51
|
Stanton E, Wahlig TA, Park D, Kaspar CW. Chronological set of E. coli O157:H7 bovine strains establishes a role for repeat sequences and mobile genetic elements in genome diversification. BMC Genomics 2020; 21:562. [PMID: 32807088 PMCID: PMC7430833 DOI: 10.1186/s12864-020-06943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant foodborne pathogen that resides asymptomatically within cattle and other ruminants. The EHEC genome harbors an extensive collection of mobile genetic elements (MGE), including multiple prophage, prophage-like elements, plasmids, and insertion sequence (IS) elements. Results A chronological collection of EHEC strains (FRIK804, FRIK1275, and FRIK1625) isolated from a Wisconsin dairy farm (farm X) comprised a closely related clade genetically differentiated by structural alterations to the chromosome. Comparison of the FRIK804 genome with a reference EHEC strain Sakai found a unique prophage like element (PLE, indel 1) and an inversion (1.15 Mb) situated symmetrically with respect to the terminus region. Detailed analysis determined the inversion was due to homologous recombination between repeat sequences in prophage. The three farm X strains were distinguished by the presence or absence of indel 3 (61 kbp) and indel 4 (48 kbp); FRIK804 contained both of these regions, FRIK1275 lacked indel 4, and indels 3 and 4 were both absent in FRIK1625. Indel 3 was the stx2 prophage and indel 4 involved a deletion between two adjacent prophage with shared repeat sequences. Both FRIK804 and FRIK1275 produced functional phage while FRIK1625 did not, which is consistent with indel 3. Due to their involvement in recombination events, direct and inverted repeat sequences were identified, and their locations mapped to the chromosome. FRIK804 had a greater number and overall length of repeat sequences than E. coli K12 strain MG1655. Repeat sequences were most commonly associated with MGE. Conclusions This research demonstrated that three EHEC strains from a Wisconsin dairy farm were closely related and distinguished by variability within prophage regions and other MGE. Chromosome alterations were associated with recombination events between repeat sequences. An inventory of direct and inverted repeat sequences found a greater abundance and total length of repeat sequences in the EHEC strains compared to E. coli strain MG1655. The locations of the repeat sequences were biased towards MGE. The findings from this study expand our understanding of the precise molecular events and elements that contributed to genetic diversification of wild-type EHEC in the bovine and farm environments.
Collapse
Affiliation(s)
- Eliot Stanton
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA
| | - Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA.,University of Utah, School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Dongjin Park
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA. .,Food Research Institute, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
52
|
Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME JOURNAL 2020; 14:2816-2828. [PMID: 32788711 DOI: 10.1038/s41396-020-00737-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023]
Abstract
Interactive microbial communities are ubiquitous, influencing biogeochemical cycles and host health. One widespread interaction is nutrient exchange, or cross-feeding, wherein metabolites are transferred between microbes. Some cross-fed metabolites, such as vitamins, amino acids, and ammonium (NH4+), are communally valuable and impose a cost on the producer. The mechanisms that enforce cross-feeding of communally valuable metabolites are not fully understood. Previously we engineered a cross-feeding coculture between N2-fixing Rhodopseudomonas palustris and fermentative Escherichia coli. Engineered R. palustris excretes essential nitrogen as NH4+ to E. coli, while E. coli excretes essential carbon as fermentation products to R. palustris. Here, we sought to determine whether a reciprocal cross-feeding relationship would evolve spontaneously in cocultures with wild-type R. palustris, which is not known to excrete NH4+. Indeed, we observed the emergence of NH4+ cross-feeding, but driven by adaptation of E. coli alone. A missense mutation in E. coli NtrC, a regulator of nitrogen scavenging, resulted in constitutive activation of an NH4+ transporter. This activity likely allowed E. coli to subsist on the small amount of leaked NH4+ and better reciprocate through elevated excretion of fermentation products from a larger E. coli population. Our results indicate that enhanced nutrient uptake by recipients, rather than increased excretion by producers, is an underappreciated yet possibly prevalent mechanism by which cross-feeding can emerge.
Collapse
|
53
|
The Adaptive Response to Long-Term Nitrogen Starvation in Escherichia coli Requires the Breakdown of Allantoin. J Bacteriol 2020; 202:JB.00172-20. [PMID: 32571968 PMCID: PMC7417836 DOI: 10.1128/jb.00172-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Bacteria initially respond to nutrient starvation by eliciting large-scale transcriptional changes. The accompanying changes in gene expression and metabolism allow the bacterial cells to effectively adapt to the nutrient-starved state. How the transcriptome subsequently changes as nutrient starvation ensues is not well understood. We used nitrogen (N) starvation as a model nutrient starvation condition to study the transcriptional changes in Escherichia coli experiencing long-term N starvation. The results reveal that the transcriptome of N-starved E. coli undergoes changes that are required to maximize chances of viability and to effectively recover growth when N starvation conditions become alleviated. We further reveal that, over time, N-starved E. coli cells rely on the degradation of allantoin for optimal growth recovery when N becomes replenished. This study provides insights into the temporally coordinated adaptive responses that occur in E. coli experiencing sustained N starvation.IMPORTANCE Bacteria in their natural environments seldom encounter conditions that support continuous growth. Hence, many bacteria spend the majority of their time in states of little or no growth due to starvation of essential nutrients. To cope with prolonged periods of nutrient starvation, bacteria have evolved several strategies, primarily manifesting themselves through changes in how the information in their genes is accessed. How these coping strategies change over time under nutrient starvation is not well understood, and this knowledge is important not only to broaden our understanding of bacterial cell function but also to potentially find ways to manage harmful bacteria. This study provides insights into how nitrogen-starved Escherichia coli bacteria rely on different genes during long-term nitrogen starvation.
Collapse
|
54
|
LaSarre B, Deutschbauer AM, Love CE, McKinlay JB. Covert Cross-Feeding Revealed by Genome-Wide Analysis of Fitness Determinants in a Synthetic Bacterial Mutualism. Appl Environ Microbiol 2020; 86:e00543-20. [PMID: 32332139 PMCID: PMC7301861 DOI: 10.1128/aem.00543-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Microbial interactions abound in natural ecosystems and shape community structure and function. Substantial attention has been given to cataloging mechanisms by which microbes interact, but there is a limited understanding of the genetic landscapes that promote or hinder microbial interactions. We previously developed a mutualistic coculture pairing Escherichia coli and Rhodopseudomonas palustris, wherein E. coli provides carbon to R. palustris in the form of glucose fermentation products and R. palustris fixes N2 gas and provides nitrogen to E. coli in the form of NH4+ The stable coexistence and reproducible trends exhibited by this coculture make it ideal for interrogating the genetic underpinnings of a cross-feeding mutualism. Here, we used random barcode transposon sequencing (RB-TnSeq) to conduct a genome-wide search for E. coli genes that influence fitness during cooperative growth with R. palustris RB-TnSeq revealed hundreds of genes that increased or decreased E. coli fitness in a mutualism-dependent manner. Some identified genes were involved in nitrogen sensing and assimilation, as expected given the coculture design. The other identified genes were involved in diverse cellular processes, including energy production and cell wall and membrane biogenesis. In addition, we discovered unexpected purine cross-feeding from R. palustris to E. coli, with coculture rescuing growth of an E. coli purine auxotroph. Our data provide insight into the genes and gene networks that can influence a cross-feeding mutualism and underscore that microbial interactions are not necessarily predictable a prioriIMPORTANCE Microbial communities impact life on Earth in profound ways, including driving global nutrient cycles and influencing human health and disease. These community functions depend on the interactions that resident microbes have with the environment and each other. Thus, identifying genes that influence these interactions will aid the management of natural communities and the use of microbial consortia as biotechnology. Here, we identified genes that influenced Escherichia coli fitness during cooperative growth with a mutualistic partner, Rhodopseudomonas palustris Although this mutualism centers on the bidirectional exchange of essential carbon and nitrogen, E. coli fitness was positively and negatively affected by genes involved in diverse cellular processes. Furthermore, we discovered an unexpected purine cross-feeding interaction. These results contribute knowledge on the genetic foundation of a microbial cross-feeding interaction and highlight that unanticipated interactions can occur even within engineered microbial communities.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal E Love
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
55
|
Global control of bacterial nitrogen and carbon metabolism by a PTS Ntr-regulated switch. Proc Natl Acad Sci U S A 2020; 117:10234-10245. [PMID: 32341157 DOI: 10.1073/pnas.1917471117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.
Collapse
|
56
|
Millanao AR, Mora AY, Saavedra CP, Villagra NA, Mora GC, Hidalgo AA. Inactivation of Glutamine Synthetase-Coding Gene glnA Increases Susceptibility to Quinolones Through Increasing Outer Membrane Protein F in Salmonella enterica Serovar Typhi. Front Microbiol 2020; 11:428. [PMID: 32265871 PMCID: PMC7103639 DOI: 10.3389/fmicb.2020.00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Ciprofloxacin is the choice treatment for infections caused by Salmonella Typhi, however, reduced susceptibility to ciprofloxacin has been reported for this pathogen. Considering the decreased approbation of new antimicrobials and the crisis of resistance, one strategy to combat this problem is to find new targets that enhances the antimicrobial activity for approved antimicrobials. In search of mutants with increased susceptibility to ciprofloxacin; 3,216 EZ-Tn5 transposon mutants of S. Typhi were screened. S. Typhi zxx::EZ-Tn5 mutants susceptible to ciprofloxacin were confirmed by agar diffusion and MIC assays. The genes carrying EZ-Tn5 transposon insertions were sequenced. Null mutants of interrupted genes, as well as inducible genetic constructs, were produced using site-directed mutagenesis, to corroborate phenotypes. SDS-PAGE and Real-time PCR were used to evaluate the expression of proteins and genes, respectively. Five mutants with increased ciprofloxacin susceptibility were found in the screening. The first confirmed mutant was the glutamine synthetase-coding gene glnA. Analysis of outer membrane proteins revealed increased OmpF, a channel for the influx of ciprofloxacin and nalidixic acid, in the glnA mutant. Expression of ompF increased four times in the glnA null mutant compared to WT strain. To understand the relationship between the expression of glnA and ompF, a strain with the glnA gene under control of the tetracycline-inducible Ptet promoter was created, to modulate glnA expression. Induction of glnA decreased expression of ompF, at the same time that reduced susceptibility to ciprofloxacin. Expression of sRNA MicF, a negative regulator of OmpF was reduced to one-fourth in the glnA mutant, compared to WT strain. In addition, expression of glnL and glnG genes (encoding the two-component system NtrC/B that may positively regulate OmpF) were increased in the glnA mutant. Further studies indicate that deletion of glnG decreases susceptibility to CIP, while deletion of micF gene increases susceptibility CIP. Our findings indicate that glnA inactivation promotes ompF expression, that translates into increased OmpF protein, facilitating the entry of ciprofloxacin, thus increasing susceptibility to ciprofloxacin through 2 possible mechanisms.
Collapse
Affiliation(s)
- Ana R Millanao
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.,Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Aracely Y Mora
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolás A Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago, Chile.,Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guido C Mora
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Facultad de Ciencias de la Salud, Santiago, Universidad SEK, Santiago, Chile
| | - Alejandro A Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
57
|
Abstract
Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes. Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin.
Collapse
|
58
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
59
|
Géron A, Werner J, Wattiez R, Lebaron P, Matallana-Surget S. Deciphering the Functioning of Microbial Communities: Shedding Light on the Critical Steps in Metaproteomics. Front Microbiol 2019; 10:2395. [PMID: 31708885 PMCID: PMC6821674 DOI: 10.3389/fmicb.2019.02395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Unraveling the complex structure and functioning of microbial communities is essential to accurately predict the impact of perturbations and/or environmental changes. From all molecular tools available today to resolve the dynamics of microbial communities, metaproteomics stands out, allowing the establishment of phenotype-genotype linkages. Despite its rapid development, this technology has faced many technical challenges that still hamper its potential power. How to maximize the number of protein identification, improve quality of protein annotation, and provide reliable ecological interpretation are questions of immediate urgency. In our study, we used a robust metaproteomic workflow combining two protein fractionation approaches (gel-based versus gel-free) and four protein search databases derived from the same metagenome to analyze the same seawater sample. The resulting eight metaproteomes provided different outcomes in terms of (i) total protein numbers, (ii) taxonomic structures, and (iii) protein functions. The characterization and/or representativeness of numerous proteins from ecologically relevant taxa such as Pelagibacterales, Rhodobacterales, and Synechococcales, as well as crucial environmental processes, such as nutrient uptake, nitrogen assimilation, light harvesting, and oxidative stress response, were found to be particularly affected by the methodology. Our results provide clear evidences that the use of different protein search databases significantly alters the biological conclusions in both gel-free and gel-based approaches. Our findings emphasize the importance of diversifying the experimental workflow for a comprehensive metaproteomic study.
Collapse
Affiliation(s)
- Augustin Géron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Department of Proteomic and Microbiology, University of Mons, Mons, Belgium
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Ruddy Wattiez
- Department of Proteomic and Microbiology, University of Mons, Mons, Belgium
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Université Paris 06, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
60
|
Kukolj C, Pedrosa FO, de Souza GA, Sumner LW, Lei Z, Sumner B, do Amaral FP, Juexin W, Trupti J, Huergo LF, Monteiro RA, Valdameri G, Stacey G, de Souza EM. Proteomic and Metabolomic Analysis of Azospirillum brasilense ntrC Mutant under High and Low Nitrogen Conditions. J Proteome Res 2019; 19:92-105. [DOI: 10.1021/acs.jproteome.9b00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Caroline Kukolj
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Fábio O. Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | | | - Lloyd W. Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Barbara Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | | | | | | | - Luciano F. Huergo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Setor Litoral, UFPR, Matinhos, Paraná 80060-000, Brazil
| | - Rose Adele Monteiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Departamento de Análises Clínicas, UFPR, Curitiba, Paraná 80060-000, Brazil
| | | | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| |
Collapse
|
61
|
Ligowska-Marzęta M, Hancock V, Ingmer H, M Aarestrup F. Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Antibiotics (Basel) 2019; 8:antibiotics8040167. [PMID: 31569631 PMCID: PMC6963283 DOI: 10.3390/antibiotics8040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023] Open
Abstract
Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen’s drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials.
Collapse
Affiliation(s)
- Małgorzata Ligowska-Marzęta
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark.
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Viktoria Hancock
- Renal Research & Innovation, Baxter International Inc., SE-220 10 Lund, Sweden.
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
62
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
63
|
Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains. PLoS One 2019; 14:e0218204. [PMID: 31194814 PMCID: PMC6563999 DOI: 10.1371/journal.pone.0218204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
The nosocomial pathogen Acinetobacter baumannii acquired clinical significance due to the rapid development of its multi-drug resistant (MDR) phenotype. A. baumannii strains have the ability to colonize several ecological niches including soil, water, and animals, including humans. They also survive under extremely harsh environmental conditions thriving on rare and recalcitrant carbon compounds. However, the molecular basis behind such extreme adaptability of A. baumannii is unknown. We have therefore determined the complete genome sequence of A. baumannii DS002, which was isolated from agricultural soils, and compared it with 78 complete genome sequences of A. baumannii strains having complete information on the source of their isolation. Interestingly, the genome of A. baumannii DS002 showed high similarity to the genome of A. baumannii SDF isolated from the body louse. The environmental and clinical strains, which do not share a monophyletic origin, showed the existence of a strain-specific unique gene pool that supports niche-specific survival. The strains isolated from infected samples contained a genetic repertoire with a unique gene pool coding for iron acquisition machinery, particularly those required for the biosynthesis of acinetobactin. Interestingly, these strains also contained genes required for biofilm formation. However, such gene sets were either partially or completely missing in the environmental isolates, which instead harbored genes required for alternate carbon catabolism and a TonB-dependent transport system involved in the acquisition of iron via siderophores or xenosiderophores.
Collapse
|
64
|
Zhu L, Gong T, Wood TL, Yamasaki R, Wood TK. σ 54 -Dependent regulator DVU2956 switches Desulfovibrio vulgaris from biofilm formation to planktonic growth and regulates hydrogen sulfide production. Environ Microbiol 2019; 21:3564-3576. [PMID: 31087603 DOI: 10.1111/1462-2920.14679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/11/2019] [Indexed: 11/30/2022]
Abstract
Microbiologically influenced corrosion causes $100 billion in damage per year, and biofilms formed by sulfate-reducing bacteria (SRB) are the major culprit. However, little is known about the regulation of SRB biofilm formation. Using Desulfovibrio vulgaris as a model SRB organism, we compared the transcriptomes of biofilm and planktonic cells and identified that the gene for σ54 -dependent regulator DVU2956 is repressed in biofilms. Utilizing a novel promoter that is primarily transcribed in biofilms (Pdvu0304 ), we found production of DVU2956 inhibits biofilm formation by 70%. Corroborating this result, deleting dvu2956 increased biofilm formation, and this biofilm phenotype could be complemented. By producing proteins in biofilms from genes controlled by DVU2956 (dvu2960 and dvu2962), biofilm formation was inhibited almost completely. A second round of RNA-seq for the production of DVU2956 revealed DVU2956 influences electron transport via an Hmc complex (high-molecular-weight cytochrome c encoded by dvu0531-dvu0536) and the Fe-only hydrogenase (encoded by dvu1769, hydA and dvu1770, hydB) to control H2 S production. Corroborating these results, producing DVU2956 in biofilms decreased H2 S production by half, deleting dvu2956 increased H2 S production by 131 ± 5%, and producing DVU2956 in the dvu2956 strain reduced H2 S production. Therefore, DVU2956 maintains SRB in the planktonic state and reduces H2 S formation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ting Gong
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Ryota Yamasaki
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA, 16802, USA
| |
Collapse
|
65
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
66
|
Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae. Mol Microbiol 2019; 111:1493-1509. [PMID: 30825339 DOI: 10.1111/mmi.14233] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/27/2022]
Abstract
Bacterial pathogen Dickeya zeae strain EC1 produces antibiotics-like phytotoxins called zeamines, which are major virulence determinants encoded by the zms gene cluster. In this study, we identified a zeamine-deficient mutant with a Tn5 insertion in a gene designated as vfmI encoding a two-component system (TCS) sensor histidine kinase (HK), which is accompanied by vfmH encoding a response regulator (RR) at the same genetic locus. Domain analysis shows this TCS is analogous to the VfmIH of D. dadantii, with typical characteristics of sensor HK and RR, respectively, and sharing the same operon. Deletion of either vfmI or vfmH resulted in decreased production of zeamines and cell wall degrading enzymes (CWDEs), and alleviated virulence on rice seeds and potato tubers. In D. dadantii 3937, VfmH was shown to bind to the promoters of vfmA and vfmE, while in D. zeae EC1, VfmH could bind to the promoters of vfmA, vfmE and vfmF. RNA-seq analysis of strain EC1 and its vfmH mutant also showed that the TCS positively regulated a range of virulence genes, including zms, T1SS, T2SS, T3SS, T6SS, flagellar and CWDE genes.
Collapse
Affiliation(s)
- Mingfa Lv
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Hu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
67
|
Maeda T, Horinouchi T, Sakata N, Sakai A, Furusawa C. High-throughput identification of the sensitivities of an Escherichia coli ΔrecA mutant strain to various chemical compounds. J Antibiot (Tokyo) 2019; 72:566-573. [DOI: 10.1038/s41429-019-0160-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
|
68
|
Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli. J Bacteriol 2019; 201:JB.00622-18. [PMID: 30420451 DOI: 10.1128/jb.00622-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 01/23/2023] Open
Abstract
To cope with fluctuations in their environment, bacteria have evolved multiple adaptive stress responses. One such response is the nitrogen regulation stress response, which allows bacteria, such as Escherichia coli, to cope with and overcome conditions of nitrogen limitation. This response is directed by the two-component system NtrBC, where NtrC acts as the major transcriptional regulator to activate the expression of genes to mount the response. Recently, my colleagues and I showed that NtrC directly regulates the expression of the relA gene, the major (p)ppGpp synthetase in E. coli, coupling the nitrogen regulation stress and stringent responses. As elevated levels of (p)ppGpp have been implicated in the formation of persister cells, here, I investigated whether nitrogen starvation promotes their formation and whether the NtrC-RelA regulatory cascade plays a role. The results reveal that nitrogen-starved E. coli synthesizes (p)ppGpp and forms a higher percentage of persister cells than nonstarved cells and that both NtrC and RelA are important for these processes. This study provides novel insights into how the formation of persisters can be promoted in response to a nutritional stress.IMPORTANCE Bacteria often reside in environments where nutrient availability is scarce; therefore, they have evolved adaptive responses to rapidly cope with conditions of feast and famine. Understanding the mechanisms that underpin the regulation of how bacteria cope with this stress is a fundamentally important question in the wider context of understanding the biology of the bacterial cell and bacterial pathogenesis. Two major adaptive mechanisms to cope with starvation are the nitrogen regulation (ntr) stress and stringent responses. Here, I describe how these bacterial stress responses are coordinated under conditions of nitrogen starvation to promote the formation of antibiotic-tolerant persister cells by elevating levels of the secondary messenger (p)ppGpp.
Collapse
|
69
|
New insights into the adaptive transcriptional response to nitrogen starvation in Escherichia coli. Biochem Soc Trans 2018; 46:1721-1728. [PMID: 30514772 PMCID: PMC6299236 DOI: 10.1042/bst20180502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Bacterial adaptive responses to biotic and abiotic stresses often involve large-scale reprogramming of the transcriptome. Since nitrogen is an essential component of the bacterial cell, the transcriptional basis of the adaptive response to nitrogen starvation has been well studied. The adaptive response to N starvation in Escherichia coli is primarily a 'scavenging response', which results in the transcription of genes required for the transport and catabolism of nitrogenous compounds. However, recent genome-scale studies have begun to uncover and expand some of the intricate regulatory complexities that underpin the adaptive transcriptional response to nitrogen starvation in E. coli The purpose of this review is to highlight some of these new developments.
Collapse
|
70
|
Genotoxic, Metabolic, and Oxidative Stresses Regulate the RNA Repair Operon of Salmonella enterica Serovar Typhimurium. J Bacteriol 2018; 200:JB.00476-18. [PMID: 30201777 DOI: 10.1128/jb.00476-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
The σ54 regulon in Salmonella enterica serovar Typhimurium includes a predicted RNA repair operon encoding homologs of the metazoan Ro60 protein (Rsr), Y RNAs (YrlBA), RNA ligase (RtcB), and RNA 3'-phosphate cyclase (RtcA). Transcription from σ54-dependent promoters requires that a cognate bacterial enhancer binding protein (bEBP) be activated by a specific environmental or cellular signal; the cognate bEBP for the σ54-dependent promoter of the rsr-yrlBA-rtcBA operon is RtcR. To identify conditions that generate the signal for RtcR activation in S Typhimurium, transcription of the RNA repair operon was assayed under multiple stress conditions that result in nucleic acid damage. RtcR-dependent transcription was highly induced by the nucleic acid cross-linking agents mitomycin C (MMC) and cisplatin, and this activation was dependent on RecA. Deletion of rtcR or rtcB resulted in decreased cell viability relative to that of the wild type following treatment with MMC. Oxidative stress from peroxide exposure also induced RtcR-dependent transcription of the operon. Nitrogen limitation resulted in RtcR-independent increased expression of the operon; the effect of nitrogen limitation required NtrC. The adjacent toxin-antitoxin module, dinJ-yafQ, was cotranscribed with the RNA repair operon but was not required for RtcR activation, although YafQ endoribonuclease activated RtcR-dependent transcription. Stress conditions shown to induce expression the RNA repair operon of Escherichia coli (rtcBA) did not stimulate expression of the S Typhimurium RNA repair operon. Similarly, MMC did not induce expression of the E. coli rtcBA operon, although when expressed in S Typhimurium, E. coli RtcR responds effectively to the unknown signal(s) generated there by MMC exposure.IMPORTANCE Homologs of the metazoan RNA repair enzymes RtcB and RtcA occur widely in eubacteria, suggesting a selective advantage. Although the enzymatic activities of the eubacterial RtcB and RtcA have been well characterized, the physiological roles remain largely unresolved. Here we report stress responses that activate expression of the σ54-dependent RNA repair operon (rsr-yrlBA-rtcBA) of S Typhimurium and demonstrate that expression of the operon impacts cell survival under MMC-induced stress. Characterization of the requirements for activation of this tightly regulated operon provides clues to the possible functions of operon components in vivo, enhancing our understanding of how this human pathogen copes with environmental stressors.
Collapse
|
71
|
Switzer A, Evangelopoulos D, Figueira R, de Carvalho LPS, Brown DR, Wigneshweraraj S. A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiology (Reading) 2018; 164:1457-1470. [DOI: 10.1099/mic.0.000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Amy Switzer
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Dimitrios Evangelopoulos
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rita Figueira
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Luiz Pedro S. de Carvalho
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel R. Brown
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
72
|
Liu B, Xiang S, Zhao G, Wang B, Ma Y, Liu W, Tao Y. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli. Metab Eng 2018; 51:121-130. [PMID: 30343047 DOI: 10.1016/j.ymben.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 11/25/2022]
Abstract
The production of chemicals from renewable biomass resources is usually limited by factors including high-cost processes and low efficiency of biosynthetic pathways. Fatty acids (FAs) are an ideal alternative biomass. Their advantages include high-efficiently producing acetyl-CoA and reducing power, coupling chemical production with CO2 fixation, and the fact that they are readily obtained from inexpensive feedstocks. The important platform chemical 3-hydroxypropionate (3HP) can be produced from FAs as the feedstock with a theoretical yield of 2.49 g/g, much higher than the theoretical yield from other feedstocks. In this study, we first systematically analyzed the limiting factors in FA-utilization pathways in Escherichia coli. Then, we optimized FA utilization in Escherichia coli by using a combination of metabolic engineering and optimization of fermentation conditions. The 3HP biosynthesis module was introduced into a FA-utilizing strain, and the flux balance was finely optimized to maximize 3HP production. The resulting strain was able to produce 3HP from FAs with a yield of 1.56 g/g, and was able to produce 3HP to a concentration of 52 g/L from FAs in a 5-L fermentation process. The strain also could produce 3HP from various type of FAs feedstock including gutter oil. This is the first report of a technique for the efficient production of the platform chemical 3HP from FAs.
Collapse
Affiliation(s)
- Bo Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuman Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bojun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
73
|
Chen S, Zhou Q, Tan X, Li Y, Ren G, Wang X. The Global Response of Cronobacter sakazakii Cells to Amino Acid Deficiency. Front Microbiol 2018; 9:1875. [PMID: 30154778 PMCID: PMC6102319 DOI: 10.3389/fmicb.2018.01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
Cronobacter species can cause necrotizing enterocolitis and meningitis in neonates and infants, their infection is closely relevant to their responses to extreme growth conditions. In this study, the response of Cronobacter species to amino acid deficiency has been investigated. Four Cronobacter species formed smooth colonies when grown on the solid LB medium, but formed mucoid colonies when grown on the amino acid deficient M9 medium. When the mucoid colonies were stained with tannin mordant, exopolysaccharide around the cells could be discerned. The exopolysaccharide was isolated, analyzed, and identified as colanic acid. When genes wcaD and wcaE relevant to colanic acid biosynthesis were deleted in Cronobacter sakazakii BAA-894, no exopolysaccharide could be produced, confirming the exopolysaccharide formed in C. sakazakii grown in M9 is colanic acid. On the other hand, when genes rcsA, rcsB, rcsC, rcsD, or rcsF relevant to Rcs phosphorelay system was deleted in C. sakazakii BAA-894, colanic acid could not be produced, suggesting that the production of colanic acid in C. sakazakii is regulated by Rcs phosphorelay system. Furthermore, C. sakazakii BAA-894 grown in M9 supplemented with amino acids could not produce exopolysaccharide. Transcriptomes of C. sakazakii BAA-894 grown in M9 or LB were analyzed. A total of 3956 genes were differentially expressed in M9, of which 2339 were up-regulated and 1617 were down-regulated. When C. sakazakii BAA-894 was grown in M9, the genes relevant to the biosynthesis of exopolysaccharide were significantly up-regulated; on the other hand, the genes relevant to the flagellum formation and chemotaxis were significantly down-regulated; in addition, most genes relevant to various amino acid biosynthesis were also significantly regulated. The results demonstrate that amino acid deficiency has a global impact on C. sakazakii cells.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ge Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
74
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
75
|
An Escherichia coli Nitrogen Starvation Response Is Important for Mutualistic Coexistence with Rhodopseudomonas palustris. Appl Environ Microbiol 2018; 84:AEM.00404-18. [PMID: 29728387 DOI: 10.1128/aem.00404-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/28/2018] [Indexed: 02/04/2023] Open
Abstract
Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual species' physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically engineered R. palustris strain constitutively converts N2 into NH4+, providing E. coli with essential nitrogen. Using transcriptome sequencing (RNA-seq) and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris, E. coli gene expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH4+ excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and, in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships.IMPORTANCE Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli growing cooperatively through bidirectional nutrient exchange, we determined that an E. coli nitrogen starvation response is important for maintaining a stable coexistence. The lack of an E. coli nitrogen starvation response ultimately destabilized the mutualism and, in some cases, led to community collapse after serial transfers. Our findings thus inform on the potential necessity of an alternative physiological state for mutualistic coexistence with another species compared to the physiology of species grown in isolation.
Collapse
|
76
|
Ye J, Hu D, Che X, Jiang X, Li T, Chen J, Zhang HM, Chen GQ. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 2018; 47:143-152. [PMID: 29551476 DOI: 10.1016/j.ymben.2018.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose. Two interrelated 4-hydroxybutyrate (4HB) biosynthesis pathways were constructed to guarantee 4HB monomer supply for P(3HB-co-4HB) synthesis by working in concert with 3-hydroxybutyrate (3HB) pathway. Interestingly, only 0.17 mol% 4HB in the copolymer was obtained during shake flask studies. Pathway debugging using structurally related carbon source located the failure as insufficient 4HB accumulation. Further whole genome sequencing and comparative genomic analysis identified multiple orthologs of succinate semialdehyde dehydrogenase (gabD) that may compete with 4HB synthesis flux in H. bluephagenesis. Accordingly, combinatory gene-knockout strains were constructed and characterized, through which the molar fraction of 4HB was increased by 24-fold in shake flask studies. The best-performing strain was grown on glucose as the single carbon source for 60 h under non-sterile conditions in a 7-L bioreactor, reaching 26.3 g/L of dry cell mass containing 60.5% P(3HB-co-17.04 mol%4HB). Besides, 4HB molar fraction in the copolymer can be tuned from 13 mol% to 25 mol% by controlling the residual glucose concentration in the cultures. This is the first study to achieve the production of P(3HB-co-4HB) from only glucose using Halomonas.
Collapse
Affiliation(s)
- Jianwen Ye
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | - Dingkai Hu
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xuemei Che
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | - Xiaoran Jiang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Teng Li
- Bluepha Co., Ltd., Beijing 102206, China
| | - Jinchun Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
77
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
78
|
Botou M, Lazou P, Papakostas K, Lambrinidis G, Evangelidis T, Mikros E, Frillingos S. Insight on specificity of uracil permeases of the NAT/NCS2 family from analysis of the transporter encoded in the pyrimidine utilization operon ofEscherichia coli. Mol Microbiol 2018; 108:204-219. [DOI: 10.1111/mmi.13931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Thomas Evangelidis
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences; National and Kapodistrian University of Athens; Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences; University of Ioannina; Ioannina Greece
| |
Collapse
|
79
|
Gravina F, Sanchuki HS, Rodrigues TE, Gerhardt ECM, Pedrosa FO, Souza EM, Valdameri G, de Souza GA, Huergo LF. Proteome analysis of an Escherichia coli ptsN-null strain under different nitrogen regimes. J Proteomics 2017; 174:28-35. [PMID: 29274402 DOI: 10.1016/j.jprot.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
The carbohydrate-uptake phosphorelay PTS system plays a key role in metabolic regulation in Bacteria controlling the utilization of secondary carbon sources. Some bacteria, such as Escherichia coli, encode a paralogous system named PTSNtr (nitrogen related PTS). PTSNtr is composed of EINtr (ptsP), NPr (ptsO), and EIIANtr (ptsN). These proteins act as a phosphorelay system from phosphoenolpyruvate to EINtr, NPr and them to EIIANtr. PTSNtr is not involved in carbohydrate uptake and it may be dedicated to performing regulatory functions. The phosphorylation state of EINtr is regulated by allosteric binding of glutamine and 2-oxoglutarate, metabolites whose intracellular levels reflect the nitrogen status. Although PTSNtr is designated as having nitrogen-sensory properties, no major effect of this system on nitrogen regulation has been described in E. coli. Here we show that an E. coli ptsN deletion mutant has impaired growth in minimal medium. Proteome analysis of the ∆ptsN strain under different nitrogen regimes revealed no involvement in regulation of the canonical nitrogen regulatory (Ntr) system. The proteomic data support the conclusion that ptsN is required to balance the activities of the sigma factors RpoS and RpoD in such way that, in the absence of ptsN, RpoS-dependent genes are preferentially expressed. SIGNIFICANCE The nitrogen related PTSNtr phosphorelay system has been hypothesized to participate in the control of nitrogen metabolism. Here we used a proteomics approach to show that an Escherichia coli ptsN null strain, which misses the final module of PTSNtr phosphorelay, has no significant effects on nitrogen metabolism under different nitrogen regimes. We noted that ptsN is required for fitness under minimal medium and for the proper balance between RpoS and sigma 70 activities in such way that, in the absence of ptsN, RpoS-dependent genes are preferentially expressed.
Collapse
Affiliation(s)
- Fernanda Gravina
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Heloisa S Sanchuki
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Thiago E Rodrigues
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Gláucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Departamento de Análises Clínicas, UFPR, Curitiba, PR, Brazil
| | - Gustavo A de Souza
- Oslo University Hospital, The Proteomics Core Facility, Rikshospitalet, Oslo, Norway; Instituto do Cérebro, UFRN, Natal, RN, Brazil
| | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Setor Litoral, UFPR, Matinhos, PR, Brazil.
| |
Collapse
|
80
|
Sacomboio ENM, Kim EYS, Ruchaud Correa HL, Bonato P, de Oliveira Pedrosa F, de Souza EM, Chubatsu LS, Müller-Santos M. The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae. Sci Rep 2017; 7:13546. [PMID: 29051509 PMCID: PMC5648810 DOI: 10.1038/s41598-017-12649-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/12/2017] [Indexed: 11/09/2022] Open
Abstract
The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP+ ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H2O2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.
Collapse
Affiliation(s)
- Euclides Nenga Manuel Sacomboio
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Edson Yu Sin Kim
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Henrique Leonardo Ruchaud Correa
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Paloma Bonato
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Fabio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Leda Satie Chubatsu
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Laboratory of Nitrogen Fixation, Federal University of Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
81
|
Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum. Infect Immun 2017; 85:IAI.00017-17. [PMID: 28507067 DOI: 10.1128/iai.00017-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 11/20/2022] Open
Abstract
A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR, and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes (ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR-diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence.
Collapse
|
82
|
Liu Y, Lardi M, Pedrioli A, Eberl L, Pessi G. NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS One 2017; 12:e0180362. [PMID: 28662146 PMCID: PMC5491218 DOI: 10.1371/journal.pone.0180362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is a versatile opportunistic pathogen that survives in a wide variety of environments, which can be limited in nutrients such as nitrogen. We have previously shown that the sigma factor σ54 is involved in the control of nitrogen assimilation and virulence in B. cenocepacia H111. In this work, we investigated the role of the σ54 enhancer binding protein NtrC in response to nitrogen limitation and in the pathogenicity of H111. Of 95 alternative nitrogen sources tested the ntrC showed defects in the utilisation of nitrate, urea, L-citrulline, acetamide, DL-lactamide, allantoin and parabanic acid. RNA-Seq and phenotypic analyses of an ntrC mutant strain showed that NtrC positively regulates two important phenotypic traits: exopolysaccharide (EPS) production and motility. However, the ntrC mutant was not attenuated in C. elegans virulence.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alessandro Pedrioli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (LE); (GP)
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (LE); (GP)
| |
Collapse
|
83
|
Lindemann SR, Mobberley JM, Cole JK, Markillie LM, Taylor RC, Huang E, Chrisler WB, Wiley HS, Lipton MS, Nelson WC, Fredrickson JK, Romine MF. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated 'Omics Approach. Front Microbiol 2017; 8:1020. [PMID: 28659875 PMCID: PMC5468372 DOI: 10.3389/fmicb.2017.01020] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species' abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Collapse
Affiliation(s)
- Stephen R Lindemann
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West LafayetteIN, United States.,Department of Nutrition Science, Purdue University, West LafayetteIN, United States
| | - Jennifer M Mobberley
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Jessica K Cole
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - L M Markillie
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West LafayetteIN, United States
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Eric Huang
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - H S Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, RichlandWA, United States
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - James K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| |
Collapse
|
84
|
Riordan JT, Mitra A. Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N. EcoSal Plus 2017; 7. [PMID: 28635589 PMCID: PMC11575691 DOI: 10.1128/ecosalplus.esp-0016-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 01/09/2023]
Abstract
σN (also σ54) is an alternative sigma factor subunit of the RNA polymerase complex that regulates the expression of genes from many different ontological groups. It is broadly conserved in the Eubacteria with major roles in nitrogen metabolism, membrane biogenesis, and motility. σN is encoded as the first gene of a five-gene operon including rpoN (σN), ptsN, hpf, rapZ, and npr that has been genetically retained among species of Escherichia, Shigella, and Salmonella. In an increasing number of bacteria, σN has been implicated in the control of genes essential to pathogenic behavior, including those involved in adherence, secretion, immune subversion, biofilm formation, toxin production, and resistance to both antimicrobials and biological stressors. For most pathogens how this is achieved is unknown. In enterohemorrhagic Escherichia coli (EHEC) O157, Salmonella enterica, and Borrelia burgdorferi, regulation of virulence by σN requires another alternative sigma factor, σS, yet the model by which σN-σS virulence regulation is predicted to occur is varied in each of these pathogens. In this review, the importance of σN to bacterial pathogenesis is introduced, and common features of σN-dependent virulence regulation discussed. Emphasis is placed on the molecular mechanisms underlying σN virulence regulation in E. coli O157. This includes a review of the structure and function of regulatory pathways connecting σN to virulence expression, predicted input signals for pathway stimulation, and the role for cognate σN activators in initiation of gene systems determining pathogenic behavior.
Collapse
Affiliation(s)
- James T Riordan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | - Avishek Mitra
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
85
|
Simen JD, Löffler M, Jäger G, Schäferhoff K, Freund A, Matthes J, Müller J, Takors R. Transcriptional response of Escherichia coli to ammonia and glucose fluctuations. Microb Biotechnol 2017; 10:858-872. [PMID: 28447391 PMCID: PMC5481515 DOI: 10.1111/1751-7915.12713] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 01/22/2023] Open
Abstract
In large‐scale production processes, metabolic control is typically achieved by limited supply of essential nutrients such as glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programmes. Previously, we characterized short‐ and long‐term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply while studying a continuously running two‐compartment bioreactor system comprising a stirred tank reactor (STR) and a plug‐flow reactor (PFR). The alarmone ppGpp rapidly accumulated in PFR, initiating considerable transcriptional responses after 70 s. About 400 genes were repeatedly switched on/off when E. coli returned to the STR. E. coli revealed highly diverging long‐term transcriptional responses in ammonia compared to glucose fluctuations. In contrast, the induction of stringent regulation was a common feature of both short‐term responses. Cellular ATP demands for coping with fluctuating ammonia supply were found to increase maintenance by 15%. The identification of genes contributing to the increased ATP demand together with the elucidation of regulatory mechanisms may help to create robust cells and processes for large‐scale application.
Collapse
Affiliation(s)
- Joana Danica Simen
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Löffler
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Günter Jäger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Matthes
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | |
Collapse
|
86
|
López MF, Cabrera JJ, Salas A, Delgado MJ, López-García SL. Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens. Antonie Van Leeuwenhoek 2017; 110:531-542. [PMID: 28040856 DOI: 10.1007/s10482-016-0821-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Abstract
Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ54, was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.
Collapse
Affiliation(s)
- María F López
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL, La Plata, Argentina
| | - Juan J Cabrera
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain
| | - Ana Salas
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain
| | - María J Delgado
- Estación Experimental del Zaidín, CSIC, PO Box 419, 18080, Granada, Spain.
| | - Silvina L López-García
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL, La Plata, Argentina.
| |
Collapse
|
87
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
88
|
Sanchuki HBS, Gravina F, Rodrigues TE, Gerhardt ECM, Pedrosa FO, Souza EM, Raittz RT, Valdameri G, de Souza GA, Huergo LF. Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:344-352. [PMID: 27939605 DOI: 10.1016/j.bbapap.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/31/2023]
Abstract
Nitrogen is needed for the biosynthesis of biomolecules including proteins and nucleic acids. In the absence of fixed nitrogen prokaryotes such as E. coli immediately ceases growth. Ammonium is the preferred nitrogen source for E. coli supporting the fastest growth rates. Under conditions of ammonium limitation, E. coli can use alternative nitrogen sources to supply ammonium ions and this reprogramming is led by the induction of the NtrC regulon. Here we used label free proteomics to determine the dynamics of E. coli proteins expression in response to ammonium starvation in both the short (30min) and the longer (60min) starvation. Protein abundances and post-translational modifications confirmed that activation of the NtrC regulon acts as the first line of defense against nitrogen starvation. The ribosome inactivating protein Rmf was induced shortly after ammonium exhaustion and this was preceded by induction of other ribosome inactivating proteins such as Hpf and RaiA supporting the hypothesis that ribosome shut-down is a key process during nitrogen limitation stress. The proteomic data revealed that growth arrest due to nitrogen starvation correlates with the accumulation of proteins involved in DNA condensation, RNA and protein catabolism and ribosome hibernation. Collectively, these proteome adaptations will result in metabolic inactive cells which are likely to exhibit multidrug tolerance.
Collapse
Affiliation(s)
| | - Fernanda Gravina
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Thiago E Rodrigues
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Roberto T Raittz
- Setor de Educação Profissional e Tecnológica, UFPR, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Departamento de Análises Clínicas, UFPR, Curitiba, PR, Brazil
| | - Gustavo A de Souza
- Department of Immunology, University of Oslo and Oslo University Hospital, The Proteomics Core Facility, Rikshospitalet, Oslo, Norway; Instituto do Cérebro, UFRN, Natal, RN, Brazil
| | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Setor Litoral, UFPR, Matinhos, PR, Brazil.
| |
Collapse
|
89
|
Hartman CE, Samuels DJ, Karls AC. Modulating Salmonella Typhimurium's Response to a Changing Environment through Bacterial Enhancer-Binding Proteins and the RpoN Regulon. Front Mol Biosci 2016; 3:41. [PMID: 27583250 PMCID: PMC4987338 DOI: 10.3389/fmolb.2016.00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022] Open
Abstract
Transcription sigma factors direct the selective binding of RNA polymerase holoenzyme (Eσ) to specific promoters. Two families of sigma factors determine promoter specificity, the σ(70) (RpoD) family and the σ(54) (RpoN) family. In transcription controlled by σ(54), the Eσ(54)-promoter closed complex requires ATP hydrolysis by an associated bacterial enhancer-binding protein (bEBP) for the transition to open complex and transcription initiation. Given the wide host range of Salmonella enterica serovar Typhimurium, it is an excellent model system for investigating the roles of RpoN and its bEBPs in modulating the lifestyle of bacteria. The genome of S. Typhimurium encodes 13 known or predicted bEBPs, each responding to a unique intracellular or extracellular signal. While the regulons of most alternative sigma factors respond to a specific environmental or developmental signal, the RpoN regulon is very diverse, controlling genes for response to nitrogen limitation, nitric oxide stress, availability of alternative carbon sources, phage shock/envelope stress, toxic levels of zinc, nucleic acid damage, and other stressors. This review explores how bEBPs respond to environmental changes encountered by S. Typhimurium during transmission/infection and influence adaptation through control of transcription of different components of the S. Typhimurium RpoN regulon.
Collapse
Affiliation(s)
| | - David J Samuels
- Department of Microbiology, University of Georgia Athens, GA, USA
| | - Anna C Karls
- Department of Microbiology, University of Georgia Athens, GA, USA
| |
Collapse
|
90
|
Bergkessel M, Basta DW, Newman DK. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 2016; 14:549-62. [PMID: 27510862 PMCID: PMC10069271 DOI: 10.1038/nrmicro.2016.107] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives.
Collapse
|
91
|
Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment. mBio 2016; 7:mBio.00792-16. [PMID: 27435461 PMCID: PMC4958250 DOI: 10.1128/mbio.00792-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the “dream” of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable of supporting fast growth rates, but this results in ammonia leaking out from cells as “waste,” benefiting the growth of competitors. These findings provide important insights into the regulatory logic that controls metabolic flux and ensures nutrient containment but consequently sacrifices growth rate.
Collapse
|
92
|
RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 2016; 167:168-77. [DOI: 10.1016/j.resmic.2015.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
|
93
|
Jin HM, Jeong HI, Kim KH, Hahn Y, Madsen EL, Jeon CO. Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment. Sci Rep 2016; 6:21796. [PMID: 26887987 PMCID: PMC4757865 DOI: 10.1038/srep21796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits -- its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species.
Collapse
Affiliation(s)
- Hyun Mi Jin
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.,Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do 37242, Republic of Korea
| | - Hye Im Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
94
|
Johnson WM, Kido Soule MC, Kujawinski EB. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME JOURNAL 2016; 10:2304-16. [PMID: 26882264 PMCID: PMC4989321 DOI: 10.1038/ismej.2016.6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/17/2015] [Accepted: 12/24/2015] [Indexed: 11/09/2022]
Abstract
Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter.
Collapse
Affiliation(s)
- Winifred M Johnson
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Melissa C Kido Soule
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
95
|
Role of Burkholderia pseudomallei Sigma N2 in Amino Acids Utilization and in Regulation of Catalase E Expression at the Transcriptional Level. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2015; 2015:623967. [PMID: 26904748 PMCID: PMC4745423 DOI: 10.1155/2015/623967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. The complete genome sequences of this pathogen have been revealed, which explain some pathogenic mechanisms. In various hostile conditions, for example, during nitrogen and amino acid starvation, bacteria can utilize alternative sigma factors such as RpoS and RpoN to modulate genes expression for their adaptation and survival. In this study, we demonstrate that mutagenesis of rpoN2, which lies on chromosome 2 of B. pseudomallei and encodes a homologue of the sigma factor RpoN, did not alter nitrogen and amino acid utilization of the bacterium. However, introduction of B. pseudomallei rpoN2 into E. coli strain deficient for rpoN restored the ability to utilize amino acids. Moreover, comparative partial proteomic analysis of the B. pseudomallei wild type and its rpoN2 isogenic mutant was performed to elucidate its amino acids utilization property which was comparable to its function found in the complementation assay. By contrast, the rpoN2 mutant exhibited decreased katE expression at the transcriptional and translational levels. Our finding indicates that B. pseudomallei RpoN2 is involved in a specific function in the regulation of catalase E expression.
Collapse
|
96
|
Lundgren BR, Connolly MP, Choudhary P, Brookins-Little TS, Chatterjee S, Raina R, Nomura CT. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000. PLoS One 2015; 10:e0144852. [PMID: 26659655 PMCID: PMC4676750 DOI: 10.1371/journal.pone.0144852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.
Collapse
Affiliation(s)
- Benjamin R. Lundgren
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Morgan P. Connolly
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Pratibha Choudhary
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Tiffany S. Brookins-Little
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Snigdha Chatterjee
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Center for Applied Microbiology, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
97
|
Figueira R, Brown DR, Ferreira D, Eldridge MJG, Burchell L, Pan Z, Helaine S, Wigneshweraraj S. Adaptation to sustained nitrogen starvation by Escherichia coli requires the eukaryote-like serine/threonine kinase YeaG. Sci Rep 2015; 5:17524. [PMID: 26621053 PMCID: PMC4664914 DOI: 10.1038/srep17524] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
The Escherichia coli eukaryote-like serine/threonine kinase, encoded by yeaG, is expressed in response to diverse stresses, including nitrogen (N) starvation. A role for yeaG in bacterial stress response is unknown. Here we reveal for the first time that wild-type E. coli displays metabolic heterogeneity following sustained periods of N starvation, with the metabolically active population displaying compromised viability. In contrast, such heterogeneity in metabolic activity is not observed in an E. coli ∆yeaG mutant, which continues to exist as a single and metabolically active population and thus displays an overall compromised ability to survive sustained periods of N starvation. The mechanism by which yeaG acts, involves the transcriptional repression of two toxin/antitoxin modules, mqsR/mqsA and dinJ/yafQ. This, consequently, has a positive effect on the expression of rpoS, the master regulator of the general bacterial stress response. Overall, results indicate that yeaG is required to fully execute the rpoS-dependent gene expression program to allow E. coli to adapt to sustained N starvation and unravels a novel facet to the regulatory basis that underpins adaptive response to N stress.
Collapse
Affiliation(s)
- Rita Figueira
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Daniel R Brown
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Delfim Ferreira
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Matthew J G Eldridge
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Lynn Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Zhensheng Pan
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | - Sophie Helaine
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, UK
| | | |
Collapse
|
98
|
Primary Amine Oxidase of Escherichia coli Is a Metabolic Enzyme that Can Use a Human Leukocyte Molecule as a Substrate. PLoS One 2015; 10:e0142367. [PMID: 26556595 PMCID: PMC4640556 DOI: 10.1371/journal.pone.0142367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli amine oxidase (ECAO), encoded by the tynA gene, catalyzes the oxidative deamination of aromatic amines into aldehydes through a well-established mechanism, but its exact biological role is unknown. We investigated the role of ECAO by screening environmental and human isolates for tynA and characterizing a tynA-deletion strain using microarray analysis and biochemical studies. The presence of tynA did not correlate with pathogenicity. In tynA+ Escherichia coli strains, ECAO enabled bacterial growth in phenylethylamine, and the resultant H2O2 was released into the growth medium. Some aminoglycoside antibiotics inhibited the enzymatic activity of ECAO, which could affect the growth of tynA+ bacteria. Our results suggest that tynA is a reserve gene used under stringent environmental conditions in which ECAO may, due to its production of H2O2, provide a growth advantage over other bacteria that are unable to manage high levels of this oxidant. In addition, ECAO, which resembles the human homolog hAOC3, is able to process an unknown substrate on human leukocytes.
Collapse
|
99
|
Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE. J Bacteriol 2015; 198:394-409. [PMID: 26527649 DOI: 10.1128/jb.00556-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR. Investigating how these systems are regulated leads to an understanding of pathogenic behavior and novel strategies aimed at disease prevention and control.
Collapse
|
100
|
Petridis M, Benjak A, Cook GM. Defining the nitrogen regulated transcriptome of Mycobacterium smegmatis using continuous culture. BMC Genomics 2015; 16:821. [PMID: 26482235 PMCID: PMC4617892 DOI: 10.1186/s12864-015-2051-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Nitrogen is essential for microbial growth and its importance is demonstrated by the complex regulatory systems used to control the transport, assimilation and metabolism of nitrogen. Recent studies are beginning to shed light on how mycobacteria respond to nitrogen limitation and several regulators (e.g., GlnR, PII) have been characterized at a molecular level. However, despite this progress, our knowledge of the transcriptional response of mycobacteria to nitrogen limitation and its regulation is confined to batch culture. METHODS To gain further insight into the response of mycobacteria to nitrogen limitation, we developed a nitrogen-limited chemostat. We compared the transcriptional response of nitrogen-limited cells to carbon-limited cells using RNA-seq analysis in a continuous culture model at a constant growth rate. CONCLUSIONS Our findings revealed significant changes in the expression of 357 genes (208 upregulated, 149 downregulated; >2-fold change, false discovery rate <5 %) in response to nitrogen limitation in continuous culture. The vast majority of the GlnR regulon (68 %) was differentially expressed under nitrogen limitation in continuous culture and approximately 52 % of the 357 genes overlapped with a previously published study investigating the response of M. smegmatis to nitrogen limitation in batch culture, while expression of only 17 % of the genes identified in batch culture were affected in our chemostat model. Moreover, we identified a unique set of 45 genes involved in the uptake and metabolism of nitrogen that were exclusive to our chemostat model. We observed strong downregulation of pathways for amino acid catabolism (i.e., alanine, aspartate, valine, proline and lysine), suggesting preservation of these amino acids for critical cellular function. We found 16 novel transcriptional regulators that were directly or indirectly involved in the global transcriptomic response of M. smegmatis to nitrogen limitation and identified several non-coding RNAs that might be involved in the transcriptional or post-transcriptional regulation of nitrogen-regulated gene expression. RESULTS Using nitrogen-limited continuous culture we identified the nitrogen-responsive transcriptome of M. smegmatis, including a number of small non-coding RNAs implicated in controlling nitrogen-regulated gene expression.
Collapse
Affiliation(s)
- Michael Petridis
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1042, New Zealand.
| | - Andrej Benjak
- Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1042, New Zealand.
| |
Collapse
|