51
|
Ahn WC, Aroli S, Kim JH, Moon JH, Lee GS, Lee MH, Sang PB, Oh BH, Varshney U, Woo EJ. Covalent binding of uracil DNA glycosylase UdgX to abasic DNA upon uracil excision. Nat Chem Biol 2019; 15:607-614. [PMID: 31101917 DOI: 10.1038/s41589-019-0289-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/10/2019] [Indexed: 11/09/2022]
Abstract
Uracil DNA glycosylases (UDGs) are important DNA repair enzymes that excise uracil from DNA, yielding an abasic site. Recently, UdgX, an unconventional UDG with extremely tight binding to DNA containing uracil, was discovered. The structure of UdgX from Mycobacterium smegmatis in complex with DNA shows an overall similarity to that of family 4 UDGs except for a protruding loop at the entrance of the uracil-binding pocket. Surprisingly, H109 in the loop was found to make a covalent bond to the abasic site to form a stable intermediate, while the excised uracil remained in the pocket of the active site. H109 functions as a nucleophile to attack the oxocarbenium ion, substituting for the catalytic water molecule found in other UDGs. To our knowledge, this change from a catalytic water attack to a direct nucleophilic attack by the histidine residue is unprecedented. UdgX utilizes a unique mechanism of protecting cytotoxic abasic sites from exposure to the cellular environment.
Collapse
Affiliation(s)
- Woo-Chan Ahn
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Shashanka Aroli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jin-Hahn Kim
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Department of Chemistry, Chung-Ang University, Seoul, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ga Seal Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Min-Ho Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Pau Biak Sang
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea. .,University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
52
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
53
|
Tarantino ME, Dow BJ, Drohat AC, Delaney S. Nucleosomes and the three glycosylases: High, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair (Amst) 2018; 72:56-63. [PMID: 30268365 DOI: 10.1016/j.dnarep.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
Human cells express the UDG superfamily of glycosylases, which excise uracil (U) from the genome. The three members of this structural superfamily are uracil DNA glycosylase (UNG/UDG), single-strand selective monofunctional uracil DNA glycosylase (SMUG1), and thymine DNA glycosylase (TDG). We previously reported that UDG is efficient at removing U from DNA packaged into nucleosome core particles (NCP) and is minimally affected by the histone proteins when acting on an outward-facing U in the dyad region. In an effort to determine whether this high activity is a general property of the UDG superfamily of glycosylases, we compare the activity of UDG, SMUG1, and TDG on a U:G wobble base pair using NCP assembled from Xenopus laevis histones and the Widom 601 positioning sequence. We found that while UDG is highly active, SMUG1 is severely inhibited on NCP and this inhibition is independent of sequence context. Here we also provide the first report of TDG activity on an NCP, and found that TDG has an intermediate level of activity in excision of U and is severely inhibited in its excision of T. These results are discussed in the context of cellular roles for each of these enzymes.
Collapse
Affiliation(s)
- Mary E Tarantino
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, United States
| | - Blaine J Dow
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, 02912, United States.
| |
Collapse
|
54
|
Uncovering universal rules governing the selectivity of the archetypal DNA glycosylase TDG. Proc Natl Acad Sci U S A 2018; 115:5974-5979. [PMID: 29784784 DOI: 10.1073/pnas.1803323115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a pivotal enzyme with dual roles in both genome maintenance and epigenetic regulation. TDG is involved in cytosine demethylation at CpG sites in DNA. Here we have used molecular modeling to delineate the lesion search and DNA base interrogation mechanisms of TDG. First, we examined the capacity of TDG to interrogate not only DNA substrates with 5-carboxyl cytosine modifications but also G:T mismatches and nonmismatched (A:T) base pairs using classical and accelerated molecular dynamics. To determine the kinetics, we constructed Markov state models. Base interrogation was found to be highly stochastic and proceeded through insertion of an arginine-containing loop into the DNA minor groove to transiently disrupt Watson-Crick pairing. Next, we employed chain-of-replicas path-sampling methodologies to compute minimum free energy paths for TDG base extrusion. We identified the key intermediates imparting selectivity and determined effective free energy profiles for the lesion search and base extrusion into the TDG active site. Our results show that DNA sculpting, dynamic glycosylase interactions, and stabilizing contacts collectively provide a powerful mechanism for the detection and discrimination of modified bases and epigenetic marks in DNA.
Collapse
|
55
|
Li J, Yang Y, Guevara J, Wang L, Cao W. Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua. DNA Repair (Amst) 2017; 57:107-115. [PMID: 28719838 PMCID: PMC5568478 DOI: 10.1016/j.dnarep.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
A recent phylogenetic study on UDG superfamily estimated a new clade of family 3 enzymes (SMUG1-like), which shares a lower homology with canonic SMUG1 enzymes. The enzymatic properties of the newly found putative DNA glycosylase are unknown. To test the potential UDG activity and evaluate phylogenetic classification, we isolated one SMUG1-like glycosylase representative from Listeria innocua (Lin). A biochemical screening of DNA glycosylase activity in vitro indicates that Lin SMUG1-like glycosylase is a single-strand selective uracil DNA glycosylase. The UDG activity on DNA bubble structures provides clue to its physiological significance in vivo. Mutagenesis and molecular modeling analyses reveal that Lin SMUG1-like glycosylase has similar functional motifs with SMUG1 enzymes; however, it contains a distinct catalytic doublet S67-S68 in motif 1 that is not found in any families in the UDG superfamily. Experimental investigation shows that the S67M-S68N double mutant is catalytically more active than either S67M or S68N single mutant. Coupled with mutual information analysis, the results indicate a high degree of correlation in the evolution of SMUG1-like enzymes. This study underscores the functional and catalytic diversity in the evolution of enzymes in UDG superfamily.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Jose Guevara
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA.
| |
Collapse
|
56
|
Olmon ED, Delaney S. Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA. ACS Chem Biol 2017; 12:692-701. [PMID: 28085251 DOI: 10.1021/acschembio.6b00921] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Damage to genomic DNA leads to mutagenesis and disease. Repair of single base damage is initiated by DNA glycosylases, the first enzymes in the base excision repair pathway. Although eukaryotic packaging of chromosomal DNA in nucleosomes is known to decrease DNA glycosylase efficiency, the impact on individual glycosylases is unclear. Here, we present a model system in which we examine the repair of site-specific base damage in well-characterized nucleosome core particles by five different DNA glycosylases. We find that DNA glycosylase efficiency on nucleosome substrates depends not only on the geometric orientation of the damaged base but also on its identity, as well as on the size, structure, and mechanism of the glycosylase. We show via molecular modeling that inhibition of glycosylase activity is largely due to steric obstruction by the nucleosome core.
Collapse
Affiliation(s)
- Eric D. Olmon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
57
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|
58
|
Sulfolobus acidocaldarius UDG Can Remove dU from the RNA Backbone: Insight into the Specific Recognition of Uracil Linked with Deoxyribose. Genes (Basel) 2017; 8:genes8010038. [PMID: 28106786 PMCID: PMC5295032 DOI: 10.3390/genes8010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/01/2017] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Sulfolobus acidocaldarius encodes family 4 and 5 uracil-DNA glycosylase (UDG). Two recombinant S. acidocaldarius UDGs (SacUDG) were prepared and biochemically characterized using oligonucleotides carrying a deaminated base. Both SacUDGs can remove deoxyuracil (dU) base from both double-stranded DNA and single-stranded DNA. Interestingly, they can remove U linked with deoxyribose from single-stranded RNA backbone, suggesting that the riboses on the backbone have less effect on the recognition of dU and hydrolysis of the C-N glycosidic bond. However, the removal of rU from DNA backbone is inefficient, suggesting strong steric hindrance comes from the 2′ hydroxyl of ribose linked to uracil. Both SacUDGs cannot remove 2,2′-anhydro uridine, hypoxanthine, and 7-deazaxanthine from single-stranded DNA and single-stranded DNA. Compared with the family 2 MUG, other family UDGs have an extra N-terminal structure consisting of about 50 residues. Removal of the 46 N-terminal residues of family 5 SacUDG resulted in only a 40% decrease in activity, indicating that the [4Fe-4S] cluster and truncated secondary structure are not the key elements in hydrolyzing the glycosidic bond. Combining our biochemical and structural results with those of other groups, we discussed the UDGs’ catalytic mechanism and the possible repair reactions of deaminated bases in prokaryotes.
Collapse
|
59
|
Kim E, Hong IS. A Novel Approach for the Detection of BER Enzymes by Real-Time PCR. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Euntaek Kim
- Department of Chemistry; Kongju National University; Chungnam 314-701 Republic of Korea
| | - In Seok Hong
- Department of Chemistry; Kongju National University; Chungnam 314-701 Republic of Korea
| |
Collapse
|
60
|
Lenz SAP, Kohout JD, Wetmore SD. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis. J Phys Chem B 2016; 120:12795-12806. [PMID: 27933981 DOI: 10.1021/acs.jpcb.6b09620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the inherent stability of glycosidic linkages in nucleic acids that connect the nucleobases to sugar-phosphate backbones, cleavage of these bonds is often essential for organism survival. The current study uses DFT (B3LYP) to provide a fundamental understanding of the hydrolytic deglycosylation of the natural RNA nucleosides (A, C, G, and U), offers a comparison to DNA hydrolysis, and examines the effects of acid, base, or simultaneous acid-base catalysis on RNA deglycosylation. By initially examining HCOO-···H2O mediated deglycosylation, the barriers for RNA hydrolysis were determined to be 30-38 kJ mol-1 higher than the corresponding DNA barriers, indicating that the 2'-OH group stabilizes the glycosidic bond. Although the presence of HCOO- as the base (i.e., to activate the water nucleophile) reduces the barrier for uncatalyzed RNA hydrolysis (i.e., unactivated H2O nucleophile) by ∼15-20 kJ mol-1, the extreme of base catalysis as modeled using a fully deprotonated water molecule (i.e., OH- nucleophile) decreases the uncatalyzed barriers by up to 65 kJ mol-1. Acid catalysis was subsequently examined by selectively protonating the hydrogen-bond acceptor sites of the RNA nucleobases, which results in an up to ∼80 kJ mol-1 barrier reduction relative to the corresponding uncatalyzed pathway. Interestingly, the nucleobase proton acceptor sites that result in the greatest barrier reductions match sites typically targeted in enzyme-catalyzed reactions. Nevertheless, simultaneous acid and base catalysis is the most beneficial way to enhance the reactivity of the glycosidic bonds in RNA, with the individual effects of each catalytic approach being weakened, additive, or synergistic depending on the strength of the base (i.e., degree of water nucleophile activation), the nucleobase, and the hydrogen-bonding acceptor site on the nucleobase. Together, the current contribution provides a greater understanding of the reactivity of the glycosidic bond in natural RNA nucleosides, and has fundamental implications for the function of RNA-targeting enzymes.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Johnathan D Kohout
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
61
|
Pidugu LS, Flowers JW, Coey CT, Pozharski E, Greenberg MM, Drohat AC. Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase. Biochemistry 2016; 55:6205-6208. [PMID: 27805810 DOI: 10.1021/acs.biochem.6b00982] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymine DNA glycosylase (TDG) is a base excision repair enzyme with key functions in epigenetic regulation. Performing a critical step in a pathway for active DNA demethylation, TDG removes 5-formylcytosine and 5-carboxylcytosine, oxidized derivatives of 5-methylcytosine that are generated by TET (ten-eleven translocation) enzymes. We determined a crystal structure of TDG bound to DNA with a noncleavable (2'-fluoroarabino) analogue of 5-formyldeoxycytidine flipped into its active site, revealing how it recognizes and hydrolytically excises fC. Together with previous structural and biochemical findings, the results illustrate how TDG employs an adaptable active site to excise a broad variety of nucleobases from DNA.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Joshua W Flowers
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research , Rockville, Maryland 20850, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| |
Collapse
|
62
|
Phillips RS, Vita A, Spivey JB, Rudloff AP, Driscoll MD, Hay S. Ground-State Destabilization by Phe-448 and Phe-449 Contributes to Tyrosine Phenol-Lyase Catalysis. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Robert S. Phillips
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Andrew Vita
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - J. Blaine Spivey
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Alexander P. Rudloff
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Max D. Driscoll
- Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom
| |
Collapse
|
63
|
Cravens SL, Stivers JT. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG. Biochemistry 2016; 55:5230-42. [PMID: 27571472 DOI: 10.1021/acs.biochem.6b00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The energetic nature of the interactions of DNA base excision repair glycosylases with undamaged and damaged DNA and the nuclear environment are expected to significantly impact the time it takes for these enzymes to search for damaged DNA bases. In particular, the high concentration of monovalent ions, macromolecule crowding, and densely packed DNA chains in the cell nucleus could alter the search mechanisms of these enzymes as compared to findings in dilute buffers typically used in in vitro experiments. Here we utilize an in vitro system where the concerted effects of monovalent ions, macromolecular crowding, and high concentrations of bulk DNA chains on the activity of two paradigm human DNA glycosylases can be determined. We find that the energetic nature of the observed binding free energies of human 8-oxoguanine DNA glycosylase (hOGG1) and human uracil DNA glycosylase (hUNG) for undamaged DNA are derived from different sources. Although hOGG1 uses primarily nonelectrostatic binding interactions with nonspecific DNA, hUNG uses a salt-dependent electrostatic binding mode. Both enzymes turn to a nonelectrostatic mode in their specific complexes with damaged bases in DNA, which enhances damage site specificity at physiological ion concentrations. Neither enzyme was capable of efficiently locating and removing their respective damaged bases in the combined presence of physiological ions and a bulk DNA chain density approximating that found in the nucleus. However, the addition of an inert crowding agent to mimic macromolecular crowding in the nucleus largely restored their ability to track DNA chains and locate damaged sites. These findings suggest how the concerted action of monovalent ions and crowding could contribute to efficient DNA damage recognition in cells.
Collapse
Affiliation(s)
- Shannen L Cravens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
64
|
Coey CT, Malik SS, Pidugu LS, Varney KM, Pozharski E, Drohat AC. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Nucleic Acids Res 2016; 44:10248-10258. [PMID: 27580719 PMCID: PMC5137436 DOI: 10.1093/nar/gkw768] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308 Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme-DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination.
Collapse
Affiliation(s)
- Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shuja S Malik
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA.,Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA.,Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
65
|
Lenz SAP, Wetmore SD. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization. Biochemistry 2016; 55:798-808. [PMID: 26765542 DOI: 10.1021/acs.biochem.5b01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human alkyladenine DNA glycosylase (AAG) functions as part of the base excision repair (BER) pathway by cleaving the N-glycosidic bond that connects nucleobases to the sugar-phosphate backbone in DNA. AAG targets a range of structurally diverse purine lesions using nonspecific DNA-protein π-π interactions. Nevertheless, the enzyme discriminates against the natural purines and is inhibited by pyrimidine lesions. This study uses molecular dynamics simulations and seven different neutral or charged substrates, inhibitors, or canonical purines to probe how the bound nucleotide affects the conformation of the AAG active site, and the role of active site residues in dictating substrate selectivity. The neutral substrates form a common DNA-protein hydrogen bond, which results in a consistent active site conformation that maximizes π-π interactions between the aromatic residues and the nucleobase required for catalysis. Nevertheless, subtle differences in DNA-enzyme contacts for different neutral substrates explain observed differential catalytic efficiencies. In contrast, the exocyclic amino groups of the natural purines clash with active site residues, which leads to catalytically incompetent DNA-enzyme complexes due to significant reorganization of active site water. Specifically, water resides between the A nucleobase and the active site aromatic amino acids required for catalysis, while a shift in the position of the general base (E125) repositions (potentially nucleophilic) water away from G. Despite sharing common amino groups, the methyl substituents in cationic purine lesions (3MeA and 7MeG) exhibit repulsion with active site residues, which repositions the damaged bases in the active site in a manner that promotes their excision. Overall, we provide a structural explanation for the diverse yet discriminatory substrate selectivity of AAG and rationalize key kinetic data available for the enzyme. Specifically, our results highlight the complex interplay of many different DNA-protein interactions used by AAG to facilitate BER, as well as the crucial role of the general base and water (nucleophile) positioning. The insights gained from our work will aid the understanding of the function of other enzymes that use flexible active sites to exhibit diverse substrate specificity.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
66
|
Lenz SAP, Kellie JL, Wetmore SD. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier. J Phys Chem B 2015; 119:15601-12. [PMID: 26618397 DOI: 10.1021/acs.jpcb.5b10337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan A. P. Lenz
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Jennifer L. Kellie
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
67
|
Pedersen HL, Johnson KA, McVey CE, Leiros I, Moe E. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA. ACTA ACUST UNITED AC 2015; 71:2137-49. [PMID: 26457437 DOI: 10.1107/s1399004715014157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 07/27/2015] [Indexed: 11/10/2022]
Abstract
Uracil-DNA N-glycosylase (UNG) is a DNA-repair enzyme in the base-excision repair (BER) pathway which removes uracil from DNA. Here, the crystal structure of UNG from the extremophilic bacterium Deinococcus radiodurans (DrUNG) in complex with DNA is reported at a resolution of 1.35 Å. Prior to the crystallization experiments, the affinity between DrUNG and different DNA oligonucleotides was tested by electrophoretic mobility shift assays (EMSAs). As a result of this analysis, two 16 nt double-stranded DNAs were chosen for the co-crystallization experiments, one of which (16 nt AU) resulted in well diffracting crystals. The DNA in the co-crystal structure contained an abasic site (substrate product) flipped into the active site of the enzyme, with no uracil in the active-site pocket. Despite the high resolution, it was not possible to fit all of the terminal nucleotides of the DNA complex into electron density owing to disorder caused by a lack of stabilizing interactions. However, the DNA which was in contact with the enzyme, close to the active site, was well ordered and allowed detailed analysis of the enzyme-DNA interaction. The complex revealed that the interaction between DrUNG and DNA is similar to that in the previously determined crystal structure of human UNG (hUNG) in complex with DNA [Slupphaug et al. (1996). Nature (London), 384, 87-92]. Substitutions in a (here defined) variable part of the leucine loop result in a shorter loop (eight residues instead of nine) in DrUNG compared with hUNG; regardless of this, it seems to fulfil its role and generate a stabilizing force with the minor groove upon flipping out of the damaged base into the active site. The structure also provides a rationale for the previously observed high catalytic efficiency of DrUNG caused by high substrate affinity by demonstrating an increased number of long-range electrostatic interactions between the enzyme and the DNA. Interestingly, specific interactions between residues in the N-terminus of a symmetry-related molecule and the complementary DNA strand facing away from the active site were also observed which seem to stabilize the enzyme-DNA complex. However, the significance of this observation remains to be investigated. The results provide new insights into the current knowledge about DNA damage recognition and repair by uracil-DNA glycosylases.
Collapse
Affiliation(s)
- Hege Lynum Pedersen
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth A Johnson
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Colin E McVey
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ingar Leiros
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Elin Moe
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
68
|
Kanaan N, Crehuet R, Imhof P. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations. J Phys Chem B 2015; 119:12365-80. [PMID: 26320595 DOI: 10.1021/acs.jpcb.5b05496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.
Collapse
Affiliation(s)
- Natalia Kanaan
- Institute of Theoretical Physics, Free University Berlin , 14195, Berlin, Germany
| | - Ramon Crehuet
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC , c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Petra Imhof
- Institute of Theoretical Physics, Free University Berlin , 14195, Berlin, Germany
| |
Collapse
|
69
|
Malik SS, Coey CT, Varney KM, Pozharski E, Drohat AC. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Nucleic Acids Res 2015; 43:9541-52. [PMID: 26358812 PMCID: PMC4627079 DOI: 10.1093/nar/gkv890] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G·T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten–eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme–product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme–substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme–product complex.
Collapse
Affiliation(s)
- Shuja S Malik
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
70
|
Rodriguez Y, Hinz JM, Smerdon MJ. Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair. DNA Repair (Amst) 2015; 32:113-119. [PMID: 25957487 PMCID: PMC4522338 DOI: 10.1016/j.dnarep.2015.04.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States.
| |
Collapse
|
71
|
Drohat AC, Maiti A. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA. Org Biomol Chem 2015; 12:8367-78. [PMID: 25181003 DOI: 10.1039/c4ob01063a] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes.
Collapse
Affiliation(s)
- Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
72
|
Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. J Biol Chem 2015; 290:17923-17934. [PMID: 26045555 DOI: 10.1074/jbc.m115.648352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.
Collapse
Affiliation(s)
- Wim P Burmeister
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France.
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Pascal Fender
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Céline Contesto-Richefeu
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France; Emerging Pathogens Laboratory, Fondation Mérieux, F-69007 Lyon, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
73
|
Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase. BMC STRUCTURAL BIOLOGY 2015; 15:10. [PMID: 26031450 PMCID: PMC4450493 DOI: 10.1186/s12900-015-0037-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/21/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. RESULTS This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. Comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. CONCLUSION The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Chicago, IL, 60439, USA.
| | - Robert Ricciardi
- Department of Microbiology, School of Dental Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Debasish Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
74
|
Wang L, Lee SJ, Verdine GL. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase. J Biol Chem 2015; 290:17096-105. [PMID: 25995449 DOI: 10.1074/jbc.m115.657866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
The highly mutagenic A:oxoG (8-oxoguanine) base pair in DNA most frequently arises by aberrant replication of the primary oxidative lesion C:oxoG. This lesion is particularly insidious because neither of its constituent nucleobases faithfully transmit genetic information from the original C:G base pair. Repair of A:oxoG is initiated by adenine DNA glycosylase, which catalyzes hydrolytic cleavage of the aberrant A nucleobase from the DNA backbone. These enzymes, MutY in bacteria and MUTYH in humans, scrupulously avoid processing of C:oxoG because cleavage of the C residue in C:oxoG would actually promote mutagenic conversion to A:oxoG. Here we analyze the structural basis for rejection of C:oxoG by MutY, using a synthetic crystallography approach to capture the enzyme in the process of inspecting the C:oxoG anti-substrate, with which it ordinarily binds only fleetingly. We find that MutY uses two distinct strategies to avoid presentation of C to the enzyme active site. Firstly, MutY possesses an exo-site that serves as a decoy for C, and secondly, repulsive forces with a key active site residue prevent stable insertion of C into the nucleobase recognition pocket within the enzyme active site.
Collapse
Affiliation(s)
- Lan Wang
- From the Departments of Chemistry and Chemical Biology
| | - Seung-Joo Lee
- From the Departments of Chemistry and Chemical Biology
| | - Gregory L Verdine
- From the Departments of Chemistry and Chemical Biology, Stem Cell and Regenerative Biology, and Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
75
|
Buechner CN, Maiti A, Drohat AC, Tessmer I. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res 2015; 43:2716-29. [PMID: 25712093 PMCID: PMC4357730 DOI: 10.1093/nar/gkv139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.
Collapse
Affiliation(s)
- Claudia N Buechner
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Atanu Maiti
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
76
|
Cravens SL, Hobson M, Stivers JT. Electrostatic properties of complexes along a DNA glycosylase damage search pathway. Biochemistry 2014; 53:7680-92. [PMID: 25408964 PMCID: PMC4263432 DOI: 10.1021/bi501011m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human uracil DNA glycosylase (hUNG) follows an extended reaction coordinate for locating rare uracil bases in genomic DNA. This process begins with diffusion-controlled engagement of undamaged DNA, followed by a damage search step in which the enzyme remains loosely associated with the DNA chain (translocation), and finally, a recognition step that allows the enzyme to efficiently bind and excise uracil when it is encountered. At each step along this coordinate, the enzyme must form DNA interactions that are highly specialized for either rapid damage searching or catalysis. Here we make extensive measurements of hUNG activity as a function of salt concentration to dissect the thermodynamic, kinetic, and electrostatic properties of key enzyme states along this reaction coordinate. We find that the interaction of hUNG with undamaged DNA is electrostatically driven at a physiological concentration of potassium ions (ΔGelect = -3.5 ± 0.5 kcal mol(-1)), with only a small nonelectrostatic contribution (ΔGnon = -2.0 ± 0.2 kcal mol(-1)). In contrast, the interaction with damaged DNA is dominated by the nonelectrostatic free energy term (ΔGnon = -7.2 ± 0.1 kcal mol(-1)), yet retains the nonspecific electrostatic contribution (ΔGelect = -2.3 ± 0.2 kcal mol(-1)). Stopped-flow kinetic experiments established that the salt sensitivity of damaged DNA binding originates from a reduction of kon, while koff is weakly dependent on salt. Similar findings were obtained from the salt dependences of the steady-state kinetic parameters, where the diffusion-controlled kcat/Km showed a salt dependence similar to kon, while kcat (limited by product release) was weakly dependent on salt. Finally, the salt dependence of translocation between two uracil sites separated by 20 bp in the same DNA chain was indistinguishable from that of kon. This result suggests that the transition-state for translocation over this spacing resembles that for DNA association from bulk solution and that hUNG escapes the DNA ion cloud during translocation. These findings provide key insights into how the ionic environment in cells influences the DNA damage search pathway.
Collapse
Affiliation(s)
- Shannen L Cravens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | | | |
Collapse
|
77
|
Neumann P, Tittmann K. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities. Curr Opin Struct Biol 2014; 29:122-33. [PMID: 25460275 DOI: 10.1016/j.sbi.2014.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing.
Collapse
Affiliation(s)
- Piotr Neumann
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, Göttingen D-37077, Germany.
| | - Kai Tittmann
- Abteilung Molekulare Enzymologie, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, Göttingen D-37077, Germany.
| |
Collapse
|
78
|
Schormann N, Ricciardi R, Chattopadhyay D. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 2014; 23:1667-85. [PMID: 25252105 DOI: 10.1002/pro.2554] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Uracil-DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil-DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.
Collapse
Affiliation(s)
- N Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | | | | |
Collapse
|
79
|
Assefa NG, Niiranen L, Johnson KA, Leiros HKS, Smalås AO, Willassen NP, Moe E. Structural and biophysical analysis of interactions between cod and human uracil-DNA N-glycosylase (UNG) and UNG inhibitor (Ugi). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2093-100. [PMID: 25084329 PMCID: PMC4118823 DOI: 10.1107/s1399004714011699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/20/2014] [Indexed: 12/01/2022]
Abstract
Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme-substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi) has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG-Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG-Ugi complex with previously determined structures of UNG-Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (Kb) which is one order of magnitude larger than that for hUNG-Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein-Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG.
Collapse
Affiliation(s)
- Netsanet Gizaw Assefa
- Department of Chemistry/Norstruct, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Laila Niiranen
- Department of Chemistry/Norstruct, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Kenneth A. Johnson
- Department of Chemistry/Norstruct, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Arne Oskar Smalås
- Department of Chemistry/Norstruct, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Nils Peder Willassen
- Department of Chemistry/Norstruct, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Elin Moe
- Department of Chemistry/Norstruct, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Avenida da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
80
|
Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D. Structure of the uracil complex of Vaccinia virus uracil DNA glycosylase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1328-34. [PMID: 24316823 PMCID: PMC3855713 DOI: 10.1107/s1744309113030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 11/23/2022]
Abstract
Poxvirus uracil DNA glycosylases are the most diverse members of the family I uracil DNA glycosylases (UNGs). The crystal structure of the uracil complex of Vaccinia virus uracil DNA glycosylase (D4) was determined at 2.03 Å resolution. One uracil molecule was located in the active-site pocket in each of the 12 noncrystallographic symmetry-related D4 subunits. Although the UNGs of the poxviruses (including D4) feature significant differences in the characteristic motifs designated for uracil recognition and in the base-excision mechanism, the architecture of the active-site pocket in D4 is very similar to that in UNGs of other organisms. Overall, the interactions of the bound uracil with the active-site residues are also similar to the interactions previously observed in the structures of human and Escherichia coli UNG.
Collapse
Affiliation(s)
- N. Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S. Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL 60439, USA
| | - R. Ricciardi
- Department of Microbiology, School of Dental Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
81
|
Roberts VA, Pique ME, Ten Eyck LF, Li S. Predicting protein-DNA interactions by full search computational docking. Proteins 2013; 81:2106-18. [PMID: 23966176 PMCID: PMC4045845 DOI: 10.1002/prot.24395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 11/06/2022]
Abstract
Protein-DNA interactions are essential for many biological processes. X-ray crystallography can provide high-resolution structures, but protein-DNA complexes are difficult to crystallize and typically contain only small DNA fragments. Thus, there is a need for computational methods that can provide useful predictions to give insights into mechanisms and guide the design of new experiments. We used the program DOT, which performs an exhaustive, rigid-body search between two macromolecules, to investigate four diverse protein-DNA interactions. Here, we compare our computational results with subsequent experimental data on related systems. In all cases, the experimental data strongly supported our structural hypotheses from the docking calculations: a mechanism for weak, nonsequence-specific DNA binding by a transcription factor, a large DNA-binding footprint on the surface of the DNA-repair enzyme uracil-DNA glycosylase (UNG), viral and host DNA-binding sites on the catalytic domain of HIV integrase, and a three-DNA-contact model of the linker histone bound to the nucleosome. In the case of UNG, the experimental design was based on the DNA-binding surface found by docking, rather than the much smaller surface observed in the crystallographic structure. These comparisons demonstrate that the DOT electrostatic energy gives a good representation of the distinctive electrostatic properties of DNA and DNA-binding proteins. The large, favourably ranked clusters resulting from the dockings identify active sites, map out large DNA-binding sites, and reveal multiple DNA contacts with a protein. Thus, computational docking can not only help to identify protein-DNA interactions in the absence of a crystal structure, but also expand structural understanding beyond known crystallographic structures.
Collapse
Affiliation(s)
- Victoria A. Roberts
- San Diego Supercomputer Center, University of California, San Diego,9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA
| | - Michael E. Pique
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynn F. Ten Eyck
- San Diego Supercomputer Center, University of California, San Diego,9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sheng Li
- School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0602, La Jolla, CA 92093, USA
| |
Collapse
|
82
|
Maiti A, Michelson AZ, Armwood CJ, Lee JK, Drohat AC. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA. J Am Chem Soc 2013; 135:15813-22. [PMID: 24063363 DOI: 10.1021/ja406444x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, and genome stability, and aberrant DNA methylation contributes to aging and cancer. Active DNA demethylation involves stepwise oxidation of mC to 5-hydroxymethylcytosine, 5-formylcytosine (fC), and potentially 5-carboxylcytosine (caC), excision of fC or caC by thymine DNA glycosylase (TDG), and restoration of cytosine via follow-on base excision repair. Here, we investigate the mechanism for TDG excision of fC and caC. We find that 5-carboxyl-2'-deoxycytidine ionizes with pK(a) values of 4.28 (N3) and 2.45 (carboxyl), confirming that caC exists as a monoanion at physiological pH. Calculations do not support the proposal that G·fC and G·caC base pairs adopt a wobble structure that is recognized by TDG. Previous studies show that N-glycosidic bond hydrolysis follows a stepwise (S(N)1) mechanism, and that TDG activity increases with pyrimidine N1 acidity, that is, leaving group quality of the target base. Calculations here show that fC and the neutral tautomers of caC are acidic relative to other TDG substrates, but the caC monoanion exhibits poor acidity and likely resists TDG excision. While fC activity is independent of pH, caC excision is acid-catalyzed, and the pH profile indicates that caC ionizes in the enzyme-substrate complex with an apparent pKa of 5.8, likely at N3. Mutational analysis reveals that Asn191 is essential for excision of caC but dispensable for fC activity, indicating that N191 may stabilize N3-protonated forms of caC to facilitate acid catalysis and suggesting that N191A-TDG could potentially be useful for studying DNA demethylation in cells.
Collapse
Affiliation(s)
- Atanu Maiti
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | | | | | | | | |
Collapse
|
83
|
Kellie JL, Wetmore SD. Selecting DFT methods for use in optimizations of enzyme active sites: applications to ONIOM treatments of DNA glycosylases. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When using a hybrid methodology to treat an enzymatic reaction, many factors contribute to selecting the method for the high-level region, which can be complicated by the presence of dispersion-driven interactions such as π–π stacking. In addition, the proper treatment of the reaction center often requires a large number of heavy atoms to be included in the high-level region, precluding the use of ab initio methods such as MP2 as well as large basis sets, in the optimization step. In the present work, popular DFT methods were tested to identify an appropriate functional for treating the high-level region in ONIOM optimizations of reactions catalyzed by nonmetalloenzymes. Eight different DFT methods (B3LYP, B97-2, MPW1K, MPWB1K, BB1K, B1B95, M06-2X, and ωB97X-D) in combination with four double-ζ quality Pople basis sets were tested for their ability to optimize noncovalent interactions (hydrogen bonding and π–π) and characterize reactions (proton transfer, SN2 hydrolysis, and unimolecular cleavage). Although the primary focus of this study is accurate structure determination, energetics were also examined at both the optimization level of theory, and with triple-ζ quality basis set and select (M06-2X or ωB97X-D) methods. If dispersion-driven interactions exist within the active site, then MPWB1K/6-31G(d,p) or M06-2X/6-31+G(d,p) are recommended for the optimization step with subsequent triple-ζ quality single-point energies. However, since dispersion-corrected functionals (M06-2X and ωB97X-D) generally require diffuse functions to yield appropriate geometries, the possible size of the high-level region is greatly limited with these methods. In contrast, if the model is large enough to recover steric constraints on π–π interactions, then B3LYP with a small basis set performs comparatively well for the optimization step and is significantly less computationally expensive. Interestingly, the functionals that afford the best geometries often do not yield the best energetics, which emphasizes the importance of structural benchmark studies.
Collapse
Affiliation(s)
- Jennifer L. Kellie
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
84
|
Franco D, Sgrignani J, Bussi G, Magistrato A. Structural Role of Uracil DNA Glycosylase for the Recognition of Uracil in DNA Duplexes. Clues from Atomistic Simulations. J Chem Inf Model 2013; 53:1371-87. [DOI: 10.1021/ci4001647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Duvan Franco
- International School for Advances Studies (SISSA/ISAS), via Bonomea 265,
Trieste, Italy
| | - Jacopo Sgrignani
- CNR-IOM-DEMOCRITOS National Simulation Center C/o SISSA, via Bonomea 265,
Trieste, Italy
| | - Giovanni Bussi
- International School for Advances Studies (SISSA/ISAS), via Bonomea 265,
Trieste, Italy
| | - Alessandra Magistrato
- CNR-IOM-DEMOCRITOS National Simulation Center C/o SISSA, via Bonomea 265,
Trieste, Italy
| |
Collapse
|
85
|
Baños-Sanz JI, Mojardín L, Sanz-Aparicio J, Lázaro JM, Villar L, Serrano-Heras G, González B, Salas M. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56. Nucleic Acids Res 2013; 41:6761-73. [PMID: 23671337 PMCID: PMC3711442 DOI: 10.1093/nar/gkt395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uracil-DNA glycosylase (UDG) is a key repair enzyme responsible for removing uracil residues from DNA. Interestingly, UDG is the only enzyme known to be inhibited by two different DNA mimic proteins: p56 encoded by the Bacillus subtilis phage ϕ29 and the well-characterized protein Ugi encoded by the B. subtilis phage PBS1/PBS2. Atomic-resolution crystal structures of the B. subtilis UDG both free and in complex with p56, combined with site-directed mutagenesis analysis, allowed us to identify the key amino acid residues required for enzyme activity, DNA binding and complex formation. An important requirement for complex formation is the recognition carried out by p56 of the protruding Phe191 residue from B. subtilis UDG, whose side-chain is inserted into the DNA minor groove to replace the flipped-out uracil. A comparative analysis of both p56 and Ugi inhibitors enabled us to identify their common and distinctive features. Thereby, our results provide an insight into how two DNA mimic proteins with different structural and biochemical properties are able to specifically block the DNA-binding domain of the same enzyme.
Collapse
Affiliation(s)
- José Ignacio Baños-Sanz
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física 'Rocasolano' (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Comparison of gas phase intrinsic properties of cytosine and thymine nucleobases with their O-alkyl adducts: different hydrogen bonding preferences for thymine versus O-alkyl thymine. J Mol Model 2013; 19:2993-3005. [DOI: 10.1007/s00894-013-1813-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/03/2013] [Indexed: 12/11/2022]
|
87
|
Meulenbroek EM, Peron Cane C, Jala I, Iwai S, Moolenaar GF, Goosen N, Pannu NS. UV damage endonuclease employs a novel dual-dinucleotide flipping mechanism to recognize different DNA lesions. Nucleic Acids Res 2012; 41:1363-71. [PMID: 23221644 PMCID: PMC3553973 DOI: 10.1093/nar/gks1127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Repairing damaged DNA is essential for an organism’s survival. UV damage endonuclease (UVDE) is a DNA-repair enzyme that can recognize and incise different types of damaged DNA. We present the structure of Sulfolobus acidocaldarius UVDE on its own and in a pre-catalytic complex with UV-damaged DNA containing a 6-4 photoproduct showing a novel ‘dual dinucleotide flip’ mechanism for recognition of damaged dipyrimidines: the two purines opposite to the damaged pyrimidine bases are flipped into a dipurine-specific pocket, while the damaged bases are also flipped into another cleft.
Collapse
Affiliation(s)
- Elisabeth M Meulenbroek
- Department of Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
88
|
Xiang Y, Lu Y. Expanding targets of DNAzyme-based sensors through deactivation and activation of DNAzymes by single uracil removal: sensitive fluorescent assay of uracil-DNA glycosylase. Anal Chem 2012; 84:9981-7. [PMID: 23072386 PMCID: PMC3511864 DOI: 10.1021/ac302424f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although deoxyribozymes (DNAzymes) have been widely used as biosensors for the detection of their cofactors and the targets of related aptazymes, it is desirable to expand their range of analytes to take advantage of the DNAzyme-based signal amplification for more sensitive detections. In this study, the activity of uracil-DNA glycosylase (UNG) was successfully detected and quantified by deoxyuridine-modified DNAzymes that underwent UNG-dependent deactivation or activation. In one design, the indispensable thymidine T2.1 in the 8-17 DNAzyme was replaced with a deoxyuridine, resulting in minimal change of the DNAzyme's activity. Since UNG is capable of removing uracils from single- or double-stranded DNAs, the modified DNAzyme was deactivated when the uracil at the indispensable thymidine site was eliminated by UNG. In another design, introducing a deoxyuridine to the 3' position of the deoxycytidine C13 in the catalytic core of the same DNAzyme caused significant decrease of the activity. The removal of the interfering deoxyuridine by UNG, however, activated the DNAzyme. By monitoring the activity change of the DNAzymes through the fluorescence enhancement from the DNAzyme-catalyzed cleavage of DNA substrates labeled by a fluorophore and quencher pair, the UNG activity was measured based on UNG-dependent deactivation and activation of the DNAzymes. This method was found to be able to detect UNG activity as low as 0.0034 U/mL. Such a method can be applied to the detection of other nucleotide-modifying enzymes and expand the analyte range of DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
89
|
Alkyltransferase-like protein (Atl1) distinguishes alkylated guanines for DNA repair using cation-π interactions. Proc Natl Acad Sci U S A 2012; 109:18755-60. [PMID: 23112169 DOI: 10.1073/pnas.1209451109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alkyltransferase-like (ATL) proteins in Schizosaccharomyces pombe (Atl1) and Thermus thermophilus (TTHA1564) protect against the adverse effects of DNA alkylation damage by flagging O(6)-alkylguanine lesions for nucleotide excision repair (NER). We show that both ATL proteins bind with high affinity to oligodeoxyribonucleotides containing O(6)-alkylguanines differing in size, polarity, and charge of the alkyl group. However, Atl1 shows a greater ability than TTHA1564 to distinguish between O(6)-alkylguanine and guanine and in an unprecedented mechanism uses Arg69 to probe the electrostatic potential surface of O(6)-alkylguanine, as determined using molecular mechanics calculations. An unexpected consequence of this feature is the recognition of 2,6-diaminopurine and 2-aminopurine, as confirmed in crystal structures of respective Atl1-DNA complexes. O(6)-Alkylguanine and guanine discrimination is diminished for Atl1 R69A and R69F mutants, and S. pombe R69A and R69F mutants are more sensitive toward alkylating agent toxicity, revealing the key role of Arg69 in identifying O(6)-alkylguanines critical for NER recognition.
Collapse
|
90
|
Ye Y, Stahley MR, Xu J, Friedman JI, Sun Y, McKnight JN, Gray JJ, Bowman GD, Stivers JT. Enzymatic excision of uracil residues in nucleosomes depends on the local DNA structure and dynamics. Biochemistry 2012; 51:6028-38. [PMID: 22784353 DOI: 10.1021/bi3006412] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The excision of uracil bases from DNA is accomplished by the enzyme uracil DNA glycosylase (UNG). Recognition of uracil bases in free DNA is facilitated by uracil base pair dynamics, but it is not known whether this same mechanistic feature is relevant for detection and excision of uracil residues embedded in nucleosomes. Here we investigate this question using nucleosome core particles (NCPs) generated from Xenopus laevis histones and the high-affinity "Widom 601" positioning sequence. The reactivity of uracil residues in NCPs under steady-state multiple-turnover conditions was generally decreased compared to that of free 601 DNA, mostly because of anticipated steric effects of histones. However, some sites in NCPs had equal or even greater reactivity than free DNA, and the observed reactivities were not readily explained by simple steric considerations or by global DNA unwrapping models for nucleosome invasion. In particular, some reactive uracils were found in occluded positions, while some unreactive uracils were found in exposed positions. One feature of many exposed reactive sites is a wide DNA minor groove, which allows penetration of a key active site loop of the enzyme. In single-turnover kinetic measurements, multiphasic reaction kinetics were observed for several uracil sites, where each kinetic transient was independent of the UNG concentration. These kinetic measurements, and supporting structural analyses, support a mechanism in which some uracils are transiently exposed to UNG by local, rate-limiting nucleosome conformational dynamics, followed by rapid trapping of the exposed state by the enzyme. We present structural models and plausible reaction mechanisms for the reaction of UNG at three distinct uracil sites in the NCP.
Collapse
Affiliation(s)
- Yu Ye
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Roberts VA, Pique ME, Hsu S, Li S, Slupphaug G, Rambo RP, Jamison JW, Liu T, Lee JH, Tainer JA, Ten Eyck LF, Woods VL. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Res 2012; 40:6070-81. [PMID: 22492624 PMCID: PMC3401472 DOI: 10.1093/nar/gks291] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/21/2012] [Accepted: 03/15/2012] [Indexed: 12/21/2022] Open
Abstract
X-ray crystallography provides excellent structural data on protein-DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein-DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein-DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG-DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210-220 and 251-264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG-DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway.
Collapse
Affiliation(s)
- Victoria A Roberts
- San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, MC 0505, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Proc Natl Acad Sci U S A 2012; 109:8091-6. [PMID: 22573813 DOI: 10.1073/pnas.1201010109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA base excision repair is essential for maintaining genomic integrity and for active DNA demethylation, a central element of epigenetic regulation. A key player is thymine DNA glycosylase (TDG), which excises thymine from mutagenic G·T mispairs that arise by deamination of 5-methylcytosine (mC). TDG also removes 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC produced by Tet enzymes. Recent studies show that the glycosylase activity of TDG is essential for active DNA demethylation and for embryonic development. Our understanding of how repair enzymes excise modified bases without acting on undamaged DNA remains incomplete, particularly for mismatch glycosylases such as TDG. We solved a crystal structure of TDG (catalytic domain) bound to a substrate analog and characterized active-site residues by mutagenesis, kinetics, and molecular dynamics simulations. The studies reveal how TDG binds and positions the nucleophile (water) and uncover a previously unrecognized catalytic residue (Thr197). Remarkably, mutation of two active-site residues (Ala145 and His151) causes a dramatic enhancement in G·T glycosylase activity but confers even greater increases in the aberrant removal of thymine from normal A·T base pairs. The strict conservation of these residues may reflect a mechanism used to strike a tolerable balance between the requirement for efficient repair of G·T lesions and the need to minimize aberrant action on undamaged DNA, which can be mutagenic and cytotoxic. Such a compromise in G·T activity can account in part for the relatively weak G·T activity of TDG, a trait that could potentially contribute to the hypermutability of CpG sites in cancer and genetic disease.
Collapse
|
93
|
Thermochemical properties of some vinyl chloride-induced DNA lesions: detailed view from NBO & AIM analysis. Struct Chem 2012. [DOI: 10.1007/s11224-012-0026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
94
|
Krokan HE. A life in DNA repair—And beyond. DNA Repair (Amst) 2012; 11:224-35. [DOI: 10.1016/j.dnarep.2011.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
95
|
Kellie JL, Navarro-Whyte L, Carvey MT, Wetmore SD. Combined effects of π-π stacking and hydrogen bonding on the (N1) acidity of uracil and hydrolysis of 2'-deoxyuridine. J Phys Chem B 2012; 116:2622-32. [PMID: 22296509 DOI: 10.1021/jp2121627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
M06-2X/6-31+G(d,p) is used to study the simultaneous effects of π-π stacking interactions with phenylalanine (modeled as benzene) and hydrogen bonding with small molecules (HF, H(2)O, and NH(3)) on the N1 acidity of uracil and the hydrolytic deglycosylation of 2'-deoxyuridine (dU) (facilitated by fully (OH(-)) or partially (HCOO(-)···H(2)O) activated water). When phenylalanine is complexed with isolated uracil, the proton affinity of all acceptor sites significantly increases (by up to 28 kJ mol(-1)), while the N1 acidity slightly decreases (by ~6 kJ mol(-1)). When small molecules are hydrogen bound to uracil, addition of the phenylalanine ring can increase or decrease the acidity of uracil depending on the number and nature (acidity) of the molecules bound. Furthermore, a strong correlation between the effects of π-π stacking on the acidity of U and the dU deglycosylation reaction energetics is found, where the hydrolysis barrier can increase or decrease depending on the nature and number of small molecules bound, the nucleophile considered (which dictates the negative charge on U in the transition state), and the polarity of the (bulk) environment. These findings emphasize that the catalytic (or anticatalytic) role of the active-site aromatic amino acid residues is highly dependent on the situation under consideration. In the case of uracil-DNA glycosylase (UNG), which catalyzes the hydrolytic excision of uracil from DNA, the type of discrete hydrogen-bonding interactions with U, the nature of the nucleophile, and the anticipated weak, nonpolar environment in the active site suggest that phenylalanine will be slightly anticatalytic in the chemical step, and therefore experimentally observed contributions to catalysis may entirely result from associated structural changes that occur prior to deglycosylation.
Collapse
Affiliation(s)
- Jennifer L Kellie
- Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | | | | | | |
Collapse
|
96
|
Ono T, Wang S, Koo CK, Engstrom L, David SS, Kool ET. Direct fluorescence monitoring of DNA base excision repair. Angew Chem Int Ed Engl 2012; 51:1689-92. [PMID: 22241823 PMCID: PMC3528074 DOI: 10.1002/anie.201108135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| | - Shenliang Wang
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| | - Chi-Kin Koo
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| | - Lisa Engstrom
- Department of Chemistry University of California Davis, CA 95616, USA
| | - Sheila S. David
- Department of Chemistry University of California Davis, CA 95616, USA
| | - Eric T. Kool
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| |
Collapse
|
97
|
Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 2012; 8:328-30. [PMID: 22327402 PMCID: PMC3307914 DOI: 10.1038/nchembio.914] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/06/2012] [Indexed: 12/30/2022]
Abstract
Human thymine DNA glycosylase (hTDG) efficiently excises 5-carboxylcytosine (5caC), a key oxidation product of 5-methylcytosine in a recently discovered cytosine demethylation pathway. We present here the crystal structures of hTDG catalytic domain in complex with duplex DNA containing either 5caC or a fluorinated analog. These structures, together with biochemical and computational analyses, reveal that 5caC is specifically recognized in the active site of hTDG, supporting the role of TDG in mammalian 5-methylcytosine (5mC) demethylation.
Collapse
|
98
|
Ono T, Wang S, Koo CK, Engstrom L, David SS, Kool ET. Direct Fluorescence Monitoring of DNA Base Excision Repair. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
99
|
Adhikary S, Eichman BF. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase. EMBO Rep 2011; 12:1286-92. [PMID: 21960007 DOI: 10.1038/embor.2011.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 11/09/2022] Open
Abstract
DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity, although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N(6)-ethenoadenine (ɛA) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their ɛA activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.
Collapse
Affiliation(s)
- Suraj Adhikary
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Box 351634 Station B, 5270A MRBIII, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
100
|
Sun Y, Friedman JI, Stivers JT. Cosolute paramagnetic relaxation enhancements detect transient conformations of human uracil DNA glycosylase (hUNG). Biochemistry 2011; 50:10724-31. [PMID: 22077282 DOI: 10.1021/bi201572g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human DNA repair enzyme uracil DNA glycosylase (hUNG) locates and excises rare uracil bases that arise in DNA from cytosine deamination or through dUTP incorporation by DNA polymerases. Previous NMR studies of hUNG have revealed millisecond time scale dynamic transitions in the enzyme-nonspecific DNA complex, but not the free enzyme, that were ascribed to a reversible clamping motion of the enzyme as it scans along short regions of duplex DNA in its search for uracil. Here we further probe the properties of the nonspecific DNA binding surface of {(2)H(12)C}{(15)N}-labeled hUNG using a neutral chelate of a paramagnetic Gd(3+) cosolute (Gd(HP-DO3A)). Overall, the measured paramagnetic relaxation enhancements (PREs) on R(2) of the backbone amide protons for free hUNG and its DNA complex were in good agreement with those calculated based on their relative exposure observed in the crystal structures of both enzyme forms. However, the calculated PREs systematically underestimated the experimental PREs by large amounts in discrete regions implicated in DNA recognition and catalysis: active site loops involved in DNA recognition (268-274, 246-250), the uracil binding pocket (143-148, 169-170), a transient extrahelical base binding site (214-216), and a remote hinge region (129-132) implicated in dynamic clamping. These reactive hot spots were not correlated with structural, hydrophobic, or solvent exchange properties that might be common to these regions, leaving the possibility that the effects arise from dynamic sampling of exposed conformations that are distinct from the static structures. Consistent with this suggestion, the above regions have been previously shown to be flexible based on relaxation dispersion measurements and course-grained normal-mode analysis. A model is suggested where the intrinsic dynamic properties of these regions allows sampling of transient conformations where the backbone amide groups have greater average exposure to the cosolute as compared to the static structures. We conclude that PREs derived from the paramagnetic cosolute reveal dynamic hot spots in hUNG and that these regions are highly correlated with substrate binding and recognition.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|