51
|
Abstract
Under stressful conditions, the heat shock protein 90 (HSP90) molecular chaperone protects cellular proteins (client proteins) from degradation via the ubiquitin-proteasome pathway. HSP90 expression is upregulated in cancers, and this contributes to the malignant phenotype of increased proliferation and decreased apoptosis and maintenance of metastatic potential via conservation of its client proteins, including human epidermal growth factor receptor 2, anaplastic lymphoma kinase, androgen receptor, estrogen receptor, Akt, Raf-1, cell cycle proteins, and B-cell lymphoma 2 among others. Hence, inhibition of HSP90 leads to the simultaneous degradation of its many clients, thereby disrupting multiple oncogenic signaling cascades. This has sparked tremendous interest in the development of HSP90 inhibitors as an innovative anticancer strategy. Based on the wealth of compelling data from preclinical studies, a number of HSP90 inhibitors have entered into clinical testing. However, despite enormous promise and anticancer activity reported to date, none of the HSP90 inhibitors in development has been approved for cancer therapy, and the full potential of this class of agents is yet to be realized. This article provides a review on ganetespib, a small molecule HSP90 inhibitor that is currently under evaluation in a broad range of cancer types in combination with other therapeutic agents with the hope of further enhancing its efficacy and overcoming drug resistance. Based on our current understanding of the complex HSP90 machinery combined with the emerging data from these key clinical trials, ganetespib has the potential to be the first-in-class HSP90 inhibitor to be approved as a new anticancer therapy.
Collapse
Affiliation(s)
- Komal Jhaveri
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
52
|
Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med Chem 2015; 6:1587-605. [PMID: 25367392 DOI: 10.4155/fmc.14.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed.
Collapse
|
53
|
Hall JA, Seedarala S, Rice N, Kopel L, Halaweish F, Blagg BSJ. Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery. JOURNAL OF NATURAL PRODUCTS 2015; 78:873-9. [PMID: 25756299 PMCID: PMC5892428 DOI: 10.1021/acs.jnatprod.5b00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon cochaperones, immunophilins, etc., for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, heat shock factor-1, translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two cochaperones, Cdc37 and p23.
Collapse
Affiliation(s)
- Jessica A. Hall
- Department of Medicinal Chemistry, The University Of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Sahithi Seedarala
- Department of Medicinal Chemistry, The University Of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
| | - Nichole Rice
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Lucas Kopel
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Fathi Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, The University Of Kansas, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, KS 66045
- Corresponding author: Brian S. J. Blagg, Phone number: (785) 864-2288,
| |
Collapse
|
54
|
E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 2015; 6:e02068-14. [PMID: 25691589 PMCID: PMC4337564 DOI: 10.1128/mbio.02068-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. HPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicing cis elements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.
Collapse
|
55
|
Desale SS, Raja SM, Kim JO, Mohapatra B, Soni KS, Luan H, Williams SH, Bielecki TA, Feng D, Storck M, Band V, Cohen SM, Band H, Bronich TK. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models. J Control Release 2015; 208:59-66. [PMID: 25660204 DOI: 10.1016/j.jconrel.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/02/2015] [Indexed: 12/29/2022]
Abstract
ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full potential as an anti-cancer agent.
Collapse
Affiliation(s)
- Swapnil S Desale
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States.
| | - Jong Oh Kim
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States; College of Pharmacy, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Kruti S Soni
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Stetson H Williams
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Dan Feng
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Matthew Storck
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, UNMC, United States
| | - Samuel M Cohen
- Department of Pathology and Microbiology, UNMC, United States
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States.
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States.
| |
Collapse
|
56
|
Stivarou T, Patsavoudi E. Extracellular molecules involved in cancer cell invasion. Cancers (Basel) 2015; 7:238-65. [PMID: 25629807 PMCID: PMC4381257 DOI: 10.3390/cancers7010238] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022] Open
Abstract
Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.
Collapse
Affiliation(s)
- Theodora Stivarou
- Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521, Greece
| | | |
Collapse
|
57
|
Tatokoro M, Koga F, Yoshida S, Kihara K. Heat shock protein 90 targeting therapy: state of the art and future perspective. EXCLI JOURNAL 2015; 14:48-58. [PMID: 26600741 DOI: 10.17179/excli2015-586] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that plays a role in stabilizing and activating more than 200 client proteins. It is required for the stability and function of numerous oncogenic signaling proteins that determine the hallmarks of cancer. Since the initial discovery of the first Hsp90 inhibitor in the 1970s, multiple phase II and III clinical trials of several Hsp90 inhibitors have been undertaken. This review provides an overview of the current status on clinical trials of Hsp90 inhibitors and future perspectives on novel anticancer strategies using Hsp90 inhibitors.
Collapse
Affiliation(s)
- Manabu Tatokoro
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kazunori Kihara
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
58
|
Evaluating Dual Hsp90 and Hsp70 Inhibition as a Cancer Therapy. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
59
|
Mohanty AK, Dilnawaz F, Mohanta GP, Sahoo SK. Polymer–Drug Conjugates for Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Cai MJ, Li XR, Pei XY, Liu W, Wang JX, Zhao XF. Heat shock protein 90 maintains the stability and function of transcription factor Broad Z7 by interacting with its Broad-Complex-Tramtrack-Bric-a-brac domain. INSECT MOLECULAR BIOLOGY 2014; 23:720-732. [PMID: 25060629 DOI: 10.1111/imb.12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that interacts with various client proteins to mediate their folding and stability. The Broad-Complex-Tramtrack-Bric-a-brac (BTB) domain, also known as poxvirus and zinc finger (POZ) domain, exists widely in different proteins and is highly conserved. However, the stability mechanism of BTB domain-containing proteins has not been fully understood. Co-immunoprecipitation and a protein pull-down assay were performed to investigate the interaction between Hsp90 and the transcription factor Broad isoform Z7 (BrZ7) in vivo and in vitro. The middle domain of Hsp90 directly associated with the BTB domain of BrZ7. The Hsp90 inhibitor 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) interrupted the interaction between Hsp90 and BrZ7 and decreased the protein level of BrZ7 but did not affect the mRNA level of BrZ7. The addition of the proteasome inhibitor peptide aldehyde Cbz-leu-leu leucinal suppressed the 17-AAG-induced degradation of BrZ7. BTB domain deletion and 17-AAG treatment resulted in inhibition of BrZ7 function in gene expression in the 20-hydroxyecdysone and juvenile hormone pathways. These results reveal that the middle domain of Hsp90 associates with the BTB domain of BrZ7 to prevent BrZ7 degradation and maintain BrZ7 function in gene expression in the lepidopteran insect Helicoverpa armigera.
Collapse
Affiliation(s)
- M-J Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
61
|
Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:353-71. [PMID: 25292434 PMCID: PMC4372135 DOI: 10.1146/annurev-pharmtox-010814-124332] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently available therapies for adult onset neurodegenerative diseases provide symptomatic relief but do not modify disease progression. Here we explore a new neuroprotective approach based on drugs targeting chaperone-directed protein quality control. Critical target proteins that unfold and aggregate in these diseases, such as the polyglutamine androgen receptor in spinal and bulbar muscular atrophy, huntingtin in Huntington's disease, α-synuclein in Parkinson's disease, and tau in Alzheimer's disease, are client proteins of heat shock protein 90 (Hsp90), and their turnover is regulated by the protein quality control function of the Hsp90/Hsp70-based chaperone machinery. Hsp90 and Hsp70 have opposing effects on client protein stability in protein quality control; Hsp90 stabilizes the clients and inhibits their ubiquitination, whereas Hsp70 promotes ubiquitination dependent on CHIP (C terminus of Hsc70-interacting protein) and proteasomal degradation. We discuss how drugs that modulate proteostasis by inhibiting Hsp90 function or promoting Hsp70 function enhance the degradation of the critical aggregating proteins and ameliorate toxic symptoms in cell and animal disease models.
Collapse
Affiliation(s)
- William B. Pratt
- Departments of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Disease, The University of California at San Franscisco, San Francisco, CA 94158
| | - Yoichi Osawa
- Departments of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Andrew P. Lieberman
- Departments of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
62
|
Powers MV, Valenti M, Miranda S, Maloney A, Eccles SA, Thomas G, Clarke PA, Workman P. Mode of cell death induced by the HSP90 inhibitor 17-AAG (tanespimycin) is dependent on the expression of pro-apoptotic BAX. Oncotarget 2014; 4:1963-75. [PMID: 24185264 PMCID: PMC3875762 DOI: 10.18632/oncotarget.1419] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inhibitors of the molecular chaperone heat shock protein 90 (HSP90) are of considerable current interest as targeted cancer therapeutic agents because of the ability to destabilize multiple oncogenic client proteins. Despite their resulting pleiotropic effects on multiple oncogenic pathways and hallmark traits of cancer, resistance to HSP90 inhibitors is possible and their ability to induce apoptosis is less than might be expected. Using an isogenic model for BAX knockout in HCT116 human colon carcinoma cells, we demonstrate the induction of BAX-dependent apoptosis at pharmacologically relevant concentrations of the HSP90 inhibitor 17-AAG both in vitro and in tumor xenografts in vivo. Removal of BAX expression by homologous recombination reduces apoptosis in vitro and in vivo but allows a lower level of cell death via a predominantly necrotic mechanism. Despite reducing apoptosis, the loss of BAX does not alter the overall sensitivity to 17-AAG in vitro or in vivo. The results indicate that 17-AAG acts predominantly to cause a cytostatic antiproliferative effect rather than cell death and further suggest that BAX status may not alter the overall clinical response to HSP90 inhibitors. Other agents may be required in combination to enhance tumor-selective killing by these promising drugs. In addition, there are implications for the use of apoptotic endpoints in the assessment of the activity of molecularly targeted agents.
Collapse
Affiliation(s)
- Marissa V Powers
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Vesci L, Milazzo FM, Carollo V, Pace S, Giannini G. Preclinical antitumor activity of SST0116CL1: a novel heat shock protein 90 inhibitor. Int J Oncol 2014; 45:1421-9. [PMID: 25096516 PMCID: PMC4151799 DOI: 10.3892/ijo.2014.2575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/02/2014] [Indexed: 11/05/2022] Open
Abstract
4-Amino substituted resorcino-isoxazole (SST0116CL1) (property of Sigma-Tau Research Switzerland S.A.) is a potent, second generation, small-molecule heat shock protein 90 inhibitor (Hsp90i). SST0116CL1 binds to the ATP binding pocket of Hsp90, and interferes with Hsp90 chaperone function thus resulting in client protein degradation and tumor growth inhibition. The aim of the study was to assess SST0116CL1 in various solid and haematological tumors. The antitumor properties of SST0116CL1 were assessed using in vitro cell proliferation and client protein degradation assays and in vivo different tumor xenograft models. Pharmacokinetic (PK) data were also generated in tumor-bearing mice to gain an understanding of optimal dosing schedules and regimens. SST0116CL1 was shown to inhibit recombinant Hsp90α and to induce the destabilization of different client proteins, often overexpressed and constitutively activated in different types of hematological or solid human tumors. In preclinical in vivo studies, it was revealed to induce antitumor effects in murine models of leukemia and of gastric and ovarian carcinoma. A modulation of PD biomarkers in terms of downregulation of Hsp90 client proteins in tumor-bearing mice was found. SST0116CL1 is a new clinical candidate for cancer therapy. The antitumor property of SST0116CL1, likely due to direct inhibition of the Hsp90 enzymatic activity, may prove to be a critical attribute as the compound enters phase I clinical trials.
Collapse
Affiliation(s)
- Loredana Vesci
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | | | - Valeria Carollo
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | - Silvia Pace
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | - Giuseppe Giannini
- Research & Development, Sigma-Tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| |
Collapse
|
64
|
Huang W, Ye M, Zhang LR, Wu QD, Zhang M, Xu JH, Zheng W. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Mol Cancer 2014; 13:150. [PMID: 24927996 PMCID: PMC4074137 DOI: 10.1186/1476-4598-13-150] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Background Heat shock protein 90 (Hsp90) is a promising therapeutic target and inhibition of Hsp90 will presumably result in suppression of multiple signaling pathways. FW-04-806, a bis-oxazolyl macrolide compound extracted from China-native Streptomyces FIM-04-806, was reported to be identical in structure to the polyketide Conglobatin. Methods We adopted the methods of chemproteomics, computational docking, immunoprecipitation, siRNA gene knock down, Quantitative Real-time PCR and xenograft models on the research of FW-04-806 antitumor mechanism, through the HER2-overexpressing breast cancer SKBR3 and HER2-underexpressing breast cancer MCF-7 cell line. Results We have verified the direct binding of FW-04-806 to the N-terminal domain of Hsp90 and found that FW-04-806 inhibits Hsp90/cell division cycle protein 37 (Cdc37) chaperone/co-chaperone interactions, but does not affect ATP-binding capability of Hsp90, thereby leading to the degradation of multiple Hsp90 client proteins via the proteasome pathway. In breast cancer cell lines, FW-04-806 inhibits cell proliferation, caused G2/M cell cycle arrest, induced apoptosis, and downregulated Hsp90 client proteins HER2, Akt, Raf-1 and their phosphorylated forms (p-HER2, p-Akt) in a dose and time-dependent manner. Importantly, FW-04-806 displays a better anti-tumor effect in HER2-overexpressed SKBR3 tumor xenograft model than in HER2-underexpressed MCF-7 model. The result is consistent with cell proliferation assay and in vitro apoptosis assay applied for SKBR-3 and MCF-7. Furthermore, FW-04-806 has a favorable toxicity profile. Conclusions As a novel Hsp90 inhibitor, FW-04-806 binds to the N-terminal of Hsp90 and inhibits Hsp90/Cdc37 interaction, resulting in the disassociation of Hsp90/Cdc37/client complexes and the degradation of Hsp90 client proteins. FW-04-806 displays promising antitumor activity against breast cancer cells both in vitro and in vivo, especially for HER2-overexpressed breast cancer cells.
Collapse
Affiliation(s)
| | - Min Ye
- School of Pharmacy, Fujian Medical University, Basic Medicine Building North 205, No,88 Jiaotong Road, Fuzhou, Fujian 350004, China.
| | | | | | | | | | | |
Collapse
|
65
|
Angel SO, Matrajt M, Echeverria PC. A review of recent patents on the protozoan parasite HSP90 as a drug target. Recent Pat Biotechnol 2014; 7:2-8. [PMID: 23002958 PMCID: PMC3706948 DOI: 10.2174/1872208311307010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/28/2012] [Accepted: 09/22/2012] [Indexed: 01/30/2023]
Abstract
Diseases caused by protozoan parasites are still an important health problem. These parasites can cause a wide spectrum of diseases, some of which are severe and have high morbidity or mortality if untreated. Since they are still uncontrolled, it is important to find novel drug targets and develop new therapies to decrease their remarkable social and economic impact on human societies. In the past years, human HSP90 has become an interesting drug target that has led to a large number of investigations both at state organizations and pharmaceutical companies, followed by clinical trials. The finding that HSP90 has important biological roles in some protozoan parasites like Plasmodium spp, Toxoplasma gondii and trypanosomatids has allowed the expansion of the results obtained in human cancer to these infections. This review summarizes the latest important findings showing protozoan HSP90 as a drug target and presents three patents targeting T. gondii, P. falciparum and trypanosomatids HSP90.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitologia Molecular, IIB-INTECH, Av. Intendente Marino Km. 8.2, C.C. 164, (B7130IIWA), Chascomus, Prov. Buenos Aires, Argentina.
| | | | | |
Collapse
|
66
|
Asp N, Pust S, Sandvig K. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1987-96. [PMID: 24747692 DOI: 10.1016/j.bbamcr.2014.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
The ErbB3 receptor is an important regulator of cell growth and carcinogenesis. Among breast cancer patients, up to 50-70% have ErbB3 overexpression and 20-30% show overexpressed or amplified ErbB2. ErbB3 has also been implicated in the development of resistance to several drugs used against cancers driven by ErbB1 or ErbB2. One of the main challenges in ErbB-targeting therapy is to inactivate signaling mediated by ErbB2-ErbB3 oncogenic receptor complexes. We analyzed the regulatory role of flotillins on ErbB3 levels and ErbB2-ErbB3 complexes in SKBR3, MCF7 and MDA-MB-134-VI human breast cancer cells. Recently, we described a mechanism for interfering with ErbB2 signaling in breast cancer and demonstrated a molecular complex of flotillin scaffolding proteins with ErbB2 and Hsp90. In the present study, flotillins were found to be in a molecular complex with ErbB3, even in cells without the presence of ErbB2 or other ErbB receptors. Depletion of either flotillin-1 or flotillin-2 resulted in downregulation of ErbB3 and a selective reduction of ErbB2-ErbB3 receptor complexes. Moreover, flotillin-2 depletion resulted in reduced activation of Akt and MAPK signaling cascades, and as a functional consequence of flotillin depletion, breast cancer cells showed an impaired cell migration. Altogether, we provide data demonstrating a novel and functional role of flotillins in the regulation of ErbB protein levels and stabilization of ErbB2-ErbB3 receptor complexes. Thus, flotillins are crucial regulators for oncogenic ErbB function and potential targets for cancer treatment.
Collapse
Affiliation(s)
- Nagham Asp
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Sascha Pust
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway; Department of Molecular Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
67
|
Mishra P, Bolon DNA. Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven mechanism in vivo. Mol Cell 2014; 53:344-50. [PMID: 24462207 DOI: 10.1016/j.molcel.2013.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 12/24/2013] [Indexed: 02/02/2023]
Abstract
Hsp90 is a homodimeric ATPase that is essential in eukaryotes for the maturation of client proteins frequently involved in signal transduction, including many kinases and nuclear steroid hormone receptors. Competitive inhibitors of ATP binding to Hsp90 prevent client maturation and show promise as anticancer agents in clinical trials. However, the role of ATP binding and hydrolysis in each subunit of the Hsp90 dimer has been difficult to investigate because of an inability to assemble and study dimers of defined composition. We used protein engineering to generate functional Hsp90 subunits that preferentially assemble as heterodimers. We analyzed dimers wherein one subunit harbors a disruptive mutation and observed that ATP binding by both subunits is essential for function in yeast, whereas ATP hydrolysis is only required in one subunit. These findings demonstrate important functional contributions from both symmetric and asymmetric Hsp90 dimers and provide valuable reagents for future investigations of Hsp90 mechanism.
Collapse
Affiliation(s)
- Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
68
|
Gu M, Yu Y, Gunaherath GMKB, Leslie Gunatilaka AA, Li D, Sun D. Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs 2014; 32:68-74. [PMID: 23887853 PMCID: PMC3865103 DOI: 10.1007/s10637-013-9987-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/15/2023]
Abstract
Withaferin A (WA), a naturally occurring steroidal lactone, directly binds to Hsp90 and leads to the degradation of Hsp90 client protein. The purpose of this study is to investigate the structure activity relationship (SAR) of withanolides for their inhibition of Hsp90 and anti-proliferative activities in pancreatic cancer cells. In pancreatic cancer Panc-1 cells, withaferin A (WA) and its four analogues withanolide E (WE), 4-hydroxywithanolide E (HWE), 3-aziridinylwithaferin A (AzWA) inhibited cell proliferation with IC50 ranged from 1.0 to 2.8 μM. WA, WE, HWE, and AzWA also induced caspase-3 activity by 21-, 6-, 11- and 15-fold, respectively, in Panc-1 cells, while withaperuvin (WP) did not show any activity. Our data showed that WA, WE, HWE, and AzWA, but not WP, all directly bound to Hsp90 and induced Hsp90 aggregation,hence inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins Akt and Cdk4 through proteasome-dependent pathway in pancreatic cancer cells. However, only WA, HWE and AzWA disrupted Hsp90-Cdc37 complexes but not WE and WP. SAR study suggested that the C-5(6)-epoxy functional group contributes considerably for withanolide to bind to Hsp90, inhibit Hsp90 chaperone activity, and result in Hsp90 client protein depletion. Meanwhile, the hydroxyl group at C-4 of ring A may enhance withanolide to inhibit Hsp90 activity and disrupt Hsp90-Cdc37 interaction. These SAR data provide possible mechanisms of anti-proliferative action of withanolides.
Collapse
Affiliation(s)
- Mancang Gu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, ZJ 310013. P.R.China
| | - Yanke Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - G. M. Kamal B Gunaherath
- SW Center for Natural Products Research & Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E Valencia Road, Tucson, AZ 85706-6800
| | - A. A. Leslie Gunatilaka
- SW Center for Natural Products Research & Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E Valencia Road, Tucson, AZ 85706-6800
| | - Dapeng Li
- Department of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, ZJ 310013. P.R.China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
69
|
Bansal H, Yihua Q, Iyer SP, Ganapathy S, Proia DA, Proia D, Penalva LO, Uren PJ, Suresh U, Carew JS, Karnad AB, Weitman S, Tomlinson GE, Rao MK, Kornblau SM, Bansal S. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia 2014; 28:1171-4. [PMID: 24413322 DOI: 10.1038/leu.2014.16] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- H Bansal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Q Yihua
- Department of Leukemia & Department of Stem Cell Transplantation and Cellular Therapy, The MD Anderson Cancer Center, Houston, TX, USA
| | - S P Iyer
- Methodist Cancer Center, Houston, TX, USA
| | - S Ganapathy
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA
| | | | - D Proia
- Synta Pharmaceuticals Corp, Lexington, MA, USA
| | - L O Penalva
- 1] Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA [2] Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - P J Uren
- Division of Biological Sciences at University of Southern California, Los Angeles, CA, USA
| | - U Suresh
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA
| | - J S Carew
- Institute for Drug Development, Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
| | - A B Karnad
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - S Weitman
- Institute for Drug Development, Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX, USA
| | - G E Tomlinson
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA
| | - M K Rao
- 1] Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA [2] Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - S M Kornblau
- Department of Leukemia & Department of Stem Cell Transplantation and Cellular Therapy, The MD Anderson Cancer Center, Houston, TX, USA
| | - S Bansal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
70
|
HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis 2014; 5:e980. [PMID: 24384723 PMCID: PMC4040658 DOI: 10.1038/cddis.2013.508] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/30/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023]
Abstract
Overexpression of the human epidermal growth factor receptor-2 (HER2) in breast cancer strongly correlates with aggressive tumors and poor prognosis. Recently, a positive correlation between HER2 and MIF (macrophage migration inhibitory factor, a tumor-promoting protein and heat-shock protein 90 (HSP90) client) protein levels was shown in cancer cells. However, the underlying mechanistic link remained unknown. Here we show that overexpressed HER2 constitutively activates heat-shock factor 1 (HSF1), the master transcriptional regulator of the inducible proteotoxic stress response of heat-shock chaperones, including HSP90, and a crucial factor in initiation and maintenance of the malignant state. Inhibiting HER2 pharmacologically by Lapatinib (a dual HER2/epidermal growth factor receptor inhibitor) or CP724.714 (a specific HER2 inhibitor), or by knockdown via siRNA leads to inhibition of phosphoactivated Ser326 HSF1, and subsequently blocks the activity of the HSP90 chaperone machinery in HER2-overexpressing breast cancer lines. Consequently, HSP90 clients, including MIF, AKT, mutant p53 and HSF1 itself, become destabilized, which in turn inhibits tumor proliferation. Mechanistically, HER2 signals via the phosphoinositide-3-kinase (PI3K)–AKT– mammalian target of rapamycin (mTOR) axis to induce activated pSer326 HSF1. Heat-shock stress experiments confirm this functional link between HER2 and HSF1, as HER2 (and PI3K) inhibition attenuate the HSF1-mediated heat-shock response. Importantly, we confirmed this axis in vivo. In the mouse model of HER2-driven breast cancer, ErbB2 inhibition by Lapatinib strongly suppresses tumor progression, and this is associated with inactivation of the HSF1 pathway. Moreover, ErbB2-overexpressing cancer cells derived from a primary mouse ErbB2 tumor also show HSF1 inactivation and HSP90 client destabilization in response to ErbB2 inhibition. Furthermore, in HER2-positive human breast cancers HER2 levels strongly correlate with pSer326 HSF1 activity. Our results show for the first time that HER2/ErbB2 overexpression controls HSF1 activity, with subsequent stabilization of numerous tumor-promoting HSP90 clients such as MIF, AKT and HSF1 itself, thereby causing a robust promotion in tumor growth in HER2-positive breast cancer.
Collapse
|
71
|
Saitoh R, Nagayasu M, Shibahara N, Ono N, Suda A, Kato M, Ishigai M. Assessing the Impact of HER2 Status on the Antitumor Activity of an HSP90 Inhibitor in Human Tumor Xenograft Mice Using Pharmacokinetic–Pharmacodynamic Modeling. Drug Metab Pharmacokinet 2014; 29:185-91. [DOI: 10.2133/dmpk.dmpk-13-rg-066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Diverse roles of C-terminal Hsp70-interacting protein (CHIP) in tumorigenesis. J Cancer Res Clin Oncol 2013; 140:189-97. [DOI: 10.1007/s00432-013-1571-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/12/2013] [Indexed: 12/23/2022]
|
73
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
74
|
Anania VG, Pham VC, Huang X, Masselot A, Lill JR, Kirkpatrick DS. Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins. Mol Cell Proteomics 2013; 13:145-56. [PMID: 24142993 PMCID: PMC3879610 DOI: 10.1074/mcp.m113.031062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitination is a process that involves the covalent attachment of the 76-residue ubiquitin protein through its C-terminal di-glycine (GG) to lysine (K) residues on substrate proteins. This post-translational modification elicits a wide range of functional consequences including targeting proteins for proteasomal degradation, altering subcellular trafficking events, and facilitating protein-protein interactions. A number of methods exist for identifying the sites of ubiquitination on proteins of interest, including site-directed mutagenesis and affinity-purification mass spectrometry (AP-MS). Recent publications have also highlighted the use of peptide-level immunoaffinity enrichment of K-GG modified peptides from whole cell lysates for global characterization of ubiquitination sites. Here we investigated the utility of this technique for focused mapping of ubiquitination sites on individual proteins. For a series of membrane-associated and cytoplasmic substrates including erbB-2 (HER2), Dishevelled-2 (DVL2), and T cell receptor α (TCRα), we observed that K-GG peptide immunoaffinity enrichment consistently yielded additional ubiquitination sites beyond those identified in protein level AP-MS experiments. To assess this quantitatively, SILAC-labeled lysates were prepared and used to compare the abundances of individual K-GG peptides from samples prepared in parallel. Consistently, K-GG peptide immunoaffinity enrichment yielded greater than fourfold higher levels of modified peptides than AP-MS approaches. Using this approach, we went on to characterize inducible ubiquitination on multiple members of the T-cell receptor complex that are functionally affected by endoplasmic reticulum (ER) stress. Together, these data demonstrate the utility of immunoaffinity peptide enrichment for single protein ubiquitination site analysis and provide insights into the ubiquitination of HER2, DVL2, and proteins in the T-cell receptor complex.
Collapse
|
75
|
Miyajima N, Tsutsumi S, Sourbier C, Beebe K, Mollapour M, Rivas C, Yoshida S, Trepel JB, Huang Y, Tatokoro M, Shinohara N, Nonomura K, Neckers L. The HSP90 inhibitor ganetespib synergizes with the MET kinase inhibitor crizotinib in both crizotinib-sensitive and -resistant MET-driven tumor models. Cancer Res 2013; 73:7022-33. [PMID: 24121490 DOI: 10.1158/0008-5472.can-13-1156] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The proto-oncogene MET is aberrantly activated via overexpression or mutation in numerous cancers, making it a prime anticancer molecular target. However, the clinical success of MET-directed tyrosine kinase inhibitors (TKI) has been limited due, in part, to mutations in the MET kinase domain that confer therapeutic resistance. Circumventing this problem remains a key challenge to improving durable responses in patients receiving MET-targeted therapy. MET is an HSP90-dependent kinase, and in this report we show that HSP90 preferentially interacts with and stabilizes activated MET, regardless of whether the activation is ligand-dependent or is a consequence of kinase domain mutation. In contrast, many MET-TKI show a preference for the inactive form of the kinase, and activating mutations in MET can confer resistance. Combining the HSP90 inhibitor ganetespib with the MET-TKI crizotinib achieves synergistic inhibition of MET, its downstream signaling pathways, and tumor growth in both TKI-sensitive and -resistant MET-driven tumor models. These data suggest that inclusion of an HSP90 inhibitor can partially restore TKI sensitivity to previously resistant MET mutants, and they provide the foundation for clinical evaluation of this therapeutic combination in patients with MET-driven cancers.
Collapse
Affiliation(s)
- Naoto Miyajima
- Authors' Affiliations: Urologic Oncology Branch and Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; Departments of Urology, Biochemistry, and Molecular Biology, Cancer Research Institute, SUNY Upstate Medical University, Syracuse, New York; and Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Schenk E, Hendrickson AEW, Northfelt D, Toft DO, Ames MM, Menefee M, Satele D, Qin R, Erlichman C. Phase I study of tanespimycin in combination with bortezomib in patients with advanced solid malignancies. Invest New Drugs 2013; 31:1251-6. [PMID: 23543109 PMCID: PMC3929968 DOI: 10.1007/s10637-013-9946-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE To determine the maximum tolerated dose (MTD) and characterize the dose-limiting toxicities (DLT) of tanespimycin when given in combination with bortezomib. EXPERIMENTAL DESIGN Phase I dose-escalating trial using a standard cohort "3+3" design performed in patients with advanced solid tumors. Patients were given tanespimycin and bortezomib twice weekly for 2 weeks in a 3 week cycle (days 1, 4, 8, 11 every 21 days). RESULTS Seventeen patients were enrolled in this study, fifteen were evaluable for toxicity, and nine patients were evaluable for tumor response. The MTD was 250 mg/m(2) of tanespimycin and 1.0 mg/m(2) of bortezomib when used in combination. DLTs of abdominal pain (13 %), complete atrioventricular block (7 %), fatigue (7 %), encephalopathy (7 %), anorexia (7 %), hyponatremia (7 %), hypoxia (7 %), and acidosis (7 %) were observed. There were no objective responses. One patient had stable disease. CONCLUSIONS The recommended phase II dose for twice weekly 17-AAG and PS341 are 250 mg/m(2) and 1.0 mg/m(2), respectively, on days 1, 4, 8 and 11 of a 21 day cycle.
Collapse
Affiliation(s)
- Erin Schenk
- Division of Medical Oncology, Mayo Clinic College of Medicine, Mayo Clinic, Gonda 19, 200 First Street, S.W, Rochester, MN, 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Patel PD, Yan P, Seidler PM, Patel HJ, Sun W, Yang C, Que NS, Taldone T, Finotti P, Stephani RA, Gewirth DT, Chiosis G. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 2013; 9:677-84. [PMID: 23995768 DOI: 10.1038/nchembio.1335] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/01/2013] [Indexed: 12/30/2022]
Abstract
Although the Hsp90 chaperone family, comprised in humans of four paralogs, Hsp90α, Hsp90β, Grp94 and Trap-1, has important roles in malignancy, the contribution of each paralog to the cancer phenotype is poorly understood. This is in large part because reagents to study paralog-specific functions in cancer cells have been unavailable. Here we combine compound library screening with structural and computational analyses to identify purine-based chemical tools that are specific for Hsp90 paralogs. We show that Grp94 selectivity is due to the insertion of these compounds into a new allosteric pocket. We use these tools to demonstrate that cancer cells use individual Hsp90 paralogs to regulate a client protein in a tumor-specific manner and in response to proteome alterations. Finally, we provide new mechanistic evidence explaining why selective Grp94 inhibition is particularly efficacious in certain breast cancers.
Collapse
Affiliation(s)
- Pallav D Patel
- 1] Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, New York, New York, USA. [2] Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, New York, USA. [3]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Mahanta S, Pilla S, Paul S. Design of novel Geldanamycin analogue hsp90 alpha-inhibitor in silico for breast cancer therapy. Med Hypotheses 2013; 81:463-9. [DOI: 10.1016/j.mehy.2013.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/23/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
79
|
Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low Curie temperature. Int J Clin Oncol 2013; 19:722-30. [PMID: 23949287 DOI: 10.1007/s10147-013-0606-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/24/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heat shock protein (Hsp) 90 is a key regulator of various oncogene products and cell-signaling molecules, while Hsp70 protects against heat-induced apoptosis. We previously described a system in which hyperthermia was produced using thermosensitive ferromagnetic particles (FMPs) with a Curie temperature (T c) of 43 °C to mediate automatic temperature control, and demonstrated its antitumor effect in a mouse melanoma model. In the present study, the antitumor effects of combining Hsp90 inhibitor (17DMAG) and Hsp70 inhibitor (quercetin) with FMP-mediated hyperthermia were examined. METHODS Expressions of Hsp90/70 and Akt were evaluated using Western blotting in vitro. In an in vivo study, melanoma cells were subcutaneously injected into the backs of C57BL/6 mice. FMPs were then injected into the resultant tumors, and the mice were divided into groups treated with quercetin and/or 17DMAG with/without hyperthermia. When exposed to a magnetic field, the temperature of tissues containing FMPs increased and stabilized at the T c. The TUNEL method was used to determine whether hyperthermia induced apoptosis within tumors. RESULTS In the group pretreated with hyperthermia + quercetin + 17DMAG, Akt expression was reduced in vitro, the incidence of apoptosis within tumors was greater, and tumor growth was significantly suppressed 20 days after FMP injection in vivo, compared with other treatment groups. The survival rates among tumor-bearing mice observed for a period of 40 days were significantly higher in the hyperthermia + quercetin + 17DMAG group. CONCLUSION Combining Hsp90/70 inhibition with hyperthermia appears to increase their antitumor effects. Thus, the combination of FMP-mediated, self-regulating hyperthermia with Hsp90/70 inhibition has important implications for cancer treatment.
Collapse
|
80
|
Gunaherath GMKB, Marron MT, Wijeratne EMK, Whitesell L, Gunatilaka AAL. Synthesis and biological evaluation of novobiocin analogues as potential heat shock protein 90 inhibitors. Bioorg Med Chem 2013; 21:5118-29. [PMID: 23859777 DOI: 10.1016/j.bmc.2013.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 01/08/2023]
Abstract
Recent studies have shown that novobiocin (NB), a member of the coumermycin (CA) family of antibiotics with demonstrated DNA gyrase inhibitory activity, inhibits Heat shock protein 90 (HSP90) by binding weakly to a putative ATP-binding site within its C-terminus. To develop more potent HSP90 inhibitors that target this site and to define structure-activity relationships (SARs) for this class of compounds, we have synthesized twenty seven 3-amido-7-noviosylcoumarin analogues starting from NB and CA. These were evaluated for evidence of HSP90 inhibition using several biological assays including inhibition of cell proliferation and cell cycle arrest, induction of the heat shock response, inhibition of luciferase-refolding in vitro, and depletion of the HSP90 client protein c-erbB-2/HER-2/neu (HER2). This SAR study revealed that a substantial increase in biological activity can be achieved by introduction of an indole-2-carboxamide group in place of 4-hydroxy-isopentylbenzamido group at C-3 of NB in addition to removal/derivatization of the 4-hydroxyl group from the coumarin ring. Methylation of the 4-hydroxyl group in the coumarin moiety moderately increased biological activity as shown by compounds 11 and 13. Our most potent new analogue 19 demonstrated biological activities consistent with known HSP90-binding agents, but with greater potency than NB.
Collapse
Affiliation(s)
- G M Kamal B Gunaherath
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States
| | | | | | | | | |
Collapse
|
81
|
Kim T, Keum G, Pae AN. Discovery and development of heat shock protein 90 inhibitors as anticancer agents: a review of patented potent geldanamycin derivatives. Expert Opin Ther Pat 2013; 23:919-43. [PMID: 23641970 DOI: 10.1517/13543776.2013.780597] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION There has been research on anticancer strategies which focus on disrupting a single malignant protein. One of the strategies is the inhibition of one protein, heat shock protein 90 (Hsp90). There are many reasons why Hsp90 protein is targeted by anticancer agents: maintenance of cellular homeostasis in organisms involves Hsp90 and its client proteins; moreover, Hsp90 complex is involved in regulating several signal transduction pathways and plays an important role in the maturation of lots of tumor-promoting client proteins. Geldanamycin (GM), the first benzoquinone ansamycin, has shown anticancer activity by binding to Hsp90. Currently, several GM derivatives such as 17-AAG, 17-(2-dimethylaminoethyl)amino-17-demethoxygeldanamycin, IPI-493, and IPI-504 are being progressively developed toward clinical application. AREAS COVERED Several research groups have studied GM and its derivatives to develop novel and potent Hsp90 inhibitors for the treatment of cancer. The crystal structure of Hsp90 was utilized to undergo structural optimization of GM derivatives. A wide variety of structural modifications were performed and some of the derivatives are now in clinical studies. The aim of this review was to summarize and analyze the structure-activity relationships of GM derivatives and the focus is on patented novel and pharmaceutically efficacious derivatives published from 1971 to 2012. EXPERT OPINION Hsp90 inhibitors offer an effective therapeutic approach for treatment of cancer. To date, the clinical results of 17-AAG, IPI-493, and IPI-504 suggest that these GM derivatives could be used either alone or in combination with other marketed medications for the treatment of cancer patients. As there are not any marketed Hsp90 inhibitors, inhibiting Hsp90 chaperone function remains as a promising strategy that still requires further research.
Collapse
Affiliation(s)
- TaeHun Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 130-650, Korea
| | | | | |
Collapse
|
82
|
Polier S, Samant RS, Clarke PA, Workman P, Prodromou C, Pearl LH. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 2013; 9:307-12. [PMID: 23502424 PMCID: PMC5695660 DOI: 10.1038/nchembio.1212] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
Protein kinase clients are recruited to the Hsp90 molecular chaperone system via Cdc37, which simultaneously binds Hsp90 and kinases and regulates the Hsp90 chaperone cycle. Pharmacological inhibition of Hsp90 in vivo results in degradation of kinase clients, with a therapeutic effect in dependent tumors. We show here that Cdc37 directly antagonizes ATP binding to client kinases, suggesting a role for the Hsp90-Cdc37 complex in controlling kinase activity. Unexpectedly, we find that Cdc37 binding to protein kinases is itself antagonized by ATP-competitive kinase inhibitors, including vemurafenib and lapatinib. In cancer cells, these inhibitors deprive oncogenic kinases such as B-Raf and ErbB2 of access to the Hsp90-Cdc37 complex, leading to their degradation. Our results suggest that at least part of the efficacy of ATP-competitive inhibitors of Hsp90-dependent kinases in tumor cells may be due to targeted chaperone deprivation.
Collapse
Affiliation(s)
- Sigrun Polier
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Rahul S. Samant
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Chrisostomos Prodromou
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Laurence H. Pearl
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
83
|
Wainberg ZA, Anghel A, Rogers AM, Desai AJ, Kalous O, Conklin D, Ayala R, O'Brien NA, Quadt C, Akimov M, Slamon DJ, Finn RS. Inhibition of HSP90 with AUY922 induces synergy in HER2-amplified trastuzumab-resistant breast and gastric cancer. Mol Cancer Ther 2013; 12:509-19. [PMID: 23395886 DOI: 10.1158/1535-7163.mct-12-0507] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HSP90 enables the activation of many client proteins of which the most clinically validated is HER2. NVP-AUY922, a potent HSP90 inhibitor, is currently in phase II clinical trials. To explore its potential clinical use in HER2-amplified breast and gastric cancers, we evaluated the effect of AUY922 alone and in combination with trastuzumab in both trastuzumab-sensitive and -resistant models. A panel of 16 human gastric and 45 breast cancer cell lines, including 16 HER2-amplified (3 and 13, respectively) cells, was treated with AUY922 over various concentrations. In both breast and gastric cancer, we used cell lines and xenograft models with conditioned trastuzumab-resistance to investigate the efficacy of AUY922 alongside trastuzumab. Effects of this combination on downstream markers were analyzed via Western blot analysis. AUY922 exhibited potent antiproliferative activity in the low nanomolar range (<40 nmol/L) for 59 of 61 cell lines. In both histologies, HER2-amplified cells expressed greater sensitivity to AUY than HER2-negative cells. In conditioned trastuzumab-resistant models, AUY922 showed a synergistic effect with trastuzumab. In vitro, the combination induced greater decreases in HER2, a G2 cell-cycle arrest, and increased apoptosis. In a trastuzumab-resistant gastric cancer xenograft model, the combination of AUY922 and trastuzumab showed greater antitumor efficacy than either drug alone. These data suggest that AUY922 in combination with trastuzumab has unique efficacy in trastuzumab-resistant models. The combination of HSP90 inhibition and direct HER2 blockade represents a novel approach to the treatment of HER2-amplified cancers and clinical trials based on the above data are ongoing.
Collapse
Affiliation(s)
- Zev A Wainberg
- University of California Geffen School of Medicine, Department of Medicine, Division of Hematology/Oncology, Santa Monica, CA 90404, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Giordano C, Vizza D, Panza S, Barone I, Bonofiglio D, Lanzino M, Sisci D, De Amicis F, Fuqua SAW, Catalano S, Andò S. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol 2012; 7:379-91. [PMID: 23228483 DOI: 10.1016/j.molonc.2012.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022] Open
Abstract
Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.
Collapse
Affiliation(s)
- Cinzia Giordano
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Vuong TT, Berger C, Bertelsen V, Rødland MS, Stang E, Madshus IH. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes. Exp Cell Res 2012; 319:32-45. [PMID: 23127513 DOI: 10.1016/j.yexcr.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 11/27/2022]
Abstract
The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub(4)) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub(4) chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub(4) was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub(4) was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub(4) was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis.
Collapse
Affiliation(s)
- Tram Thu Vuong
- Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
86
|
Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience 2012; 223:114-23. [DOI: 10.1016/j.neuroscience.2012.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/21/2022]
|
87
|
Flotillins as regulators of ErbB2 levels in breast cancer. Oncogene 2012; 32:3443-51. [PMID: 22869152 DOI: 10.1038/onc.2012.357] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/07/2023]
Abstract
Amplification and overexpression of the receptor tyrosine kinase ErbB2 occur in up to 30% of human breast cancers, and high ErbB2 levels are correlated with poor prognosis for breast cancer patients. In contrast to the epithelial growth factor receptor (ErbB1), ErbB2 is not downregulated by ligand-induced mechanisms. Here we show that flotillins are involved in the stabilization of ErbB2 at the plasma membrane. In SKBR3 breast cancer cells and breast cancer tissue, a positive correlation between flotillin and ErbB2 expression levels could be demonstrated. Moreover, the tissue microarray analyses of biopsies from 194 patients diagnosed with carcinomas of the breast showed that flotillin-2 emerged as a potential predictor of prognosis in breast cancer. Depletion of flotillin-1 and flotillin-2 leads to internalization and degradation of ErbB2. Furthermore, flotillin-1 and -2 were found to be in a molecular complex with ErbB2 and Hsp90. The depletion of one of these proteins results in disruption of this complex, followed by destabilization of ErbB2 at the membrane, and its internalization and degradation. As a consequence, ErbB2-triggered downstream signalling is inhibited. Our data demonstrate a novel mechanism for interfering with ErbB2 signalling, which potentially can have clinical impact.
Collapse
|
88
|
Breast cancer and HSP90 inhibitors: Is there a role beyond the HER2-positive subtype? Breast 2012; 21:604-7. [DOI: 10.1016/j.breast.2012.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/18/2011] [Accepted: 04/11/2012] [Indexed: 11/20/2022] Open
|
89
|
Iyer G, Morris MJ, Rathkopf D, Slovin SF, Steers M, Larson SM, Schwartz LH, Curley T, DeLaCruz A, Ye Q, Heller G, Egorin MJ, Ivy SP, Rosen N, Scher HI, Solit DB. A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors. Cancer Chemother Pharmacol 2012; 69:1089-97. [PMID: 22124669 PMCID: PMC3471133 DOI: 10.1007/s00280-011-1789-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE To define maximum tolerated dose (MTD), clinical toxicities, and pharmacokinetics of 17-allylamino-17-demethoxygeldanamycin (17-AAG) when administered in combination with docetaxel once every 21 days in patients with advanced solid tumor malignancies. EXPERIMENTAL DESIGN Docetaxel was administered over 1 h at doses of 55, 70, and 75 mg/m(2). 17-AAG was administered over 1-2 h, following the completion of the docetaxel infusion, at escalating doses ranging from 80 to 650 mg/m(2) in 12 patient cohorts. Serum was collected for pharmacokinetic and pharmacodynamic studies during cycle 1. Docetaxel, 17-AAG, and 17-AG levels were determined by high-performance liquid chromatography. Biologic effects of 17-AAG were monitored in peripheral blood mononuclear cells by immunoblot. RESULTS Forty-nine patients received docetaxel and 17-AAG. The most common all-cause grade 3 and 4 toxicities were leukopenia, lymphopenia, and neutropenia. An MTD was not defined; however, three dose-limiting toxicities were observed, including 2 incidences of neutropenic fever and 1 of junctional bradycardia. Dose escalation was halted at docetaxel 75 mg/m(2)-17-AAG 650 mg/m(2) due to delayed toxicities attributed to patient intolerance of the DMSO-based 17-AAG formulation. Of 46 evaluable patients, 1 patient with lung cancer experienced a partial response. Minor responses were observed in patients with lung, prostate, melanoma, and bladder cancers. A correlation between reduced docetaxel clearance and 17-AAG dose level was observed. CONCLUSIONS The combination of docetaxel and 17-AAG was well tolerated in adult patients with solid tumors, although patient intolerance to the DMSO formulation precluded further dose escalation. The recommended phase II dose is docetaxel 70 mg/m(2) and 17-AAG 500 mg/m(2).
Collapse
Affiliation(s)
- Gopa Iyer
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gößele U, Koch B, Faber K, Genze F, Schrader M, Kestler HA, Döhner H, Chiosis G, Glimm H, Fröhling S, Scholl C. Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. ACTA ACUST UNITED AC 2012; 209:697-711. [PMID: 22451720 PMCID: PMC3328372 DOI: 10.1084/jem.20111910] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous efforts to develop drugs that directly inhibit the activity of mutant KRAS, the most commonly mutated human oncogene, have not been successful. Cancer cells driven by mutant KRAS require expression of the serine/threonine kinase STK33 for their viability and proliferation, identifying STK33 as a context-dependent therapeutic target. However, specific strategies for interfering with the critical functions of STK33 are not yet available. Here, using a mass spectrometry-based screen for STK33 protein interaction partners, we report that the HSP90/CDC37 chaperone complex binds to and stabilizes STK33 in human cancer cells. Pharmacologic inhibition of HSP90, using structurally divergent small molecules currently in clinical development, induced proteasome-mediated degradation of STK33 in human cancer cells of various tissue origin in vitro and in vivo, and triggered apoptosis preferentially in KRAS mutant cells in an STK33-dependent manner. Furthermore, HSP90 inhibitor treatment impaired sphere formation and viability of primary human colon tumor-initiating cells harboring mutant KRAS. These findings provide mechanistic insight into the activity of HSP90 inhibitors in KRAS mutant cancer cells, indicate that the enhanced requirement for STK33 can be exploited to target mutant KRAS-driven tumors, and identify STK33 depletion through HSP90 inhibition as a biomarker-guided therapeutic strategy with immediate translational potential.
Collapse
Affiliation(s)
- Ninel Azoitei
- Department of Internal Medicine III, Ulm University, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Sak MM, Breen K, Rønning SB, Pedersen NM, Bertelsen V, Stang E, Madshus IH. The oncoprotein ErbB3 is endocytosed in the absence of added ligand in a clathrin-dependent manner. Carcinogenesis 2012; 33:1031-9. [DOI: 10.1093/carcin/bgs128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
92
|
Schulz R, Marchenko ND, Holembowski L, Fingerle-Rowson G, Pesic M, Zender L, Dobbelstein M, Moll UM. Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression. ACTA ACUST UNITED AC 2012; 209:275-89. [PMID: 22271573 PMCID: PMC3280870 DOI: 10.1084/jem.20111117] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In several human cancer cell lines, HSP90 inhibitors destabilize macrophage inhibitory factor protein; systemic treatment with an HSP90 inhibitor slows tumor growth and extends overall survival in a mouse model of HER2-positive human breast cancer. Intracellular macrophage migration inhibitory factor (MIF) often becomes stabilized in human cancer cells. MIF can promote tumor cell survival, and elevated MIF protein correlates with tumor aggressiveness and poor prognosis. However, the molecular mechanism facilitating MIF stabilization in tumors is not understood. We show that the tumor-activated HSP90 chaperone complex protects MIF from degradation. Pharmacological inhibition of HSP90 activity, or siRNA-mediated knockdown of HSP90 or HDAC6, destabilizes MIF in a variety of human cancer cells. The HSP90-associated E3 ubiquitin ligase CHIP mediates the ensuing proteasome-dependent MIF degradation. Cancer cells contain constitutive endogenous MIF–HSP90 complexes. siRNA-mediated MIF knockdown inhibits proliferation and triggers apoptosis of cultured human cancer cells, whereas HSP90 inhibitor-induced apoptosis is overridden by ectopic MIF expression. In the ErbB2 transgenic model of human HER2-positive breast cancer, genetic ablation of MIF delays tumor progression and prolongs overall survival of mice. Systemic treatment with the HSP90 inhibitor 17AAG reduces MIF expression and blocks growth of MIF-expressing, but not MIF-deficient, tumors. Together, these findings identify MIF as a novel HSP90 client and suggest that HSP90 inhibitors inhibit ErbB2-driven breast tumor growth at least in part by destabilizing MIF.
Collapse
Affiliation(s)
- Ramona Schulz
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Heat shock protein (Hsp) 90 is an ATP-dependent molecular chaperone that is exploited by malignant cells to support activated oncoproteins, including many cancer-associated kinases and transcription factors, and it is essential for oncogenic transformation. Originally viewed with skepticism, Hsp90 inhibitors are now being actively pursued by the pharmaceutical industry, with 17 agents having entered clinical trials. Investigators established Hsp90's druggability using the natural products geldanamycin and radicicol, which mimic the unusual ATP structure adopted in the chaperone's N-terminal nucleotide-binding pocket and cause potent and selective blockade of ATP binding/hydrolysis, inhibit chaperone function, deplete oncogenic clients, and show antitumor activity. Preclinical data obtained with these natural products have heightened interest in Hsp90 as a drug target, and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) has shown clinical activity (as defined by Response Evaluation Criteria in Solid Tumors) in HER2+ breast cancer. Many optimized synthetic, small-molecule Hsp90 inhibitors from diverse chemotypes are now in clinical trials. Here, we review the discovery and development of Hsp90 inhibitors and assess their potential. There has been significant learning from studies of the basic biology of Hsp90, as well as translational drug development involving this chaperone, enhanced by the use of Hsp90 inhibitors as chemical probes. Success will likely lie in treating cancers that are addicted to particular driver oncogene products (e.g., HER2, ALK, EGFR, and BRAF) that are sensitive Hsp90 clients, as well as malignancies (especially multiple myeloma) in which buffering of proteotoxic stress is critical for survival. We discuss approaches for enhancing the effectiveness of Hsp90 inhibitors and highlight new chaperone and stress-response pathway targets, including HSF1 and Hsp70.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike Bldg. 10/CRC, Room 1-5940, Bethesda, MD 20892-1107 USA
| | - Paul Workman
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton SM2 5NG UK
| |
Collapse
|
94
|
Ono N, Yamazaki T, Nakanishi Y, Fujii T, Sakata K, Tachibana Y, Suda A, Hada K, Miura T, Sato S, Saitoh R, Nakano K, Tsukuda T, Mio T, Ishii N, Kondoh O, Aoki Y. Preclinical antitumor activity of the novel heat shock protein 90 inhibitor CH5164840 against human epidermal growth factor receptor 2 (HER2)-overexpressing cancers. Cancer Sci 2011; 103:342-9. [PMID: 22050138 DOI: 10.1111/j.1349-7006.2011.02144.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heat shock protein 90 (Hsp90), a molecular chaperone that plays a significant role in the stability and maturation of client proteins, including oncogenic targets for cell transformation, proliferation, and survival, is an attractive target for cancer therapy. We identified the novel Hsp90 inhibitor, CH5164840, and investigated its induction of oncogenic client protein degradation, antiproliferative activity, and apoptosis against an NCI-N87 gastric cancer cell line and a BT-474 breast cancer cell line. Interestingly, CH5164840 demonstrated tumor selectivity both in vitro and in vivo, binding to tumor Hsp90 (which forms active multiple chaperone complexes) in vitro, and being distributed effectively to tumors in a mouse model, which, taken together, supports the decreased levels of phosphorylated Akt by CH5164840 that we observed in tumor tissues, but not in normal tissues. As well as being well tolerated, the oral administration of CH5164840 exhibited potent antitumor efficacy with regression in NCI-N87 and BT-474 tumor xenograft models. In addition, CH5164840 significantly enhanced antitumor efficacy against gastric and breast cancer models when combined with the human epidermal growth factor receptor 2 (HER2)-targeted agents, trastuzumab and lapatinib. These data demonstrate the potent antitumor efficacy of CH5164840 when administered alone, and its significant combination efficacy when combined with trastuzumab or lapatinib, supporting the clinical development of CH5164840 as an Hsp90 inhibitor for combination therapy with HER2-targeted agents against HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Naomi Ono
- Pharmaceutical Research Department 2, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Suzuki T, Fujii A, Ochi H, Nakamura H. Ubiquitination and downregulation of ErbB2 and estrogen receptor-alpha by kinase inhibitor MP-412 in human breast cancer cells. J Cell Biochem 2011; 112:2279-86. [PMID: 21503962 DOI: 10.1002/jcb.23147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ErbB2 has been proven to be an important target for breast cancer therapy. MP-412 is a dual ErbB2 and epidermal growth factor receptor tyrosine kinase inhibitor belonging to an irreversible-type anilinoquinazoline derivative. We demonstrate herein that along with the kinase inhibition, MP-412 has the ability to induce ubiquitination, internalization, and degradation of ErbB2 in several human breast cancer cell lines at concentrations relatively higher than those required for kinase inhibition. Another irreversible inhibitor, CI-1033, showed similar activity, while the reversible compounds were ineffective, suggesting a crucial role of covalent bonding functionality in these effects. In MCF7 cells, MP-412 depleted not only ErbB2 but also estrogen receptor (ER)-α, and to some extent, affected Raf-1, while MP-412 activated Hsp70 expression. Moreover, we observed that MP-412 increased immunocomplexing of Hsp70 with ErbB2 and ER-α, with simultaneous induction of ubiquitination of these client proteins. Furthermore, in combination with proteasome inhibitor, MP-412 resulted in the noticeable accumulation of ErbB2 and ER-α in the detergent insoluble fraction of cell lysates. These results suggest that MP-412 acts as an inhibitor of Hsp90 function, whereas MP-412 did not bind directly to ATP-binding site of Hsp90, unlike geldanamycin. We also found that new protein synthesis was involved in the activity of MP-412 on Hsp90 modulation. Since downregulation of ErbB2 and ER-α by accelerating the ubiquitin-proteolysis system will become an attractive approach for breast cancer therapy, we expect MP-412 to be a lead compound for the drug design and the development of such agents.
Collapse
Affiliation(s)
- Tsuyoshi Suzuki
- Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan.
| | | | | | | |
Collapse
|
96
|
Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:698-706. [PMID: 22154817 DOI: 10.1016/j.bbamcr.2011.11.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
Viruses are intracellular pathogens responsible for a vast number of human diseases. Due to their small genome size, viruses rely primarily on the biosynthetic apparatus of the host for their replication. Recent work has shown that the molecular chaperone Hsp90 is nearly universally required for viral protein homeostasis. As observed for many endogenous cellular proteins, numerous different viral proteins have been shown to require Hsp90 for their folding, assembly, and maturation. Importantly, the unique characteristics of viral replication cause viruses to be hypersensitive to Hsp90 inhibition, thus providing a novel therapeutic avenue for the development of broad-spectrum antiviral drugs. The major developments in this emerging field are hereby discussed. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Ron Geller
- Department of Biology and BioX Program, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
97
|
Franzosa EA, Albanèse V, Frydman J, Xia Y, McClellan AJ. Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 2011; 6:e28211. [PMID: 22140548 PMCID: PMC3227642 DOI: 10.1371/journal.pone.0028211] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/03/2011] [Indexed: 02/01/2023] Open
Abstract
Hsp90 is an essential eukaryotic chaperone with a role in folding specific “client” proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30°C) and hyperthermic stress (37°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15°C heterozygous deletion pool screen with previously conducted 30°C and 37°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions.
Collapse
Affiliation(s)
- Eric A. Franzosa
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Véronique Albanèse
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yu Xia
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Amie J. McClellan
- Division of Natural Sciences and Mathematics, Bennington College, Bennington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
98
|
Liu H, Zhang T, Chen R, McConkey DJ, Ward JF, Curley SA. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG. J Surg Res 2011; 176:147-53. [PMID: 22099584 DOI: 10.1016/j.jss.2011.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/25/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND 17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. MATERIALS AND METHODS We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. RESULTS AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. CONCLUSIONS Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG.
Collapse
Affiliation(s)
- Heping Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
99
|
Yan YY, Zheng LS, Zhang X, Chen LK, Singh S, Wang F, Zhang JY, Liang YJ, Dai CL, Gu LQ, Zeng MS, Talele TT, Chen ZS, Fu LW. Blockade of Her2/neu binding to Hsp90 by emodin azide methyl anthraquinone derivative induces proteasomal degradation of Her2/neu. Mol Pharm 2011; 8:1687-97. [PMID: 21812426 DOI: 10.1021/mp2000499] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Overexpression of HER2/neu, a transmembrane tyrosine kinase acting as a coreceptor for other EGFR family members, is well-known to be associated with a poor prognosis in cancer. In the present study, we observed that emodin AMAD, a novel emodin azide methyl anthraquinone derivative, extracted from nature's giant knotweed rhizome of traditional Chinese herbs, potently decreased Her2/neu protein in dose- and time-dependent manners and also inhibited the downstream MAPK and PI3K-Akt signaling pathway. Intriguingly, reverse transcription-PCR and protein turnover assay revealed that the decrease of Her2/neu was independent of mRNA level but primarily owing to its protein stability. Meanwhile, proteasome inhibitor MG132 but not lysosome inhibitor chloroquine could restore Her2/neu and polyubiquitination of Her2/neu was augmented during emodin AMAD treatment. Furthermore, immunofluorescence study with anti-Her2/neu antibody showed that emodin AMAD disturbed the subcellular distribution of Her2/neu, with decreased location in the plasma membrane. Molecular docking studies predicted that AMAD can interact with the ATP-binding pocket of both Hsp90 and Her2/neu. Importantly, coimmunoprecipitation and immunofluorescence study revealed that emodin AMAD markedly impaired the binding between Hsp90 and Her2/neu and could bind to both Hsp90 and Her2/neu as reinforced by molecular modeling studies. In addition, combination of emodin AMAD treatment and siRNA against Her2 synergistically inhibited proliferation and induced apoptosis. Taken together, these data suggest that blockade of Her2/neu binding to Hsp90 and following proteasomal degradation of Her2/neu were involved in emodin AMAD-induced apoptosis in Her2/neu-overexpressing cancer cells. Our results provide suggestions that emodin AMAD could be promising as a new targeting therapeutic strategy in the treatment of Her2/neu-overexpressing cancers.
Collapse
Affiliation(s)
- Yan-yan Yan
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? Br J Pharmacol 2011; 162:328-45. [PMID: 20942857 DOI: 10.1111/j.1476-5381.2010.01064.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cytosolic heat shock proteins have received significant attention as emerging therapeutic targets. Much of this excitement has been triggered by the discovery that HSP90 plays a central role in the maintenance and stability of multifarious oncogenic membrane receptors and their resultant tyrosine kinase activity. Numerous studies have dealt with the effects of small molecules on chaperone- and stress-related pathways of the endoplasmic reticulum (ER). However, unlike cytosolic chaperones, relatively little emphasis has been placed upon translational avenues towards targeting of the ER for inhibition of folding/secretion of disease-promoting proteins. Here, we summarise existing small molecule inhibitors and potential future targets of ER chaperone-mediated inhibition. Client proteins of translational relevance in disease treatment are outlined, alongside putative future disease treatment modalities based on ER-centric targeted therapies. Particular attention is paid to cancer and autoimmune disorders via the effects of the GRP94 inhibitor geldanamycin and its population of client proteins, overloading of the unfolded protein response, and inhibition of members of the IL-12 family of cytokines by celecoxib and non-coxib analogues.
Collapse
|