WT (p<0.001). Pituitary prolactin content was lower in male AgRP KO mice (4.3±0.3 vs. 6.7±0.5μg/pituitary, p<0.001) vs. WT. No differences in blood or pituitary prolactin levels were observed in female AgRP KO mice vs. WT. Hypothalamic dopamine activity was assessed as the potential mechanism responsible for changes in prolactin levels. Hypothalamic tyrosine hydroxylase mRNA was measured in both genetic models vs. WT mice and hypothalamic dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content were measured in male AgRP KO and WT mice but neither were significantly different. However, these results do not preclude changes in dopamine activity as dopamine turnover was not directly investigated. This is the first study to show that baseline and stress-induced prolactin release and pituitary prolactin content are reduced in mice with genetic alterations of the melanocortin system and suggests that changes in hypothalamic melanocortin activity may be reflected in measurements of serum prolactin levels.
Collapse
Affiliation(s)
- Roxanne Dutia
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, N.Y
| | - Andrea J. Kim
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, N.Y
| | - Eugene Mosharov
- Department of Neurology, Columbia University College of Physicians & Surgeons, New York, N.Y
| | - Eriika Savontaus
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Streamson C. Chua
- Department of Medicine, Albert Einstein College of Medicine, New York, NY
| | - Sharon L. Wardlaw
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, N.Y
| |
Collapse
|
72
|
Lourenco-Jaramillo DL, Sifuentes-Rincón AM, Parra-Bracamonte GM, de la Rosa-Reyna XF, Segura-Cabrera A, Arellano-Vera W. Genetic diversity of tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) genes in cattle breeds. Genet Mol Biol 2012; 35:435-40. [PMID: 22888292 PMCID: PMC3389531 DOI: 10.1590/s1415-47572012000300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/15/2012] [Indexed: 11/22/2022] Open
Abstract
DNA from four cattle breeds was used to re-sequence all of the exons and 56% of the introns of the bovine tyrosine hydroxylase (TH) gene and 97% and 13% of the bovine dopamine β-hydroxylase (DBH) coding and non-coding sequences, respectively. Two novel single nucleotide polymorphisms (SNPs) and a microsatellite motif were found in the TH sequences. The DBH sequences contained 62 nucleotide changes, including eight non-synonymous SNPs (nsSNPs) that are of particular interest because they may alter protein function and therefore affect the phenotype. These DBH nsSNPs resulted in amino acid substitutions that were predicted to destabilize the protein structure. Six SNPs (one from TH and five from DBH non-synonymous SNPs) were genotyped in 140 animals; all of them were polymorphic and had a minor allele frequency of > 9%. There were significant differences in the intra- and inter-population haplotype distributions. The haplotype differences between Brahman cattle and the three B. t. taurus breeds (Charolais, Holstein and Lidia) were interesting from a behavioural point of view because of the differences in temperament between these breeds.
Collapse
|
73
|
Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat Rev Drug Discov 2012; 11:675-91. [DOI: 10.1038/nrd3739] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
75
|
Menzies JRW, Skibicka KP, Egecioglu E, Leng G, Dickson SL. Peripheral signals modifying food reward. Handb Exp Pharmacol 2012:131-58. [PMID: 22249813 DOI: 10.1007/978-3-642-24716-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pleasure derived from eating may feel like a simple emotion, but the decision to eat, and perhaps more importantly what to eat, involves central pathways linking energy homeostasis and reward and their regulation by metabolic and endocrine factors. Evidence is mounting that modulation of the hedonic aspects of energy balance is under the control of peripheral neuropeptides conventionally associated with homeostatic appetite control. Here, we describe the significance of reward in feeding, the neural substrates underlying the reward pathway and their modification by peptides released into the circulation from peripheral tissues.
Collapse
Affiliation(s)
- John R W Menzies
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK.
| | | | | | | | | |
Collapse
|
76
|
Palmiter R. Dopamine signaling as a neural correlate of consciousness. Neuroscience 2011; 198:213-20. [DOI: 10.1016/j.neuroscience.2011.06.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/13/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
|
77
|
Abstract
The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.
Collapse
|
78
|
Differential effects of dopamine receptor D1-type and D2-type antagonists and phase of the estrous cycle on social learning of food preferences, feeding, and social interactions in mice. Neuropsychopharmacology 2011; 36:1689-702. [PMID: 21525863 PMCID: PMC3138658 DOI: 10.1038/npp.2011.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurobiological bases of social learning, by which an animal can 'exploit the expertise of others' and avoid the disadvantages of individual learning, are only partially understood. We examined the involvement of the dopaminergic system in social learning by administering a dopamine D1-type receptor antagonist, SCH23390 (0.01, 0.05, and 0.1 mg/kg), or a D2-type receptor antagonist, raclopride (0.1, 0.3, and 0.6 mg/kg), to adult female mice prior to socially learning a food preference. We found that while SCH23390 dose-dependently inhibited social learning without affecting feeding behavior or the ability of mice to discriminate between differently flavored diets, raclopride had the opposite effects, inhibiting feeding but leaving social learning unaffected. We showed that food odor, alone or in a social context, was insufficient to induce a food preference, proving the specifically social nature of this paradigm. The estrous cycle also affected social learning, with mice in proestrus expressing the socially acquired food preference longer than estrous and diestrous mice. This suggests gonadal hormone involvement, which is consistent with known estrogenic regulation of female social behavior and estrogen receptor involvement in social learning. Furthermore, a detailed ethological analysis of the social interactions during which social learning occurs showed raclopride- and estrous phase-induced changes in agonistic behavior, which were not directly related to effects on social learning. Overall, these results suggest a differential involvement of the D1-type and D2-type receptors in the regulation of social learning, feeding, and agonistic behaviors that are likely mediated by different underlying states.
Collapse
|
79
|
Hills TT, Todd PM, Goldstone RL. The central executive as a search process: priming exploration and exploitation across domains. J Exp Psychol Gen 2011; 139:590-609. [PMID: 21038983 DOI: 10.1037/a0020666] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The trade-off between exploration and exploitation is common to a wide variety of problems involving search in space and mind. The prevalence of this trade-off and its neurological underpinnings led us to propose domain-general cognitive search processes (Hills, Todd, & Goldstone, 2008). We propose further that these are consistent with the idea of a central executive search process that combines goal-handling across subgoal hierarchies. In the present study, we investigate 3 aspects of this proposal. First, the existence of a unitary central executive search process should allow priming from 1 search task to another and at multiple hierarchical levels. We confirm this by showing cross-domain priming from a spatial search task to 2 different cognitive levels within a lexical search task. Second, given the neural basis of the proposed generalized cognitive search process and the evidence that the central executive is primarily engaged during complex tasks, we hypothesize that priming should require search in the sense of a self-regulated making and testing of sequential predictions about the world. This was confirmed by showing that when participants were allowed to collect spatial resources without searching for them, no priming occurred. Finally, we provide a mechanism for the underlying search process and investigate 3 alternative hypotheses for subgoal hierarchies using the central executive as a search process model (CESP). CESP envisions the central executive as having both emergent and unitary processes, with one of its roles being a generalized cognitive search process that navigates goal hierarchies by mediating persistence on and switching between subgoals.
Collapse
Affiliation(s)
- Thomas T Hills
- Department of Psychology, University of Basel, Missionstrasse 60/62, 4055 Basel, Switzerland.
| | | | | |
Collapse
|
80
|
Vucetic Z, Reyes TM. Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:577-593. [PMID: 20836049 DOI: 10.1002/wsbm.77] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prevalence of obesity in the general population has increased in the past 15 years from 15% to 35%. With increasing obesity, the coincident medical and social consequences are becoming more alarming. Control over food intake is crucial for the maintenance of body weight and represents an important target for the treatment of obesity. Central nervous system mechanisms responsible for control of food intake have evolved to sense the nutrient and energy levels in the organism and to coordinate appropriate responses to adjust energy intake and expenditure. This homeostatic system is crucial for maintenance of stable body weight over long periods of time of uneven energy availability. However, not only the caloric and nutritional value of food but also hedonic and emotional aspects of feeding affect food intake. In modern society, the increased availability of highly palatable and rewarding (fat, sweet) food can significantly affect homeostatic balance, resulting in dysregulated food intake. This review will focus on the role of hypothalamic and mesolimbic/mesocortical dopaminergic (DA) circuitry in coding homeostatic and hedonic signals for the regulation of food intake and maintenance of caloric balance. The interaction of dopamine with peripheral and central indices of nutritional status (e.g., leptin, ghrelin, neuropeptide Y), and the susceptibility of the dopamine system to prenatal insults will be discussed. Additionally, the importance of alterations in dopamine signaling that occur coincidently with obesity will be addressed.
Collapse
Affiliation(s)
- Zivjena Vucetic
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Teresa M Reyes
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
81
|
Hancock SD, Olmstead MC. Animal Models of Eating Disorders. ANIMAL MODELS OF DRUG ADDICTION 2011. [DOI: 10.1007/978-1-60761-934-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
82
|
Panariello F, De Luca V, de Bartolomeis A. Weight gain, schizophrenia and antipsychotics: new findings from animal model and pharmacogenomic studies. SCHIZOPHRENIA RESEARCH AND TREATMENT 2010; 2011:459284. [PMID: 22988505 PMCID: PMC3440684 DOI: 10.1155/2011/459284] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 08/03/2010] [Accepted: 10/24/2010] [Indexed: 02/07/2023]
Abstract
Excess body weight is one of the most common physical health problems among patients with schizophrenia that increases the risk for many medical problems, including type 2 diabetes mellitus, coronary heart disease, osteoarthritis, and hypertension, and accounts in part for 20% shorter life expectancy than in general population. Among patients with severe mental illness, obesity can be attributed to an unhealthy lifestyle, personal genetic profile, as well as the effects of psychotropic medications, above all antipsychotic drugs. Novel "atypical" antipsychotic drugs represent a substantial improvement on older "typical" drugs. However, clinical experience has shown that some, but not all, of these drugs can induce substantial weight gain. Animal models of antipsychotic-related weight gain and animal transgenic models of knockout or overexpressed genes of antipsychotic receptors have been largely evaluated by scientific community for changes in obesity-related gene expression or phenotypes. Moreover, pharmacogenomic approaches have allowed to detect more than 300 possible candidate genes for antipsychotics-induced body weight gain. In this paper, we summarize current thinking on: (1) the role of polymorphisms in several candidate genes, (2) the possible roles of various neurotransmitters and neuropeptides in this adverse drug reaction, and (3) the state of development of animal models in this matter. We also outline major areas for future research.
Collapse
Affiliation(s)
- Fabio Panariello
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Room 30, Toronto, ON, Canada M5T 1R8
| | - Vincenzo De Luca
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Room 30, Toronto, ON, Canada M5T 1R8
| | - Andrea de Bartolomeis
- Dipartimento di Neuroscienze, Sezione di Psichiatria, Laboratorio di Psichiatria Molecolare, University of Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
83
|
Thanos PK, Cho J, Kim R, Michaelides M, Primeaux S, Bray G, Wang GJ, Volkow ND. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats. Behav Brain Res 2010; 217:165-70. [PMID: 21034777 DOI: 10.1016/j.bbr.2010.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 01/06/2023]
Abstract
Dopamine (DA) and DA D₂ receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Laboratory of Neuroimaging, NIAAA, NIH, Department of Health and Human Services, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Wall VZ, Parker JG, Fadok JP, Darvas M, Zweifel L, Palmiter RD. A behavioral genetics approach to understanding D1 receptor involvement in phasic dopamine signaling. Mol Cell Neurosci 2010; 46:21-31. [PMID: 20888914 DOI: 10.1016/j.mcn.2010.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
Dopamine-producing neurons fire with both basal level tonic patterns and phasic bursts. Varying affinities of the five dopamine receptors have led to a hypothesis that higher affinity receptors are primarily activated by basal level tonic dopamine, while lower affinity receptors may be tuned to be sensitive to higher levels caused by phasic bursts. Genetically modified mice provide a method to begin to probe this hypothesis. Here we discuss three mouse models. Dopamine-deficient mice were used to determine which behaviors require dopamine. These behaviors were then analyzed in mice lacking D1 receptors and in mice with reduced phasic dopamine release. Comparison of the latter two mouse models revealed a similar failure to learn about and respond normally to cues that indicate either a positive or negative outcome, giving support to the hypothesis that phasic dopamine release and the D1 receptor act in the same pathway. However, the D1 receptor likely has additional roles beyond those of phasic dopamine detection, because D1 receptor knockout mice have deficits in addition to what has been observed in mice with reduced phasic dopamine release.
Collapse
Affiliation(s)
- Valerie Z Wall
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
85
|
Fadok JP, Darvas M, Dickerson TMK, Palmiter RD. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala. PLoS One 2010; 5:e12751. [PMID: 20856811 PMCID: PMC2939886 DOI: 10.1371/journal.pone.0012751] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/22/2010] [Indexed: 01/16/2023] Open
Abstract
The neurotransmitter dopamine (DA) is essential for learning in a Pavlovian fear conditioning paradigm known as fear-potentiated startle (FPS). Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA) was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the basolateral amygdala (BLA) and nucleus accumbens (NAc) is required for long-term memory of FPS. These data provide crucial insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.
Collapse
Affiliation(s)
- Jonathan P. Fadok
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Martin Darvas
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Tavis M. K. Dickerson
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Richard D. Palmiter
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
86
|
Yuan J, Darvas M, Sotak B, Hatzidimitriou G, McCann UD, Palmiter RD, Ricaurte GA. Dopamine is not essential for the development of methamphetamine-induced neurotoxicity. J Neurochem 2010; 114:1135-42. [PMID: 20533999 PMCID: PMC3124237 DOI: 10.1111/j.1471-4159.2010.06839.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely believed that dopamine (DA) mediates methamphetamine (METH)-induced toxicity to brain dopaminergic neurons, because drugs that interfere with DA neurotransmission decrease toxicity, whereas drugs that increase DA neurotransmission enhance toxicity. However, temperature effects of drugs that have been used to manipulate brain DA neurotransmission confound interpretation of the data. Here we show that the recently reported ability of l-dihydroxyphenylalanine to reverse the protective effect of alpha-methyl-para-tyrosine on METH-induced DA neurotoxicity is also confounded by drug effects on body temperature. Further, we show that mice genetically engineered to be deficient in brain DA develop METH neurotoxicity, as long as the thermic effects of METH are preserved. In addition, we demonstrate that mice genetically engineered to have unilateral brain DA deficits develop METH-induced dopaminergic deficits that are of comparable magnitude on both sides of the brain. Taken together, these findings demonstrate that DA is not essential for the development of METH-induced dopaminergic neurotoxicity and suggest that mechanisms independent of DA warrant more intense investigation.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 2010; 30:2533-41. [PMID: 20164338 DOI: 10.1523/jneurosci.5768-09.2010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food intake regulation through central mechanisms. However, the neural circuits underlying their anorexigenic effects remain largely unknown. We showed previously that selective BDNF depletion in the ventromedial hypothalamus (VMH) of mice resulted in hyperphagic behavior and obesity. Here, we sought to ascertain whether its regulatory effects involved the mesolimbic dopamine system, which mediates motivated and reward-seeking behaviors including consumption of palatable food. We found that expression of BDNF and TrkB mRNA in the ventral tegmental area (VTA) of wild-type mice was influenced by consumption of palatable, high-fat food (HFF). Moreover, amperometric recordings in brain slices of mice depleted of central BDNF uncovered marked deficits in evoked release of dopamine in the nucleus accumbens (NAc) shell and dorsal striatum but normal secretion in the NAc core. Mutant mice also exhibited dramatic increases in HFF consumption, which were exacerbated when access to HFF was restricted. However, mutants displayed enhanced responses to D(1) receptor agonist administration, which normalized their intake of HFF in a 4 h food intake test. Finally, in contrast to deletion of Bdnf in the VMH of mice, which resulted in increased intake of standard chow, BDNF depletion in the VTA elicited excessive intake of HFF but not of standard chow and increased body weights under HFF conditions. Our findings indicate that the effects of BDNF on eating behavior are neural substrate-dependent and that BDNF influences hedonic feeding via positive modulation of the mesolimbic dopamine system.
Collapse
|
88
|
Branchi I, D’Andrea I, Armida M, Carnevale D, Ajmone-Cat MA, Pèzzola A, Potenza RL, Morgese MG, Cassano T, Minghetti L, Popoli P, Alleva E. Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behav Brain Res 2010; 208:137-43. [DOI: 10.1016/j.bbr.2009.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
|
89
|
Kim KS, Yoon YR, Lee HJ, Yoon S, Kim SY, Shin SW, An JJ, Kim MS, Choi SY, Sun W, Baik JH. Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J Biol Chem 2010; 285:8905-17. [PMID: 20080963 DOI: 10.1074/jbc.m109.079590] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine D(2) receptor (D2R) plays a critical role in diverse neurophysiological functions. D2R knock-out mice (D2R(-/-)) show reduced food intake and body weight while displaying an increased basal energy expenditure level, compared with their wild type littermates. Thus, these mice show a lean phenotype. D2R(-/-) mice displayed increased leptin sensitivity, and leptin injection induced increased phosphorylation of the hypothalamic signal transducer and activator of transcription 3 (STAT3) in D2R(-/-) mice relative to wild type littermates. Using double immunofluorescence histochemistry, we have demonstrated that D2Rs are present in leptin-sensitive STAT3-positive cells in the arcuate nucleus of the hypothalamus and that leptin injection induces STAT3 phosphorylation in hypothalamic neurons expressing D2Rs. Stimulation of D2R by the D2R agonist quinpirole suppressed the leptin-induced STAT3 phosphorylation and nuclear trans-localization of phospho-STAT3 in the hypothalamus of wild type mice. However, this regulation was not detected in the D2R(-/-) mice. Treatment of D2R agonist and antagonist could modulate the leptin-induced food intake and body weight changes in wild type mice but not in D2R(-/-) mice. Together, our findings suggest that the interaction between the dopaminergic system and leptin signaling in hypothalamus is important in control of energy homeostasis.
Collapse
Affiliation(s)
- Kyu Seok Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hajnal A, Norgren R, Kovacs P. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann N Y Acad Sci 2009; 1170:347-64. [PMID: 19686159 DOI: 10.1111/j.1749-6632.2009.03930.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cumulative evidence in rats suggests that the pontine parabrachial nuclei (PBN) are necessary for assigning hedonic value to taste stimuli. In a series of studies, our laboratory has investigated the parabrachial coding of sapid sucrose in normal and obese rats. First, using chronic microdialysis, we demonstrated that sucrose intake increases dopamine release in the nucleus accumbens, an effect that is dependent on oral stimulation and on concentration. The dopamine response was independent of the thalamocortical gustatory system but was blunted substantially by lesions of the PBN. Similar lesions of the PBN but not the thalamic taste relay diminished cFos activation in the nucleus accumbens caused by sucrose ingestion. Recent single-neuron recording studies have demonstrated that processing of sucrose-evoked activity in the PBN is altered in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which develop obesity due to chronic overeating and express increased avidity to sweet. Compared with lean controls, taste neurons in OLETF rats had reduced overall sensitivity to sucrose and altered concentration responses, with decreased responses to lower concentrations and augmented responses to higher concentrations. The decreased sensitivity to sucrose was specific to NaCl-best neurons that also responded to sucrose, but the concentration effects were carried by the sucrose-specific neurons. Collectively, these findings support the hypothesis that the PBN enables taste stimuli to engage the reward system and, in doing so, influences food intake and body weight regulation. Obesity, in turn, may further alter the gustatory code via forebrain connections to the taste relays or hormonal changes consequent to weight gain.
Collapse
Affiliation(s)
- Andras Hajnal
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
91
|
Fadok JP, Dickerson TMK, Palmiter RD. Dopamine is necessary for cue-dependent fear conditioning. J Neurosci 2009; 29:11089-97. [PMID: 19741115 PMCID: PMC2759996 DOI: 10.1523/jneurosci.1616-09.2009] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/15/2009] [Accepted: 07/06/2009] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) is implicated in many behaviors, including motor function, cognition, and reward processing; however, the role of DA in fear processing remains equivocal. To examine the role of DA in fear-related learning, dopamine-deficient (DD) mice were tested in a fear-potentiated startle paradigm. DA synthesis can be restored in DD mice through administration of 3, 4-dihydroxy-l-phenylalanine (l-Dopa), thereby permitting the assessment of fear processing in either a DA-depleted or -replete state. Fear-potentiated startle was absent in DD mice but could be restored by l-Dopa administration immediately after fear conditioning. Selective viral-mediated restoration of DA synthesis within the ventral tegmental area fully restored fear learning in DD mice, and restoration of DA synthesis to DA neurons projecting to the basolateral amygdala restored short-term memory but not long-term memory or shock sensitization. We also demonstrate that the DA D(1) receptor (D(1)R) and D(2)-like receptors are necessary for cue-dependent fear learning. These findings indicate that DA acting on multiple receptor subtypes within multiple target regions facilitates the stabilization of fear memory.
Collapse
Affiliation(s)
- Jonathan P. Fadok
- Graduate Program in Neurobiology and Behavior and
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Tavis M. K. Dickerson
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Richard D. Palmiter
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| |
Collapse
|
92
|
Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci U S A 2009; 106:14664-9. [PMID: 19667174 DOI: 10.1073/pnas.0907299106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The striatum is a vital substrate for performance, procedural memory, and learning. The ventral and medial striatum are thought to be critical for acquisition of tasks while the dorsolateral striatum is important for performance and habitual enactment of skills. Evidence based on cortical, thalamic, and amygdaloid inputs to the striatum suggests a medio-lateral zonation imposed on the classical dorso-ventral distinction. We therefore investigated the functional significance of dopaminergic signaling in cognitive tasks by studying dopamine-deficient (DD) mice and mice with dopamine signaling restored to only the dorsolateral (DL) striatum by viral rescue (vrDD-DL mice). Whereas DD mice failed in all of the tasks examined here, vrDD-DL mice displayed intact discriminatory learning, object recognition, visuospatial learning and spatial memory. Acquisition of operant behavior for food rewards was delayed in vrDD-DL mice and their motivation in a progressive ratio experiments was reduced. Therefore, dopaminergic signaling in the dorsolateral striatum is sufficient for mice to learn several different cognitive tasks although the rate of learning some of them was reduced. These results indicate that dopaminergic signaling in the ventromedial striatum is not absolutely necessary for mastery of these behaviors, but may facilitate them.
Collapse
|
93
|
Verhagen LAW, Luijendijk MCM, Hillebrand JJG, Adan RAH. Dopamine antagonism inhibits anorectic behavior in an animal model for anorexia nervosa. Eur Neuropsychopharmacol 2009; 19:153-60. [PMID: 18977121 DOI: 10.1016/j.euroneuro.2008.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/29/2008] [Accepted: 09/30/2008] [Indexed: 11/24/2022]
Abstract
Excessive physical activity is commonly described as symptom of Anorexia Nervosa (AN). Activity-based anorexia (ABA) is considered an animal model for AN. The ABA model mimics severe body weight loss and increased physical activity. Suppression of hyperactivity by olanzapine in anorectic patients as well as in ABA rats suggested a role of dopamine and/or serotonin in this trait. Here, we investigated the effect of a non-selective dopamine antagonist in the ABA model. A dose-response curve of chronic treatment with the non-selective dopaminergic antagonist cis-flupenthixol was determined in the ABA model. Treatment reduced activity levels in both ad libitum fed and food-restricted rats. Treated ABA rats reduced body weight loss and increased food intake. These data support a role for dopamine in anorexia associated hyperactivity. Interestingly, in contrast to leptin treatment, food-anticipatory activity still persists in treated ABA rats.
Collapse
Affiliation(s)
- Linda A W Verhagen
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience & Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
94
|
Terzi D, Zachariou V. Adeno-associated virus-mediated gene delivery approaches for the treatment of CNS disorders. Biotechnol J 2009; 3:1555-63. [PMID: 19072910 DOI: 10.1002/biot.200800284] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the last few years, a large number of preclinical and clinical studies have demonstrated the potential of gene therapy applications using adeno-associated viral (AAV) vectors. Gene transfer via AAV vectors has been particularly successful for the treatment or adjunct therapy of several CNS disorders. The present review summarizes the progress on AAV gene delivery models for three different CNS disorders. In particular, we discuss advances in AAV-mediated gene transfer strategies in animal models of Parkinson's disease, Alzheimer's disease and spinal cord trauma and summarize the results from the first clinical studies using AAV systems.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Pharmacology, University of Crete, Faculty of Medicine, Heraklion, Crete, Greece
| | | |
Collapse
|
95
|
Heusner CL, Beutler LR, Houser CR, Palmiter RD. Deletion of GAD67 in dopamine receptor-1 expressing cells causes specific motor deficits. Genesis 2008; 46:357-67. [PMID: 18615733 PMCID: PMC3360952 DOI: 10.1002/dvg.20405] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medium spiny neurons (MSNs), which comprise the direct and indirect output pathways from the striatum, use gamma-aminobutyric acid (GABA) as their major fact-acting neurotransmitter. We generated mice carrying a conditional allele of the Gad1 gene, which encodes GAD67, one of the two enzymes responsible for GABA biosynthesis, and bred them to mice expressing Cre recombinase at the dopamine D1 receptor locus (Drd1a) to selectively reduce GABA synthesis in the direct output pathway from the striatum. We show that these mice are deficient in some types of motor skills, but normal for others, suggesting a differential role for GABA release from D1 receptor-containing neurons.
Collapse
Affiliation(s)
- Carrie L Heusner
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
96
|
Neri C, Ghelardini C, Sotak B, Palmiter RD, Guarna M, Stefano G, Bianchi E. Dopamine is necessary to endogenous morphine formation in mammalian brainin vivo. J Neurochem 2008; 106:2337-44. [DOI: 10.1111/j.1471-4159.2008.05572.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Abizaid A, Horvath TL. Brain circuits regulating energy homeostasis. REGULATORY PEPTIDES 2008; 149:3-10. [PMID: 18514925 PMCID: PMC2605273 DOI: 10.1016/j.regpep.2007.10.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 10/30/2007] [Indexed: 11/21/2022]
Abstract
Recent years have seen an impetus in the study for central mechanisms regulating energy balance, and caloric intake possibly as a response to the obesity pandemic. This renewed interest as well as drastic improvements in the tools that are now currently available to neuroscientists, has yielded a great deal of insight into the mechanisms by which the brain regulates metabolic function, and volitional aspects of feeding in response to metabolic signals like leptin, insulin and ghrelin. Among these mechanisms are the complex intracellular signals elicited by these hormones in neurons. Moreover, these signals produce and modulate the metabolism of the cell at the level of the mitochondria. Finally, these signals promote plastic changes that alter the synaptic circuitry in a number of circuits and ultimately affect cellular, physiological and behavioral responses in defense of energy homeostasis. These mechanisms are surveyed in this review.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, USA.
| | | |
Collapse
|
98
|
Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 2008; 1129:35-46. [PMID: 18591467 PMCID: PMC2720267 DOI: 10.1196/annals.1417.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetically engineered mice that lack tyrosine hydroxylase in all dopaminergic neurons become hypoactive and aphagic, and they starve by 4 weeks of age. However, they can be rescued by daily treatment with l-dopa, which restores activity and feeding for about 10 hours. Thus, these mice can be examined in both dopamine-depleted and dopamine-replete states. A series of behavioral experiments lead to the primary conclusion that in the dopamine-depleted state these mice are not motivated to engage in goal-directed behaviors. Nevertheless, they still have a preference for sucrose, they can learn the location of food rewards, and they can form a conditioned-place preference for drugs. Dopamine signaling can be restored to the striatum by several different viral gene-therapy procedures. Restoring dopamine signaling selectively to the dorsal striatum is sufficient to allow feeding, locomotion, and reward-based learning. The rescued mice appear to have normal motivation to engage in all goal-directed behaviors that have been tested. The results suggest that dopamine facilitates the output from dorsal striatum, which provides a permissive signal allowing feeding and other goal-directed behaviors.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
99
|
Need AC, Ahmadi KR, Spector TD, Goldstein DB. Obesity is Associated with Genetic Variants That Alter Dopamine Availability. Ann Hum Genet 2008; 70:293-303. [PMID: 16674552 DOI: 10.1111/j.1529-8817.2005.00228.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI > or = 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:chi2= 15.45, p = 0.004; MAOB:chi2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the 'at risk genotype'--low activity genotypes at both the MAOA and MAOB loci--shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets.
Collapse
Affiliation(s)
- A C Need
- Department of Biology, University College London, The Darwin Building, Gower Street, London WC1E 6BT
| | | | | | | |
Collapse
|
100
|
Abstract
Food palatability acts on the dopaminergic reward system to override homeostatic control; however, whether postingestive calorie load in the absence of taste affects this system remains unclear. In this issue of Neuron, de Araujo et al. show that mice lacking functional "sweet" taste receptors (trpm5-/-) develop a preference for sucrose by activating the mesolimbic dopamine-accumbal pathway, solely based on calorie load.
Collapse
Affiliation(s)
- Zane B Andrews
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|