51
|
Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 2015; 20:916-30. [PMID: 25824305 DOI: 10.1038/mp.2015.27] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a primary role in neuronal development, differentiation and plasticity in both the developing and adult brain. A single-nucleotide polymorphism in the proregion of BDNF, termed the Val66Met polymorphism, results in deficient subcellular translocation and activity-dependent secretion of BDNF, and has been associated with impaired neurocognitive function in healthy adults and in the incidence and clinical features of several psychiatric disorders. Research investigating the Val66Met polymorphism has increased markedly in the past decade, and a gap in integration exists between and within academic subfields interested in the effects of this variant. Here we comprehensively review the role and relevance of the Val66Met polymorphism in psychiatric disorders, with emphasis on suicidal behavior and anxiety, eating, mood and psychotic disorders. The cognitive and molecular neuroscience of the Val66Met polymorphism is also concisely reviewed to illustrate the effects of this genetic variant in healthy controls, and is complemented by a commentary on the behavioral neuroscience of BDNF and the Val66Met polymorphism where relevant to specific disorders. Lastly, a number of controversies and unresolved issues, including small effect sizes, sampling of allele inheritance but not genotype and putative ethnicity-specific effects of the Val66Met polymorphism, are also discussed to direct future research.
Collapse
Affiliation(s)
- M Notaras
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - R Hill
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M van den Buuse
- 1] Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia [2] School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
52
|
Potelle S, Klein A, Foulquier F. Golgi post-translational modifications and associated diseases. J Inherit Metab Dis 2015; 38:741-51. [PMID: 25967285 DOI: 10.1007/s10545-015-9851-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
For non specialists, Golgi is a very well known subcellular compartment involved in secretion and correct targeting of soluble and transmembrane proteins. Nevertheless, Golgi is also specifically involved in many different and diverse post-translational modifications. Through its diverse functions, Golgi is not only able to modify secreted and transmembrane proteins but also cytoplasmic proteins. The Golgi apparatus research field is so broad that an exhaustive review of this organelle is not doable here. The goal of this review is to cover the main post-translational modifications occurring at the Golgi level and present the identified associated diseases.
Collapse
Affiliation(s)
- Sven Potelle
- CNRS-UMR 8576, Structural and Functional Glycobiology unit, FRABIO, University of Lille, 59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
53
|
Klünder S, Heeren J, Markmann S, Santer R, Braulke T, Pohl S. Site-1 protease-activated formation of lysosomal targeting motifs is independent of the lipogenic transcription control. J Lipid Res 2015; 56:1625-32. [PMID: 26108224 DOI: 10.1194/jlr.m060756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Site-1 protease (S1P) cleaves membrane-bound lipogenic sterol regulatory element-binding proteins (SREBPs) and the α/β-subunit precursor protein of the N-acetylglucosamine-1-phosphotransferase forming mannose 6-phosphate (M6P) targeting markers on lysosomal enzymes. The translocation of SREBPs from the endoplasmic reticulum (ER) to the Golgi-resident S1P depends on the intracellular sterol content, but it is unknown whether the ER exit of the α/β-subunit precursor is regulated. Here, we investigated the effect of cholesterol depletion (atorvastatin treatment) and elevation (LDL overload) on ER-Golgi transport, S1P-mediated cleavage of the α/β-subunit precursor, and the subsequent targeting of lysosomal enzymes along the biosynthetic and endocytic pathway to lysosomes. The data showed that the proteolytic cleavage of the α/β-subunit precursor into mature and enzymatically active subunits does not depend on the cholesterol content. In either treatment, lysosomal enzymes are normally decorated with M6P residues, allowing the proper sorting to lysosomes. In addition, we found that, in fibroblasts of mucolipidosis type II mice and Niemann-Pick type C patients characterized by aberrant cholesterol accumulation, the proteolytic cleavage of the α/β-subunit precursor was not impaired. We conclude that S1P substrate-dependent regulatory mechanisms for lipid synthesis and biogenesis of lysosomes are different.
Collapse
Affiliation(s)
- Sarah Klünder
- Biochemistry Section, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Markmann
- Biochemistry Section, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - René Santer
- Biochemistry Section, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Braulke
- Biochemistry Section, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Pohl
- Biochemistry Section, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
54
|
Basak A, Goswami M, Rajkumar A, Mitra T, Majumdar S, O'Reilly P, Bdour HM, Trudeau VL, Basak A. Enediynyl peptides and iso-coumarinyl methyl sulfones as inhibitors of proprotein convertases PCSK8/SKI-1/S1P and PCSK4/PC4: Design, synthesis and biological evaluations. Bioorg Med Chem Lett 2015; 25:2225-37. [PMID: 25881830 DOI: 10.1016/j.bmcl.2015.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 02/05/2023]
Abstract
The proprotein convertases PCSK8 and PCSK4 are, respectively, the 8th and 4th members of Ca(+2)-dependent serine endoprotease of Proprotein Convertase Subtilisin Kexin (PCSK) super family structurally related to the bacterial subtilisin and yeast kexin. The membrane bound PCSK8 (also called SKI-1 or S1P) is implicated in sterol regulation and lipid synthesis via its role in the maturation of human (h) SREBP-2. It also plays role in cartilage formation, bone mineralization, as well as viral pathogenesis. On the other hand, PCSK4 has been linked to mammalian fertilization and placenta growth. Owing to these findings, interest has grown to develop specific inhibitors against these enzymes for potential biochemical and therapeutic applications. In this study we developed two types of small molecule inhibitors of PCSK8 and PCSK4 and demonstrated their anti-proteolytic activities in vitro cell-free and in vitro cell culture systems. These are isocoumarinyl methyl sulfone derivatives and enediyne amino acid containing peptides. Our in vitro data suggested that one of the 7 sulfone derivatives (methyl phenyl sulfone) inhibited PCSK8 with inhibition constant Ki ∼255μM. It also blocked PCSK8-mediated processing of hSREBP-2 in HepG2 cell in a concentration-dependent manner. However all 7 iso-coumarinyl methyl sulfones inhibited htrypsin with IC50 ranging from 2 to 165μM. In contrast, all our designed enediynyl peptides inhibited PCSK8 and PCSK4 activity with Ki and IC50 in low μM or high nM ranges. All compounds exhibited competitive inhibition as indicated by their enzyme kinetic plots and observed dependence of IC50 value on substrate concentration. Our study confirmed that incorporation at the substrate cleavage site of 'Enediyne amino acid' generates potent inhibitors of PCSK8 and PCSK4. This represents a novel approach for future development of inhibitors of PCSK or other enzymes.
Collapse
Affiliation(s)
- Ajoy Basak
- Interdisciplinary School of Health Sciences Unit, Faculty of Health Science, U Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, U Ottawa, Canada.
| | - Mukunda Goswami
- Interdisciplinary School of Health Sciences Unit, Faculty of Health Science, U Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Centre for Advanced Research in Environmental Genomics, Department of Biology, U Ottawa, Canada
| | - Abishankari Rajkumar
- Interdisciplinary School of Health Sciences Unit, Faculty of Health Science, U Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Tapobrata Mitra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W Bengal, India
| | - Swapan Majumdar
- Interdisciplinary School of Health Sciences Unit, Faculty of Health Science, U Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Chemistry Department, Tripura University, Suryamaninagar 799022, India
| | - Paul O'Reilly
- Interdisciplinary School of Health Sciences Unit, Faculty of Health Science, U Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, U Ottawa, Canada
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, W Bengal, India
| |
Collapse
|
55
|
Achilleos A, Huffman NT, Marcinkiewicyz E, Seidah NG, Chen Q, Dallas SL, Trainor PA, Gorski JP. MBTPS1/SKI-1/S1P proprotein convertase is required for ECM signaling and axial elongation during somitogenesis and vertebral development†. Hum Mol Genet 2015; 24:2884-98. [PMID: 25652402 DOI: 10.1093/hmg/ddv050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022] Open
Abstract
Caudal regression syndrome (sacral agenesis), which impairs development of the caudal region of the body, occurs with a frequency of about 2 live births per 100 000 newborns although this incidence rises to 1 in 350 infants born to mothers with gestational diabetes. The lower back and limbs can be affected as well as the genitourinary and gastrointestinal tracts. The axial skeleton is formed during embryogenesis through the process of somitogenesis in which the paraxial mesoderm periodically segments into bilateral tissue blocks, called somites. Somites are the precursors of vertebrae and associated muscle, tendons and dorsal dermis. Vertebral anomalies in caudal regression syndrome may arise through perturbation of somitogenesis or, alternatively, could result from defective bone formation and patterning. We discovered that MBTPS1/SKI-1/S1P, which proteolytically activates a class of transmembrane transcription factors, plays a critical role in somitogenesis and the pathogenesis of lumbar/sacral vertebral anomalies. Conditional deletion of Mbtps1 yields a viable mouse with misshapen, fused and reduced number of lumbar and sacral vertebrae, under-developed hind limb bones and a kinky, shortened tail. We show that Mbtps1 is required to (i) maintain the Fgf8 'wavefront' in the presomitic mesoderm that underpins axial elongation, (ii) sustain the Lfng oscillatory 'clock' activity that governs the periodicity of somite formation and (iii) preserve the composition and character of the somitic extracellular matrix containing fibronectin, fibrillin2 and laminin. Based on this spinal phenotype and known functions of MBTPS1, we reason that loss-of-function mutations in Mbtps1 may cause the etiology of caudal regression syndrome.
Collapse
Affiliation(s)
| | - Nichole T Huffman
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | | | - Nabil G Seidah
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada and
| | - Qian Chen
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA, Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeff P Gorski
- Department of Oral and Craniofacial Sciences and the UMKC Center of Excellence in the Study of Dental and Musculoskeletal Tissues, Sch. Dentistry, University of Missouri - Kansas City, Kansas City, MO 64108, USA,
| |
Collapse
|
56
|
Lin PY. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells. Neuropsychiatr Dis Treat 2015; 11:2529-32. [PMID: 26491331 PMCID: PMC4599150 DOI: 10.2147/ndt.s87743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence has supported the role of brain-derived neurotrophic factor (BDNF) in antidepressant effect. The precursor of BDNF (proBDNF) often exerts opposing biological effects on mature BDNF (mBDNF). Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms.
Collapse
Affiliation(s)
- Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan ; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
57
|
Thakker-Varia S, Behnke J, Doobin D, Dalal V, Thakkar K, Khadim F, Wilson E, Palmieri A, Antila H, Rantamaki T, Alder J. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling. Stem Cell Res 2014; 12:762-77. [PMID: 24747217 PMCID: PMC4991619 DOI: 10.1016/j.scr.2014.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Joseph Behnke
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - David Doobin
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Vidhi Dalal
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Keya Thakkar
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Farah Khadim
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Elizabeth Wilson
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Hanna Antila
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Tomi Rantamaki
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
58
|
Kwok SC, Chakraborty D, Soares MJ, Dai G. Relative expression of proprotein convertases in rat ovaries during pregnancy. J Ovarian Res 2013; 6:91. [PMID: 24330629 PMCID: PMC3874651 DOI: 10.1186/1757-2215-6-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/06/2013] [Indexed: 11/29/2022] Open
Abstract
Background Proprotein convertases are a family of serine proteinases that are related to bacterial subtilisin and yeast kexin. They are involved in posttranslational processing of the precursors of a vast number of cellular proteins. With the exception of PC1/3, the relative expression levels of the proprotein convertases in the ovary during pregnancy have not been reported. The purpose of this study is to determine by real-time PCR the relative expression levels of all nine proprotein convertases in rat ovaries during pregnancy and at 3 days postpartum. Methods RNA was extracted from ovaries at Day 0, 4, 9, 11, 13, 15, 18, and 20 of pregnancy as well as 3 days postpartum. Relative expression levels of Pcsk1, Pcsk2, Furin, Pcsk4, Pcsk5, Pcsk6, Pcsk7, Mbtps1 and Pcsk9 were determined with real-time PCR. Results were reported as fold-change over the level at Day 0 of pregnancy. Results Results showed that Pcsk1 and Pcsk6 were upregulated as gestation advanced, in parallel with an observed increase in relaxin transcript. Pcsk2 showed downregulation as gestation advanced, while Pcsk5 showed relatively higher levels in early pregnancy and postpartum, but lower level in mid-pregnancy. On the other hand, Furin, Pcsk4, Pcsk7, Mbtps1 and Pcsk9 showed little change of expression throughout gestation. Conclusion PC1/3 (PCSK1) and PACE4 (PCSK6) may play an important role in proprotein processing in the ovary during late pregnancy.
Collapse
Affiliation(s)
- Simon Cm Kwok
- ORTD, Albert Einstein Medical Center, 5501 Old York Road, Philadelphia, PA 19141-3098, USA.
| | | | | | | |
Collapse
|
59
|
Faria R, Sartori C, Canova F, Ferrari E. Classical aversive conditioning induces increased expression of mature-BDNF in the hippocampus and amygdala of pigeons. Neuroscience 2013; 255:122-33. [DOI: 10.1016/j.neuroscience.2013.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
|
60
|
Enhanced UV-induced skin carcinogenesis in transgenic mice overexpressing proprotein convertases. Neoplasia 2013; 15:169-79. [PMID: 23441131 DOI: 10.1593/neo.121846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 02/01/2023] Open
Abstract
The proprotein convertases (PCs) furin and PACE4 process numerous substrates involved in tumor growth, invasion, and metastasis. We have previously shown that PCs increase the susceptibility to chemical skin carcinogenesis. Because of the human relevancy of UV radiation in the etiopathogenesis of human skin cancer, we investigated whether or not transgenic mice overexpressing either furin alone or both furin and PACE4 show increased susceptibility to UV carcinogenesis. After backcrossing our previously described furin and PACE4 transgenic lines, targeted to the epidermis, into a SKH-1 background, we exposed both single and double transgenic mice to UV radiation for 34 weeks. The results showed an increase in squamous cell carcinoma (SCC) multiplicity of approximately 70% in the single furin transgenic mouse line SF47 (P < .002) and a 30% increase in the other single transgenic line SF49 when compared to wild-type (WT) SKH-1 mice. Interestingly, there was also an increase in the percentage of high histologic grade SCCs in the transgenic lines compared to the WT mice, i.e., WT = 9%, SF47 = 15%, and SF49 = 26% (P < .02). Targeting both furin and PACE4 to the epidermis in double transgenic mice did not have an additive effect on tumor incidence/multiplicity but did enhance the tumor histopathologic grade, i.e., a significant increase in higher grade SCCs was seen in the bigenic mouse line SPF47 (P < .02). Thus, we observed an increased susceptibility to UV in single furin transgenic mice that was not substantially enhanced in the double furin/PACE4 transgenic mice.
Collapse
|
61
|
Stawowy P, Kelle S, Fleck E. PCSK9 als neues Target in der Therapie der Hypercholesterinämie. Herz 2013; 39:466-9. [DOI: 10.1007/s00059-013-3913-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
|
62
|
Inhibition of the prohormone convertase subtilisin-kexin isoenzyme-1 induces apoptosis in human melanoma cells. J Invest Dermatol 2013; 134:168-175. [PMID: 23884247 DOI: 10.1038/jid.2013.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 11/08/2022]
Abstract
Prohormone convertases (PCs) are endoproteases that process many substrates in addition to hormone precursors. Although overexpression of PCs is linked to carcinogenesis in some solid tumors, the role of subtilisin-kexin isoenzyme-1 (SKI-1) in this context is unknown. We show that SKI-1 is constitutively expressed in human pigment cells with higher SKI activity in seven out of eight melanoma cell lines compared with normal melanocytes. SKI-1 immunoreactivity is also detectable in tumor cells of melanoma metastases. Moreover, tissue samples of the latter display higher SKI-1 mRNA levels and activity than normal skin. From various stimuli tested, 12-O-tetradecanoylphorbol-13-acetate and tunicamycin affected SKI-1 expression. Importantly, SKI-1 inhibition by the cell-permeable enzyme inhibitor decanoyl-RRLL-chloromethylketone (dec-RRLL-CMK) not only suppressed proliferation and metabolic activity of melanoma cells in vitro but also reduced tumor growth of melanoma cells injected intracutaneously into immunodeficient mice. Mechanistic studies revealed that dec-RRLL-CMK induces classical apoptosis of melanoma cells in vitro and affects expression of several SKI-1 target genes including activating transcription factor 6 (ATF6). However, ATF6 gene silencing does not result in apoptosis of melanoma cells, suggesting that dec-RRLL-CMK induces cell death in an ATF6-independent manner. Our findings encourage further studies on SKI-1 as a potential target for melanoma therapy.
Collapse
|
63
|
Seidah NG, Sadr MS, Chrétien M, Mbikay M. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J Biol Chem 2013; 288:21473-81. [PMID: 23775089 DOI: 10.1074/jbc.r113.481549] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The secretory proprotein convertase (PC) family comprises nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9. The first seven PCs cleave their substrates at single or paired basic residues, and SKI-1/S1P cleaves its substrates at non-basic residues in the Golgi. PCSK9 cleaves itself once, and the secreted inactive protease escorts specific receptors for lysosomal degradation. It regulates the levels of circulating LDL cholesterol and is considered a major therapeutic target in phase III clinical trials. In vivo, PCs exhibit unique and often essential functions during development and/or in adulthood, but certain convertases also exhibit complementary, redundant, or opposite functions.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM, affiliated with the University of Montreal), Montreal, Quebec H2W 1R7, Canada.
| | | | | | | |
Collapse
|
64
|
Elferich J, Williamson DM, Krishnamoorthy B, Shinde U. Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation. FASEB J 2013; 27:2939-45. [PMID: 23585398 DOI: 10.1096/fj.12-226886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.
Collapse
Affiliation(s)
- Johannes Elferich
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
65
|
Rawson RB. The site-2 protease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2801-7. [PMID: 23571157 DOI: 10.1016/j.bbamem.2013.03.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 12/19/2022]
Abstract
The site-2 protease (S2P) is an unusually-hydrophobic integral membrane protease. It cleaves its substrates, which are membrane-bound transcription factors, within membrane-spanning helices. Although structural information for S2P from animals is lacking, the available data suggest that cleavage may occur at or within the lipid bilayer. In mammalian cells, S2P is essential owing to its activation of the sterol regulatory element binding proteins (SREBPs); in the absence of exogenous lipid, cells lacking S2P cannot survive. S2P is also important in the endoplasmic reticulum (ER) stress response, activating several different membrane-bound transcription factors. Human patients harboring reduction-of-function mutations in S2P exhibit an array of pathologies ranging from skin defects to neurological abnormalities. Surprisingly, Drosophila melanogaster lacking S2P are viable and fertile. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
|
66
|
Differential recognition of Old World and New World arenavirus envelope glycoproteins by subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). J Virol 2013; 87:6406-14. [PMID: 23536681 DOI: 10.1128/jvi.00072-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residue Y285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.
Collapse
|
67
|
Carlino D, De Vanna M, Tongiorgi E. Is Altered BDNF Biosynthesis a General Feature in Patients with Cognitive Dysfunctions? Neuroscientist 2012; 19:345-53. [DOI: 10.1177/1073858412469444] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe cognitive deficits are a frequent outcome of both neurodegenerative and neurodevelopmental disorders. In the attempt to define new clinical biomarkers, current research trends aim at the identification of common molecular features in these pathologies rather than searching for differences. Brain-derived neurotrophic factor (BDNF) has attracted great interest as possible biomarker because of its key role in synaptic remodeling during cognitive processes. BDNF undergoes proteolytic processing and studies in animal models have highlighted that different forms of learning and memory require either the proBDNF precursor or the mature BDNF form. Significantly, an altered expression of BDNF forms was found in postmortem brains and serum from patients with schizophrenia, Alzheimer’s disease and mood disorders. Based on these studies, this review puts forward the hypothesis that abnormalities in proBDNF or mBDNF biosynthesis may correspond to different cognitive dysfunctions in these brain diseases, while the role of truncated BDNF remains unknown.
Collapse
Affiliation(s)
- Davide Carlino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio De Vanna
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
68
|
Chrétien M. My road to Damascus: how I converted to the prohormone theory and the proprotein convertases. Biochem Cell Biol 2012. [PMID: 23194189 DOI: 10.1139/o2012-031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
My desire as a young endocrinologist to improve my clinical skills through a better knowledge of hormone chemistry led me to serendipitous discoveries and unexpected horizons. The first discovery, published in 1967, revealed that peptide hormones are derived from endoproteolytic cleavages of larger precursor polypeptides. It was the foundation of the prohormone theory. Initially thought to apply to a few hormones, the theory rapidly extended to many proteins, including neuropeptides, neurotrophins, growth and transcription factors, receptors, extracellular matrix proteins, bacterial toxins, and viral glycoproteins. Its endoproteolytic activation mechanism has become a fundamental cellular process, affecting many biological functions. It implied the existence of specific endoproteolytic enzymes. These proprotein convertases were discovered in 1990. They have been shown to play a wide range of important roles in health and disease. They have opened up novel therapeutic avenues. Inactivation of PCSK9 to reduce plasma cholesterol is currently the most promising. To make this good thing even better, I recently discovered in a French Canadian family a potent PCSK9 (Gln152His) mutation that significantly lowers plasma cholesterol and should confer cardiovascular longevity. The discovery helped me to complete the loop: "From the bedside to the bench and back to the bedside."
Collapse
Affiliation(s)
- Michel Chrétien
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
69
|
Abstract
Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.
Collapse
|
70
|
Ryu TK, Lee G, Rhee Y, Park HS, Chang M, Lee S, Lee J, Lee TK. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:18-24. [PMID: 22809708 DOI: 10.1016/j.ecoenv.2012.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 06/01/2023]
Abstract
Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos.
Collapse
Affiliation(s)
- Tae Kwon Ryu
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Transgenic overexpression of the proprotein convertase furin enhances skin tumor growth. Neoplasia 2012; 14:271-82. [PMID: 22577343 DOI: 10.1593/neo.12166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 02/04/2023] Open
Abstract
Furin, one of the members of the family of proprotein convertases (PCs), ubiquitously expressed as a type I membrane-bound proteinase, activates several proteins that contribute to tumor progression. In vitro studies using cancer cell lines and clinical specimens demonstrated that furin processes important substrates such as insulin-like growth factor 1 receptor (IGF-1R) and transforming growth factor β, leading to increased tumor growth and progression. Despite the numerous studies associating furin with tumor development, its effects in preclinical models has not been comprehensively studied. In this study, we sought to determine the protumorigenic role of furin in vivo after a two-stage chemical carcinogenesis protocol in transgenic mice in which furin expression was targeted to the epidermal basal layer. We found that processing of the PC substrate IGF-1R and the proliferation rate of mouse epidermis was enhanced in transgenic mice when compared with their WT counterparts. Histopathologic diagnoses of the tumors demonstrated that furin transgenic mice (line F47) developed twice as many squamous carcinomas as the control, WT mice (P < .002). Similarly, tumors cells from transgenic mice were able to process PC substrates more efficiently than tumor cells from WT mice. Furthermore, furin expression resulted in a higher SCC volume in transgenic mice as well as an increase in the percentage of high-grade SCC, including poorly differentiated and spindle cell carcinomas. In conclusion, expression of furin in the basal layer of the epidermis increased tumor development and enhanced tumor growth, supporting the consideration of furin as a potential target for cancer treatment.
Collapse
|
72
|
Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice. Int J Neuropsychopharmacol 2012; 15:1073-86. [PMID: 21777509 PMCID: PMC3248979 DOI: 10.1017/s1461145711001180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signalling through its receptor, TrkB is known to regulate GABAergic function and glutamic acid decarboxylase (GAD) 67 expression in neurons. Alterations in BDNF signalling have been implicated in the pathophysiology of schizophrenia and as a result, they are a potential therapeutic target. Interestingly, heterozygous reeler mice (HRM) have decreased GAD67 expression in the frontal cortex and hippocampus and they exhibit many behavioural and neurochemical abnormalities similar to schizophrenia. In this study, we evaluated the potential of cysteamine, a neuroprotective compound to improve the deficits in GAD67 expression and cognitive function in HRM. We found that cysteamine administration (150 mg/kg.d, through drinking water) for 30 d significantly ameliorated the decreases in GAD67, mature BDNF and full-length TrkB protein levels found in frontal cortex and hippocampus of HRM. A significant attenuation of the increased levels of truncated BDNF in frontal cortex and hippocampus, as well as truncated TrkB in frontal cortex of HRM was also observed following cysteamine treatment. In behavioural studies, HRM were impaired in a Y-maze spatial recognition memory task, but not in a spontaneous alternation task or a sensorimotor, prepulse inhibition (PPI) procedure. Cysteamine improved Y-maze spatial recognition in HRM to the level of wide-type controls and it improved PPI in both wild-type and HRM. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in GAD67 expression suggesting that TrkB signalling plays an important role in GAD67 regulation by cysteamine.
Collapse
|
73
|
Dillon SL, Williamson DM, Elferich J, Radler D, Joshi R, Thomas G, Shinde U. Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3. J Mol Biol 2012; 423:47-62. [PMID: 22743102 DOI: 10.1016/j.jmb.2012.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 06/11/2012] [Accepted: 06/16/2012] [Indexed: 01/02/2023]
Abstract
The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.
Collapse
Affiliation(s)
- Stephanie L Dillon
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11:367-83. [PMID: 22679642 DOI: 10.1038/nrd3699] [Citation(s) in RCA: 596] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
| | | |
Collapse
|
75
|
Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J Neuropathol Exp Neurol 2012; 71:289-97. [PMID: 22437340 DOI: 10.1097/nen.0b013e31824b27e4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defects in synaptic development and plasticity may lead to autism. Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptogenesis and synaptic plasticity. BDNF is synthesized as a precursor, pro-BDNF, which can be processed into either a truncated form or into mature BDNF. Previous studies reported increased BDNF-immunoreactive protein in autism, but the mechanism of this increase has not been investigated. We examined BDNF mRNA by real-time reverse transcription-polymerase chain reaction and BDNF protein by Western blotting and enzyme-linked immunosorbent assay in postmortem fusiform gyrus tissue from 11 patients with autism and 14 controls. BDNF mRNA levels were not different in the autism versus control samples, but total BDNF-like immunoreactive protein, measured by enzyme-linked immunosorbent assay, was greater in autism than in controls. Western blotting revealed greater pro-BDNF and less truncated BDNF in autism compared with controls. These data demonstrate that increased levels of BDNF-immunoreactive protein in autism are not transcriptionally driven. Increased pro-BDNF and reduced truncated BDNF are consistent with defective processing of pro-BDNF to its truncated form. Distortion of the balance among the 3 BDNF isoforms, each of which may exhibit different biological activities, could lead to changes in connectivity and synaptic plasticity and, hence, behavior. Thus, imbalance in proteolytic isoforms is a possible new mechanism for altered synaptic plasticity leading to autism.
Collapse
|
76
|
Schaller A, Stintzi A, Graff L. Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. PHYSIOLOGIA PLANTARUM 2012; 145:52-66. [PMID: 21988125 DOI: 10.1111/j.1399-3054.2011.01529.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Subtilases (SBTs) constitute a large family of serine peptidases. They are commonly found in Archaea, Bacteria and Eukarya, with many more SBTs in plants as compared to other organisms. The expansion of the SBT family in plants was accompanied by functional diversification, and novel, plant-specific physiological roles were acquired in the course of evolution. In addition to their contribution to general protein turnover, plant SBTs are involved in the development of seeds and fruits, the manipulation of the cell wall, the processing of peptide growth factors, epidermal development and pattern formation, plant responses to their biotic and abiotic environment, and in programmed cell death. Plant SBTs share many properties with their bacterial and mammalian homologs, but the adoption of specific roles in plant physiology is also reflected in the acquisition of unique biochemical and structural features that distinguish SBTs in plants from those in other organisms. In this article we provide an overview of the earlier literature on the discovery of the first SBTs in plants, and highlight recent findings with respect to their physiological relevance, structure and function.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany.
| | | | | |
Collapse
|
77
|
Abstract
The proprotein convertases (PCs) are secretory mammalian serine proteinases related to bacterial subtilisin-like enzymes. The family of PCs comprises nine members, PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 (Fig. 3.1). While the first seven PCs cleave after single or paired basic residues, the last two cleave at non-basic residues and the last one PCSK9 only cleaves one substrate, itself, for its activation. The targets and substrates of these convertases are very varied covering many aspects of cellular biology and communication. While it took more than 22 years to begin to identify the first member in 1989-1990, in less than 14 years they were all characterized. So where are we 20 years later in 2011? We have now reached a level of maturity needed to begin to unravel the mechanisms behind the complex physiological functions of these PCs both in health and disease states. We are still far away from comprehensively understanding the various ramifications of their roles and to identify their physiological substrates unequivocally. How do these enzymes function in vivo? Are there other partners to be identified that would modulate their activity and/or cellular localization? Would non-toxic inhibitors/silencers of some PCs provide alternative therapies to control some pathologies and improve human health? Are there human SNPs or mutations in these PCs that correlate with disease, and can these help define the finesses of their functions and/or cellular sorting? The more we know about a given field, the more questions will arise, until we are convinced that we have cornered the important angles. And yet the future may well reserve for us many surprises that may allow new leaps in our understanding of the fascinating biology of these phylogenetically ancient eukaryotic proteases (Fig. 3.2) implicated in health and disease, which traffic through the cells via multiple sorting pathways (Fig. 3.3).
Collapse
Affiliation(s)
- Nabil G Seidah
- Biochemical Neuroendocrinology Laboratory, Clinical Research Institute of Montreal, Montreal, QC, Canada H2W 1R7.
| |
Collapse
|
78
|
Tassew N, Charish J, Seidah N, Monnier P. SKI-1 and Furin Generate Multiple RGMa Fragments that Regulate Axonal Growth. Dev Cell 2012; 22:391-402. [DOI: 10.1016/j.devcel.2011.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 09/19/2011] [Accepted: 11/21/2011] [Indexed: 11/26/2022]
|
79
|
Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog 2012; 8:e1002468. [PMID: 22241994 PMCID: PMC3252376 DOI: 10.1371/journal.ppat.1002468] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022] Open
Abstract
HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1) – or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care. Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver cancer and liver transplantation worldwide. No vaccine is available for preventing the spread of HCV, and the current therapeutic regimen is only moderately effective and causes serious side effects. New antiviral agents are required to treat HCV infection, but the high mutation rate of HCV hinders the effectiveness of virus-specific inhibitors. Targeting the host enzymes required for HCV to replicate offers a promising new direction for antiviral therapy. During infection, HCV promotes excessive fat accumulation in the liver, which benefits the virus as this promotes formation of lipid droplets, a cellular organelle essential for assembly of new HCV infectious viral particles. Here, we report the development of a specific inhibitor targeting SKI-1/S1P, a host enzyme required for lipid production in human cells. We show that inhibiting SKI-1/S1P activity in human liver cells effectively blocks lipid droplet formation and HCV infection. Many prevalent human viruses, such as dengue, rotavirus, and hepatitis B virus, hijack host lipid metabolic pathways similar to those targeted by HCV to complete their lifecycle. Thus, we propose that cellular SKI-1/S1P is a potential target for developing desperately needed novel broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfgang Knecht
- Lead Generation - Target Production, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Ina Lazarov
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - François Jean
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
80
|
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket 02860, USA.
| | | |
Collapse
|
81
|
Mbikay M, Sirois F, Nkongolo KK, Basak A, Chrétien M. Effects of rs6234/rs6235 and rs6232/rs6234/rs6235 PCSK1 single-nucleotide polymorphism clusters on proprotein convertase 1/3 biosynthesis and activity. Mol Genet Metab 2011; 104:682-7. [PMID: 22000902 DOI: 10.1016/j.ymgme.2011.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Proprotein convertase 1/3 (PC1/3) is one of the endoproteases initiating the proteolytic activation of prohormones and proneuropeptides in the secretory pathway. It is produced as a zymogen that is subsequently modified by activity-determining cleavages at the amino and the carboxyl termini. In human, it is encoded by the PCSK1 locus on chromosome 5. Spontaneous inactivating mutations in its gene have been linked to obesity. Minor alleles of the common non-synonymous single-nucleotide polymorphisms (SNPs) rs6232 (T>C, N221D), rs6234 (G>C, Q665E) and rs6235 (C>G, S690T) have been associated with increased risk of obesity. We have shown that the variations associated with these SNPs are linked on minor PCSK1 alleles. GOAL In this study, we examined the impact of amino acid substitutions specified by the minor PCSK1 alleles on PC1/3 biosynthesis and prohormone processing activity in cultured cells. METHODS The common and variant isoforms of PC1/3 were expressed in transfected rat pituitary GH4C1 cells with or without proopiomelanocortin (POMC) as a substrate. Secreted PC1/3- or POMC-related proteins and peptides were analyzed by immunoblotting and immunoprecipitation. RESULTS When expressed in GH4C1 cells, the triple-variant PC1/3 underwent significantly more proteolytic processing at the amino and carboxyl termini than the common and double-variant isoforms. However, there was no detectable difference among these isoforms in their ability to process POMC in the transfected cells. CONCLUSIONS Since truncation of PC1/3 in its C-terminal region reportedly renders the enzyme unstable, we speculate that the accentuated processing of the triple variant in this region may, in vivo, create a subtle deficit of PC1/3 enzymatic activity in endocrine and neuroendocrine cells, causing impaired processing of prohormones and proneuropeptides to their bioactive forms.
Collapse
Affiliation(s)
- Majambu Mbikay
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
82
|
Papaleo F, Silverman JL, Aney J, Tian Q, Barkan CL, Chadman KK, Crawley JN. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice. Learn Mem 2011; 18:534-44. [PMID: 21791566 DOI: 10.1101/lm.2213711] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
83
|
Marschner K, Kollmann K, Schweizer M, Braulke T, Pohl S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 2011; 333:87-90. [PMID: 21719679 DOI: 10.1126/science.1205677] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mucolipidosis II is a severe lysosomal storage disorder caused by defects in the α and β subunits of the hexameric N-acetylglucosamine-1-phosphotransferase complex essential for the formation of the mannose 6-phosphate targeting signal on lysosomal enzymes. Cleavage of the membrane-bound α/β-subunit precursor by an unknown protease is required for catalytic activity. Here we found that the α/β-subunit precursor is cleaved by the site-1 protease (S1P) that activates sterol regulatory element-binding proteins in response to cholesterol deprivation. S1P-deficient cells failed to activate the α/β-subunit precursor and exhibited a mucolipidosis II-like phenotype. Thus, S1P functions in the biogenesis of lysosomes, and lipid-independent phenotypes of S1P deficiency may be caused by lysosomal dysfunction.
Collapse
Affiliation(s)
- Katrin Marschner
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
84
|
Melville DB, Montero-Balaguer M, Levic DS, Bradley K, Smith JR, Hatzopoulos AK, Knapik EW. The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis. Dis Model Mech 2011; 4:763-76. [PMID: 21729877 PMCID: PMC3209646 DOI: 10.1242/dmm.007625] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Craniofacial and skeletal dysmorphologies account for the majority of birth defects. A number of the disease phenotypes have been attributed to abnormal synthesis, maintenance and composition of extracellular matrix (ECM), yet the molecular and cellular mechanisms causing these ECM defects remain poorly understood. The zebrafish feelgood mutant manifests a severely malformed head skeleton and shortened body length due to defects in the maturation stage of chondrocyte development. In vivo analyses reveal a backlog of type II and type IV collagens in rough endoplasmic reticulum (ER) similar to those found in coat protein II complex (COPII)-deficient cells. The feelgood mutation hinders collagen deposition in the ECM, but trafficking of small cargos and other large ECM proteins such as laminin to the extracellular space is unaffected. We demonstrate that the zebrafish feelgood mutation causes a single amino acid substitution within the DNA-binding domain of transcription factor Creb3l2. We show that Creb3l2 selectively regulates the expression of genes encoding distinct COPII proteins (sec23a, sec23b and sec24d) but find no evidence for its regulation of sec24c expression. Moreover, we did not detect activation of ER stress response genes despite intracellular accumulation of collagen and prominent skeletal defects. Promoter trans-activation assays show that the Creb3l2 feelgood variant is a hypomorphic allele that retains approximately 50% of its transcriptional activity. Transgenic rescue experiments of the feelgood phenotype restore craniofacial development, illustrating that a precise level of Creb3l2 transcriptional activity is essential for skeletogenesis. Our results indicate that Creb3l2 modulates the availability of COPII machinery in a tissue- and cargo-specific manner. These findings could lead to a better understanding of the etiology of human craniofacial and skeletal birth defects as well as adult-onset diseases that are linked to dysregulated ECM deposition, such as arthritis, fibrosis or osteoporosis.
Collapse
Affiliation(s)
- David B Melville
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Gorski JP. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed) 2011; 16:2598-621. [PMID: 21622198 DOI: 10.2741/3875] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of genetics has dramatically affected our understanding of the functions of non-collagenous proteins. Specifically, mutations and knockouts have defined their cellular spectrum of actions. However, the biochemical mechanisms mediated by non-collagenous proteins in biomineralization remain elusive. It is likely that this understanding will require more focused functional testing at the protein, cell, and tissue level. Although initially viewed as rather redundant and static acidic calcium binding proteins, it is now clear that non-collagenous proteins in mineralizing tissues represent diverse entities capable of forming multiple protein-protein interactions which act in positive and negative ways to regulate the process of bone mineralization. Several new examples from the author's laboratory are provided which illustrate this theme including an apparent activating effect of hydroxyapatite crystals on metalloproteinases. This review emphasizes the view that secreted non-collagenous proteins in mineralizing bone actively participate in the mineralization process and ultimately control where and how much mineral crystal is deposited, as well as determining the quality and biomechanical properties of the mineralized matrix produced.
Collapse
Affiliation(s)
- Jeffrey Paul Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Dept. of Oral Biology, Sch. Of Dentistry, Univ. of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
86
|
Arenavirus envelope glycoproteins mimic autoprocessing sites of the cellular proprotein convertase subtilisin kexin isozyme-1/site-1 protease. Virology 2011; 417:18-26. [PMID: 21612810 DOI: 10.1016/j.virol.2011.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
A crucial step in the arenavirus life cycle is the proteolytic processing of the viral envelope glycoprotein precursor (GPC) by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we conducted a systematic and quantitative analysis of SKI-1/S1P processing of peptides derived from the recognition sites of GPCs of different Old World and New World arenaviruses. We found that SKI-1/S1P showed a strong preference for arenaviral sequences resembling its autoprocessing sites, which are recurrent motifs in arenaviral GPCs. The African arenaviruses Lassa, Mobala, and Mopeia resemble the SKI-1/S1P autoprocessing C-site, whereas sequences derived from Clade B New World viruses Junin and Tacaribe have similarities to the autoprocessing B-site. In contrast, analogous peptides derived from cellular SKI-1/S1P substrates were remarkably poor substrates. The data suggest that arenavirus GPCs evolved to mimic SKI-1/S1P autoprocessing sites, likely ensuring efficient cleavage and perhaps avoiding competition with SKI-1/S1P's cellular substrates.
Collapse
|
87
|
The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience 2011; 180:9-18. [DOI: 10.1016/j.neuroscience.2011.02.055] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 01/10/2023]
|
88
|
|
89
|
Carlino D, Leone E, Di Cola F, Baj G, Marin R, Dinelli G, Tongiorgi E, De Vanna M. Low serum truncated-BDNF isoform correlates with higher cognitive impairment in schizophrenia. J Psychiatr Res 2011; 45:273-9. [PMID: 20630543 DOI: 10.1016/j.jpsychires.2010.06.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 05/12/2010] [Accepted: 06/17/2010] [Indexed: 11/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key factor in learning and memory. Altered BDNF-signalling is thought to contribute to the pathogenesis of schizophrenia (SZ) especially in relation to cognitive deficits. However, analysis of serum BDNF as a potential biomarker in schizophrenia has provided controversial data. We hypothesized that these confounding results might be due to a differential regulation of BDNF precursor pro-BDNF (32 KDa) and proteolytic products mature (mat-BDNF; 14 KDa), and truncated-BDNF (28 KDa). Accordingly, we investigated the serum abundance of these BDNF isoforms and its relationship with cognitive impairment in schizophrenia. Schizophrenia was diagnosed with PANSS test. Abbreviated cognitive assessment included tests for attention, perceptual-motor skills, processing speed and memory. Using an ELISA assay, we found a slight reduction in serum BDNF levels in SZ patients (n = 40) with respect to healthy controls (HC, n = 40; p = 0.018). Western-blot analysis revealed increased serum pro-BDNF and mat-BDNF and reduced truncated-BDNF (p < 0.001) in SZ with respect to HC. Patients with an increase in pro-BDNF (n = 15/40) or mat-BDNF (n = 9/40) higher than the HC mean + 2 Standard Deviations (SD) also had >2SD reduction of truncated-BDNF (n = 27/40). Reduced truncated-BDNF correlated significantly with higher positive and lower negative PANNS scores and a worst performance in all cognitive assays but not with antipsychotic type. Measurement of serum truncated-BDNF abundance predicted for high cognitive deficits with sensitivity = 67.5%, specificity = 97.5%, Negative Predictive Value = 75% and Positive Predictive Value = 96.4%. These results suggest deficiency in pro-BDNF processing as a possible biological mechanism underlying schizophrenia with cognitive impairment.
Collapse
Affiliation(s)
- Davide Carlino
- Dipartimento Clinico di Scienze Mediche, Tecnologiche e Traslazionali, Unita' Clinica Operativa di Clinica Psichiatrica, University of Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Duff CJ, Hooper NM. PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opin Ther Targets 2011; 15:157-68. [DOI: 10.1517/14728222.2011.547480] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
91
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
92
|
Abstract
Proprotein convertases (PCs) are secretory proteolytic enzymes that activate precursor proteins into biologically active forms by limited proteolysis at one or multiple internal sites. PCs are implicated in the processing of multiple protein precursors, including hormones, proteases, growth factors, angiogenic factors, and receptors. PCs have been linked recently to various pathologies such as Alzheimer's disease, tumorigenesis, and infections. The zebrafish has emerged as an attractive model for studying the role of PCs not only in substrate production but also in development. Herein we describe methods that are used to characterize DNA sequences of PCs in zebrafish, as well as to evaluate the ontogeny and tissue distribution of their transcripts. We also provide information on the morpholino-mediated knockdown of proprotein convertases.
Collapse
Affiliation(s)
- Michael G Morash
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
| | | | | |
Collapse
|
93
|
Gagnon J, Mayne J, Chen A, Raymond A, Woulfe J, Mbikay M, Chrétien M. PCSK2-null mice exhibit delayed intestinal motility, reduced refeeding response and altered plasma levels of several regulatory peptides. Life Sci 2011; 88:212-7. [DOI: 10.1016/j.lfs.2010.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/10/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
|
94
|
In vitro assay for protease activity of proprotein convertase subtilisin kexins (PCSKs): an overall review of existing and new methodologies. Methods Mol Biol 2011; 768:127-53. [PMID: 21805240 DOI: 10.1007/978-1-61779-204-5_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian proprotein convertase subtilisin kexins (PCSKs) previously called proprotein or prohormone convertases (PCs) are a family of Ca(+2)-dependent endoproteases in the subtilisin family. These proteolytic enzymes exert their many crucial physiological and biological functions in vivo via their ability to cleave larger inactive precursor proteins into their biologically active mature forms. This event takes place in a highly efficient and selective manner. Such actions of PCSKs either alone or in combination to cleave specific protein bonds are the hallmark events that not only define the normal functions and metabolism of the body but also may lead to a variety of diseases or disorders with associated conditions. These include among others, diabetes, obesity, cancer, cardiovascular diseases, reproduction abnormalities as well as viral bacterial infections. These conditions were the direct consequences of an enhanced level of enzymatic activity of one or more PCSKs except only PCSK9, whose protease activity in relation to its physiological substrate has yet to be characterized. Owing to this finding, a large number of research studies have been exclusively devoted to develop rapid, efficient and reliable in vitro methods for examining the protease activity of these enzymes. Several assays have been developed to monitor PCSK activity and these are widely used in chemical, biochemical, cellular and animal studies. This review will cover various methodologies and protocols that are currently available in the literature for PCSK activity assays. These include liquid phase methods using fluorogenic, chromogenic and intramolecularly quenched fluorescent substrates as well as a newly developed novel solid phase fluorescence method. This review will also highlight the usefulness of these methodologies and finally a comparative analysis has been made to examine their merits and demerits with some key examples.
Collapse
|
95
|
Analyses of PCSK9 post-translational modifications using time-of-flight mass spectrometry. Methods Mol Biol 2011; 768:167-87. [PMID: 21805242 DOI: 10.1007/978-1-61779-204-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modification(s) can affect a protein's function - changing its half-life/stability, its protein-protein interactions, biological activity and/or sub-cellular localization. Following translation, a protein can be modified in several ways, including (i) disulfide bridge formation, (ii) chemical conversion of its constituent amino acids (for instance, glutamine can undergo deamidation to glutamic acid), (iii) sulfation, phosphorylation, de/acetylation, and glycosylation (to name a few), (iv) addition of other proteins as occurs during sumoylation and ubiquitination, and (v) proteolytic cleavage(s). There are several techniques available to identify and monitor post-translational modifications of proteins and peptides including mass spectrometry, two-dimensional sodium dodecyl sulfate polyacrylamide electrophoresis (2D-SDS-PAGE), radiolabeling, and immunoblotting. Ciphergen's surface-enhanced laser desorption/ionization time-of-flight mass spectrometer (SELDI-TOF-MS) has been used successfully for protein/peptide profiling in disease states and for the detection of protein/peptide biomarkers (1-4). In this chapter, the secreted proprotein convertase subtilisin/kexin 9 (PCSK9), which we study in our lab, is used to demonstrate coupling of immunoprecipitation with Ciphergen's time-of-flight mass spectrometer and its ProteinChip software to detect and analyze the common post-translational modifications of phosphorylation and glycosylation. The following topics are covered (1): preparation of cell extracts/samples/spent media (2), processing of samples by immunoprecipitation including optimization of conditions and (3) data acquisition by mass spectrometry and its subsequent analyses.
Collapse
|
96
|
Abstract
When I became a physician and an endocrinologist in the early 1960s, peptide hormone sequencing was still in its infancy; it was also far removed from my immediate interests. Through chance encounters with prominent teachers and mentors, I later became increasingly convinced that elucidation of the primary sequence of peptide hormones is key to understanding their production as well as their functions in human health and disease. My interest for pituitary hormones led me to discover that the sequence of β-melanocyte-stimulating hormone was contained within that γ and β-lipotropins and could be released from the latter by limited endoproteolysis. This prohormone theory became the leitmotiv of my career as a clinician/scientist. Through serendipity and the efforts of many laboratories including mine, this theory has now been widely confirmed, extended to various precursor proteins and implicated in many diseases. It has led to our discovery of the proprotein convertases.
Collapse
Affiliation(s)
- Michel Chrétien
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1Y 4E9.
| |
Collapse
|
97
|
Sabidó E, Tarragó T, Giralt E. Towards the identification of unknown neuropeptide precursor-processing enzymes: Design and synthesis of a new family of dipeptidyl phosphonate activity probes for substrate-based protease identification. Bioorg Med Chem 2010; 18:8350-5. [DOI: 10.1016/j.bmc.2010.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 09/19/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
|
98
|
Gorski JP, Huffman NT, Chittur S, Midura RJ, Black C, Oxford J, Seidah NG. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J Biol Chem 2010; 286:1836-49. [PMID: 21075843 DOI: 10.1074/jbc.m110.151647] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mineralization, a characteristic phenotypic property of osteoblastic lineage cells, was blocked by 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and decanoyl-Arg-Arg-Leu-Leu-chloromethyl ketone (dec-RRLL-cmk), inhibitors of SKI-1 (site 1; subtilisin kexin like-1) protease. Because SKI-1 is required for activation of SREBP and CREB (cAMP-response element-binding protein)/ATF family transcription factors, we tested the effect of these inhibitors on gene expression. AEBSF decreased expression of 140 genes by 1.5-3.0-fold including Phex, Dmp1, COL1A1, COL11A1, and fibronectin. Direct comparison of AEBSF and dec-RRLL-cmk, a more specific SKI-1 inhibitor, demonstrated that expression of Phex, Dmp1, COL11A1, and fibronectin was reduced by both, whereas COL1A2 and HMGCS1 were reduced only by AEBSF. AEBSF and dec-RRLL-cmk decreased the nuclear content of SKI-1-activated forms of transcription factors SREBP-1, SREBP-2, and OASIS. In contrast to AEBSF, the actions of dec-RRLL-cmk represent the sum of its direct actions on SKI-1 and indirect actions on caspase-3. Specifically, dec-RRLL-cmk reduced intracellular caspase-3 activity by blocking the formation of activated 19-kDa caspase-3. Conversely, overexpression of SKI-1-activated SREBP-1a and CREB-H in UMR106-01 osteoblastic cells increased the number of mineralized foci and altered their morphology to yield mineralization nodules, respectively. In summary, SKI-1 regulates the activation of transmembrane transcription factor precursors required for expression of key genes required for mineralization of osteoblastic cultures in vitro and bone formation in vivo. Our results indicate that the differentiated phenotype of osteoblastic cells and possibly osteocytes depends upon the non-apoptotic actions of SKI-1.
Collapse
Affiliation(s)
- Jeff P Gorski
- Center of Excellence in the Study of Musculoskeletal and Dental Tissues and Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J Virol 2010; 85:795-803. [PMID: 21068251 DOI: 10.1128/jvi.02019-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.
Collapse
|
100
|
Koshimizu H, Kim T, Cawley NX, Loh YP. Reprint of: Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. ACTA ACUST UNITED AC 2010; 165:95-101. [PMID: 20920534 DOI: 10.1016/j.regpep.2010.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|