51
|
SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood 2000. [DOI: 10.1182/blood.v96.10.3422] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStem cell factor (SCF) is a potent costimulatory molecule for many cytokines. Its synergy with granulocyte colony-stimulating factor (G-CSF) results in important biologic and clinical effects, although the mechanism by which this occurs remains poorly understood. To investigate this interaction, this study used a retroviral vector to transduce the G-CSF receptor into MO7e cells, which are known to express the SCF receptor. The transduced G-CSF receptor is functionally active, and the resultant MO7e-G cells recapitulate the proliferative synergy between SCF and G-CSF. When treated with both cytokines, a marked shortening of the G0/G1 phase of the cell cycle occurs, associated with a suppression of the cyclin-dependent kinase inhibitor p27kip-1. In addition, SCF and G-CSF induce the synergistic activation of c-fos, a proto-oncogene involved in propagation of mitogenic signals in hematopoietic cells. G-CSF, but not SCF, induces the tyrosine phosphorylation of STAT1 and STAT3, transcription factors that can mediate the induction of c-fos. However, SCF induces phosphorylation of STAT3 on serine727 (ser727), which is necessary for maximal STAT transcriptional activity, and the combination of SCF and G-CSF leads to complete STAT3 phosphorylation on ser727. The pathways by which SCF and G-CSF lead to serine phosphorylation of STAT3 are distinct and are partially dependent on phosphatidylinositol-3 kinase and ERKs, pathways that are also necessary for the synergistic effects of SCF and G-CSF on proliferation and c-fos induction. Thus, MO7e-G cells provide a powerful system in which the molecular basis of the synergy between SCF and G-CSF can be dissected.
Collapse
|
52
|
SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood 2000. [DOI: 10.1182/blood.v96.10.3422.h8003422_3422_3430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF) is a potent costimulatory molecule for many cytokines. Its synergy with granulocyte colony-stimulating factor (G-CSF) results in important biologic and clinical effects, although the mechanism by which this occurs remains poorly understood. To investigate this interaction, this study used a retroviral vector to transduce the G-CSF receptor into MO7e cells, which are known to express the SCF receptor. The transduced G-CSF receptor is functionally active, and the resultant MO7e-G cells recapitulate the proliferative synergy between SCF and G-CSF. When treated with both cytokines, a marked shortening of the G0/G1 phase of the cell cycle occurs, associated with a suppression of the cyclin-dependent kinase inhibitor p27kip-1. In addition, SCF and G-CSF induce the synergistic activation of c-fos, a proto-oncogene involved in propagation of mitogenic signals in hematopoietic cells. G-CSF, but not SCF, induces the tyrosine phosphorylation of STAT1 and STAT3, transcription factors that can mediate the induction of c-fos. However, SCF induces phosphorylation of STAT3 on serine727 (ser727), which is necessary for maximal STAT transcriptional activity, and the combination of SCF and G-CSF leads to complete STAT3 phosphorylation on ser727. The pathways by which SCF and G-CSF lead to serine phosphorylation of STAT3 are distinct and are partially dependent on phosphatidylinositol-3 kinase and ERKs, pathways that are also necessary for the synergistic effects of SCF and G-CSF on proliferation and c-fos induction. Thus, MO7e-G cells provide a powerful system in which the molecular basis of the synergy between SCF and G-CSF can be dissected.
Collapse
|
53
|
Erickson-Miller CL, Pelus LM, Lord KA. Signaling induced by erythropoietin and stem cell factor in UT-7/Epo cells: transient versus sustained proliferation. Stem Cells 2000; 18:366-73. [PMID: 11007921 DOI: 10.1634/stemcells.18-5-366] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UT-7/Epo cells are human factor-dependent erythroleukemic cells, requiring erythropoietin (Epo) for long-term growth. Stem cell factor (SCF) stimulates proliferation of UT-7/Epo only transiently, for three to five days. An investigation of the signal transduction pathways activated by these cytokines in UT-7/Epo cells may identify those signals specifically required for sustained growth. Proliferation assays demonstrate that SCF generates a substantial growth response in UT-7/Epo cells; however, the cells do not multiply or survive past five to seven days. While Epo induces the activation of JAK2 and STAT5, SCF stimulation shows no activation of JAK2 or STATs 1, 3, or 5. The activation of MAPK (p42/44) by SCF was transient, lasting only 30 min, in contrast to Epo, which stimulated phosphorylation of p42/44 for up to 2 h. The expression of the early response genes c-fos, egr1, and cytokine-inducible SH2 protein (CIS) in response to SCF or Epo stimulation demonstrated that the transient expression of p42/44 correlated with the transient expression of c-fos and egr1. In addition, CIS was activated by Epo but not SCF. These data indicate that EpoR, JAK2, and STAT5 activation are not required for the initiation of proliferation of these erythroid cells, that the transient activation of p42/44 correlates with the transient gene expression of c-fos and egr1, and sustained expression of c-fos and egr1 as seen in UT-7/Epo cells continuously grown in Epo may be necessary for long-term proliferation.
Collapse
Affiliation(s)
- C L Erickson-Miller
- Department of Molecular Virology and Host Defense, SmithKline Beecham Pharmaceuticals, Collegeville, Pennsylvania, USA.
| | | | | |
Collapse
|
54
|
Phosphatase inhibition promotes antiapoptotic but not proliferative signaling pathways in erythropoietin-dependent HCD57 cells. Blood 2000. [DOI: 10.1182/blood.v96.6.2084.h8002084_2084_2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) allows erythroid precursors to proliferate while protecting them from apoptosis. Treatment of the EPO-dependent HCD57 murine cell line with 70 μmol/L orthovanadate, a tyrosine phosphatase inhibitor, resulted in both increased tyrosine protein phosphorylation and prevention of apoptosis in the absence of EPO without promoting proliferation. Orthovanadate also delayed apoptosis in primary human erythroid progenitors. Thus, we investigated what survival signals were activated by orthovanadate treatment. Expression of Bcl-XL and BAD phosphorylation are critical for the survival of erythroid cells, and orthovanadate in the absence of EPO both maintained expression levels of antiapoptotic Bcl-XLand induced BAD phosphorylation at serine 112. Orthovanadate activated JAK2, STAT1, STAT5, the phosphatidylinositol-3 kinase (PI-3 kinase) pathway, and other signals such as JNK and p38 without activating the EPO receptor, JAK1, Tyk2, Vav, STAT3, and SHC. Neither JNK nor p38 appeared to have a central role in either apoptosis or survival induced by orthovanadate. Treatment with cells with LY294002, an inhibitor of PI-3 kinase activity, triggered apoptosis in orthovanadate-treated cells, suggesting a critical role of PI-3 kinase in orthovanadate-stimulated survival. Mitogen-activated protein kinase (MAPK) was poorly activated by orthovanadate, and inhibition of MAPK with PD98059 blocked proliferation without inducing apoptosis. Thus, orthovanadate likely acts to greatly increase JAK/STAT and PI-3 kinase basal activity in untreated cells by blocking tyrosine protein phosphatase activity. Activated JAK2/STAT5 then likely acts upstream of Bcl-XL expression and PI-3 kinase likely promotes BAD phosphorylation to protect from apoptosis. In contrast, MAPK/ERK activity correlates with only EPO-dependent proliferation but is not required for survival of HCD57 cells.
Collapse
|
55
|
Phosphatase inhibition promotes antiapoptotic but not proliferative signaling pathways in erythropoietin-dependent HCD57 cells. Blood 2000. [DOI: 10.1182/blood.v96.6.2084] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractErythropoietin (EPO) allows erythroid precursors to proliferate while protecting them from apoptosis. Treatment of the EPO-dependent HCD57 murine cell line with 70 μmol/L orthovanadate, a tyrosine phosphatase inhibitor, resulted in both increased tyrosine protein phosphorylation and prevention of apoptosis in the absence of EPO without promoting proliferation. Orthovanadate also delayed apoptosis in primary human erythroid progenitors. Thus, we investigated what survival signals were activated by orthovanadate treatment. Expression of Bcl-XL and BAD phosphorylation are critical for the survival of erythroid cells, and orthovanadate in the absence of EPO both maintained expression levels of antiapoptotic Bcl-XLand induced BAD phosphorylation at serine 112. Orthovanadate activated JAK2, STAT1, STAT5, the phosphatidylinositol-3 kinase (PI-3 kinase) pathway, and other signals such as JNK and p38 without activating the EPO receptor, JAK1, Tyk2, Vav, STAT3, and SHC. Neither JNK nor p38 appeared to have a central role in either apoptosis or survival induced by orthovanadate. Treatment with cells with LY294002, an inhibitor of PI-3 kinase activity, triggered apoptosis in orthovanadate-treated cells, suggesting a critical role of PI-3 kinase in orthovanadate-stimulated survival. Mitogen-activated protein kinase (MAPK) was poorly activated by orthovanadate, and inhibition of MAPK with PD98059 blocked proliferation without inducing apoptosis. Thus, orthovanadate likely acts to greatly increase JAK/STAT and PI-3 kinase basal activity in untreated cells by blocking tyrosine protein phosphatase activity. Activated JAK2/STAT5 then likely acts upstream of Bcl-XL expression and PI-3 kinase likely promotes BAD phosphorylation to protect from apoptosis. In contrast, MAPK/ERK activity correlates with only EPO-dependent proliferation but is not required for survival of HCD57 cells.
Collapse
|
56
|
Uddin S, Kottegoda S, Stigger D, Platanias LC, Wickrema A. Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors. Biochem Biophys Res Commun 2000; 275:16-9. [PMID: 10944433 DOI: 10.1006/bbrc.2000.3266] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin (Epo), stem cell factor (SCF), and insulin-like growth factor-1 (IGF-1) are key regulators of erythroid cell proliferation and differentiation. To understand the mechanisms of generation of signals by each of these growth factors, we determined the activation of the PI3-kinase/Akt pathway during proliferation and differentiation of primary human erythroid progenitors. Our results demonstrate that PKB/Akt is activated by Epo and SCF, but not by IGF-1 in human primary erythroid progenitors. In addition, Epo treatment of erythroid progenitors induces phosphorylation of a member of the Forkhead family (FH) of transcription factors FKHRL1, downstream of activation of the Akt kinase. Such Epo-dependent activation of FKHRL1 apparently regulates the generation of Epo-dependent antiapoptotic signals as evidenced by the induction of apoptosis of erythroid progenitors during treatment of cells with the PI3-kinase (PI3K) inhibitor LY294002. Thus, the PI3K/Akt/FKHRL1 pathway is essential for inhibition of apoptosis in response to Epo and SCF, while the IGF-1 receptor utilizes a different pathway.
Collapse
Affiliation(s)
- S Uddin
- Section of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | | | | | | | | |
Collapse
|
57
|
JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood 2000. [DOI: 10.1182/blood.v96.3.933.015k52_933_940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jun N-terminal kinase (JNK) and p38, members of the mitogen-activated protein kinase family of serine/threonine kinases, are activated as a result of cellular stress but may also play a role in growth factor-induced proliferation and/or survival or differentiation of many cells. A recent report has implicated JNK and p38 in the induction of apoptosis in the erythropoietin (EPO)-dependent erythroid cell line HCD57 following EPO withdrawal, whereas our previously reported data did not support a role for JNK in growth factor withdrawal-induced apoptosis in HCD57 cells. Therefore, further testing was done to see if JNK was activated in EPO withdrawal-induced apoptosis; the study was extended to p38 and characterized the effect of EPO on JNK and p38 activities. Treatment of HCD57 cells with EPO resulted in a gradual and sustained activation of both JNK and p38 activity; these activities decreased on EPO withdrawal. Transient activation of p42/p44 extracellular signal-related kinases (ERK) was also detected. Inhibition of ERK activity inhibited proliferation in EPO-treated cells but neither induced apoptosis nor activated JNK. Inhibition of p38 activity inhibited proliferation but did not protect HCD57 cells from apoptosis induced by EPO withdrawal. Treatment of HCD57 cells with tumor necrosis factor-alpha induced JNK activation but did not induce apoptosis. These results implicate JNK, p38, and ERK in EPO-induced proliferation and/or survival of erythroid cells but do not support a role for JNK or p38 in apoptosis induced by EPO withdrawal from erythroid cells.
Collapse
|
58
|
JNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cells. Blood 2000. [DOI: 10.1182/blood.v96.3.933] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractJun N-terminal kinase (JNK) and p38, members of the mitogen-activated protein kinase family of serine/threonine kinases, are activated as a result of cellular stress but may also play a role in growth factor-induced proliferation and/or survival or differentiation of many cells. A recent report has implicated JNK and p38 in the induction of apoptosis in the erythropoietin (EPO)-dependent erythroid cell line HCD57 following EPO withdrawal, whereas our previously reported data did not support a role for JNK in growth factor withdrawal-induced apoptosis in HCD57 cells. Therefore, further testing was done to see if JNK was activated in EPO withdrawal-induced apoptosis; the study was extended to p38 and characterized the effect of EPO on JNK and p38 activities. Treatment of HCD57 cells with EPO resulted in a gradual and sustained activation of both JNK and p38 activity; these activities decreased on EPO withdrawal. Transient activation of p42/p44 extracellular signal-related kinases (ERK) was also detected. Inhibition of ERK activity inhibited proliferation in EPO-treated cells but neither induced apoptosis nor activated JNK. Inhibition of p38 activity inhibited proliferation but did not protect HCD57 cells from apoptosis induced by EPO withdrawal. Treatment of HCD57 cells with tumor necrosis factor-alpha induced JNK activation but did not induce apoptosis. These results implicate JNK, p38, and ERK in EPO-induced proliferation and/or survival of erythroid cells but do not support a role for JNK or p38 in apoptosis induced by EPO withdrawal from erythroid cells.
Collapse
|
59
|
Sato T, Maekawa T, Watanabe S, Tsuji K, Nakahata T. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. J Clin Invest 2000; 106:263-70. [PMID: 10903342 PMCID: PMC314307 DOI: 10.1172/jci9361] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We reported previously that stimulation of glycoprotein 130 (gp130) by a combination of human IL-6 and soluble IL-6 receptor (sIL-6R) could support proliferation, differentiation, and terminal maturation of erythroid cells in the absence of erythropoietin (EPO) from human CD34(+) cells in culture with stem cell factor (SCF). This observation suggested that differentiation of hematopoietic stem/progenitor cells to erythroid cells progressed according to an intrinsic program and that EPO receptor (EPOR) could be replaced by other cytokine receptors. In other words, EPOR appeared to be dispensable for erythropoiesis. Here we examined the role of EPOR in erythropoiesis stimulated by SCF, sIL-6R, and IL-6. Surprisingly, reduction of EPOR expression using antisense oligodeoxynucleotides suppressed erythropoiesis stimulated not only by SCF and EPO, but also by SCF, sIL-6R, and IL-6. EPO mRNA was detected in erythroid cells but not myeloid cells cultured in the presence of SCF, sIL-6R, and IL-6. Furthermore, high concentrations of anti-EPO-neutralizing antibody abrogated erythropoiesis in cultures without exogenous EPO. Based on these results, we suggest that erythroid progenitors themselves secrete EPO and that they have the potential to differentiate and mature in response to this endogenous EPO.
Collapse
Affiliation(s)
- T Sato
- Department of Clinical Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
60
|
Zochodne B, Truong AH, Stetler K, Higgins RR, Howard J, Dumont D, Berger SA, Ben-David Y. Epo regulates erythroid proliferation and differentiation through distinct signaling pathways: implication for erythropoiesis and Friend virus-induced erythroleukemia. Oncogene 2000; 19:2296-304. [PMID: 10822380 DOI: 10.1038/sj.onc.1203590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently isolated the erythroleukemic cell line, HB60-5, that proliferates in the presence of erythropoietin (Epo) and stem cell factor (SCF), but undergoes terminal differentiation in the presence of Epo alone. Ectopic expression of the ets related transcription factor Fli-1 in these cells resulted in the establishment of the Epo-dependent cell line HB60-ED that proliferates in the presence of Epo. In this study, we utilized these two cell lines to examine the signal transduction pathways that are activated in response to Epo and SCF stimulation. We demonstrate that Epo, but not SCF, phosphorylates STAT-5 in both HB60-5 and HB60-ED cells. Interestingly, SCF activates the Shc/ras pathway in HB60-5 cells while Epo does not. However, both Epo and SCF are capable of activating the Shc/ras pathway in HB60ED cells. Furthermore, enforced expression of gp55 in HB60-5 cells by means of infection with the Spleen Focus Forming virus-P (SFFV-P), confers Epo independent growth, which is associated with the up-regulation of Fli-1. Activation of the Shc/ras pathway is readily detected in gp55 expressing cells in response to both Epo and SCF, and is associated with a block in STAT-5B tyrosine phosphorylation. These results suggest that STAT-5 activation, in the absence of Shc/ras activation, plays a role in erythroid differentiation. Moreover, Fli-1 is capable of switching Epo-induced differentiation to Epo-induced proliferation, suggesting that this ets factor regulated genes whose products modulate the Epo-Epo-R signal transduction pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- DNA-Binding Proteins/metabolism
- Erythropoiesis/physiology
- Erythropoietin/metabolism
- Erythropoietin/pharmacology
- Friend murine leukemia virus
- Humans
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/metabolism
- Mice
- Mice, Inbred BALB C
- Milk Proteins
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Proteins/metabolism
- Proto-Oncogene Protein c-fli-1
- Proto-Oncogene Proteins
- Receptors, Erythropoietin/metabolism
- STAT5 Transcription Factor
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Stem Cell Factor/metabolism
- Stem Cell Factor/pharmacology
- Trans-Activators/metabolism
- Tumor Cells, Cultured
- Viral Envelope Proteins/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- B Zochodne
- Department of Medical Biophysics, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Dai MS, Heinrich MC, Broxmeyer HE, Lu L. Enhancing effects of co-transduction of both human erythropoietin receptor and c-kit cDNAs into hematopoietic stem/progenitor cells from cord blood on proliferation and differentiation of erythroid progenitors. CYTOKINES, CELLULAR & MOLECULAR THERAPY 2000; 6:1-8. [PMID: 10976533 DOI: 10.1080/13684730050515859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Steel factor (SLF) and erythropoietin (Epo) play critical roles in erythropoiesis. To evaluate interactive effects of Epo and SLF receptors (R) in erythropoiesis, CD34+ and CD34 cord blood cells were transduced with human EpoR and c-kit cDNAs by retroviral mediated gene transfer. Erythroid (BFU-E) colonies derived from CD34+ or CD34 cells transduced with either the EpoR or c-kit gene were significantly increased in the presence of interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), Epo, and different concentrations of SLF compared with that from mock transduced cells. This number was further enhanced by co-transduction of both genes. Enhancement was more apparent in the absence of SLF. Cell numbers in individual erythroid colonies were also significantly increased in cells transduced with both genes compared with cells transduced with a single gene. Short-term liquid culture showed that ex vivo expansion for five days and numbers of CD34+CD71+ cells in expanded cells from single CD34 cells co-transduced with both EpoR and c-kit genes were increased compared with those of EpoR or c-kit-transduced cells. These results demonstrate that co-transduction of both c-kit and EpoR enhances the proliferative capacity of erythroid progenitors under cytokine stimulation above that of single-gene transduced cells.
Collapse
Affiliation(s)
- M S Dai
- Department of Microbiology/Immunology and The Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202-5254, USA
| | | | | | | |
Collapse
|
62
|
Sawyer ST, Jacobs-Helber SM. Unraveling distinct intracellular signals that promote survival and proliferation: study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:21-9. [PMID: 10738968 DOI: 10.1089/152581600319586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review summarizes selected recent studies of the intracellular signals that allow erythroid cells to survive and proliferate under the control of erythropoietin (EPO) and alteration in signals that contribute to EPO-independent survival and proliferation. The hypothesis explored is that the proliferation and survival signals are distinct and can be separately studied with the proper cell lines and growth factor stimulation. The anti- and pro-apoptotic proteins Bcl-XL and BAD are highly implicated in EPO-dependent survival of erythroid cells. Stat5 activity appears to be upstream of Bcl-XL expression such that pathologic, constitutive activation of Stat5 may be a common event in leukemic cells that become resistant to apoptosis by constitutive expression of Bcl-XL. Other signals apparently also control the expression of Bcl-XL, such as the expression of JunB which seem to be required to suppress Bcl-XL expression when EPO is withdrawn. Apoptosis may also be triggered by inactivation of Bcl-XL by BAD. Dephosphorylation of BAD as a result of withdrawal of survival factors converts prosurvival BAD to proapoptotic BAD. Phosphorylation of BAD at the serine 112 residue seems critical to promoting survival. Constitutive activation of a kinase that phosphorylates BAD serine 112 may, therefore, contribute to resistance to apoptosis in leukemic cells. We describe the resistance of erythroleukemic cells to apoptosis induced by EPO withdrawal apparently caused by constitutive BAD phosphorylation. The resistance to apoptosis in these cells is reversed by treatment with the PI3-kinase inhibitor, LY294002, suggesting that resistance to apoptosis in these cells likely results from constitutive P13-kinase that is an upstream activator of an S-112 BAD kinase. The MAP kinase cascade is apparently active in EPO-dependent and stem cell factor (SCF)-dependent proliferation but not survival. In addition, autocrine tumor necrosis factor-a! (TNF-alpha) may also be a proliferation factor not affecting survival. P13-kinase seems to be required for full EPO-dependent proliferation but is not required for EPO-dependent survival (but it can promote survival when activated).
Collapse
Affiliation(s)
- S T Sawyer
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613, USA
| | | |
Collapse
|
63
|
Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ. Signal transduction in the erythropoietin receptor system. Exp Cell Res 1999; 253:143-56. [PMID: 10579919 DOI: 10.1006/excr.1999.4673] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Events relayed via the single transmembrane receptor for erythropoietin (Epo) are essential for the development of committed erythroid progenitor cells beyond the colony-forming unit-erythroid stage, and this clearly involves Epo's inhibition of programmed cell death (PCD). Less well resolved, however, are issues regarding the precise nature of Epo-dependent antiapoptotic mechanisms, the extent to which Epo might also promote mitogenesis and/or terminal erythroid differentiation, and the essential vs modulatory nature of certain Epo receptor cytoplasmic subdomains, signal transducing factors, and downstream pathways. Accordingly, this review focuses on the following aspects of Epo signal transduction: (1) Epo receptor/Jak2 activation mechanisms; (2) the critical vs dispensable nature of (P)Y sites and SH2 domain-encoding effectors in survival, growth, and differentiation responses; (3) primary mechanisms by which Epo inhibits PCD; (4) the integration of signals relayed by coexpressed and possibly directly interacting cytokine receptors; and (5) predictions regarding effector function which are provided by the association of certain primary and familial polycythemias with mutated human Epo receptor forms.
Collapse
Affiliation(s)
- D M Wojchowski
- Program in Cell & Developmental Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | | | | | | | | |
Collapse
|
64
|
Abstract
c-Kit is a receptor tyrosine kinase that binds stem cell factor (SCF). Structurally, c-Kit contains five immunoglobulin-like domains extracellularly and a catalytic domain divided into two regions by a 77 amino acid insert intracellularly. Studies in white spotting and steel mice have shown that functional SCF and c-Kit are critical in the survival and development of stem cells involved in hematopoiesis, pigmentation and reproduction. Mutations in c-Kit are associated with a variety of human diseases. Interaction of SCF with c-Kit rapidly induces receptor dimerization and increases in autophosphorylation activity. Downstream of c-Kit, multiple signal transduction components are activated, including phosphatidylinositol-3-kinase, Src family members, the JAK/STAT pathway and the Ras-Raf-MAP kinase cascade. Structure-function studies have begun to address the role of these signaling components in SCF-mediated responses. This review will focus on the biochemical mechanism of action of SCF in hematopoietic cells.
Collapse
Affiliation(s)
- D Linnekin
- Basic Research Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
65
|
Wickrema A, Uddin S, Sharma A, Chen F, Alsayed Y, Ahmad S, Sawyer ST, Krystal G, Yi T, Nishada K, Hibi M, Hirano T, Platanias LC. Engagement of Gab1 and Gab2 in erythropoietin signaling. J Biol Chem 1999; 274:24469-74. [PMID: 10455108 DOI: 10.1074/jbc.274.35.24469] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.
Collapse
Affiliation(s)
- A Wickrema
- Section of Hematology-Oncology, University of Illinois at Chicago and West Side Veterans Affairs Medical Center, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nuñez G, Fernandez-Luna JL. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem 1999; 274:22165-9. [PMID: 10428780 DOI: 10.1074/jbc.274.32.22165] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) initiates its cellular response by binding to the Epo receptor, which triggers the activation of signal transducer and activator of transcription (Stat) 5 protein. Cell culture studies of erythroid progenitors have suggested that Epo functions as a survival factor by repressing apoptosis at least in part through Bcl-x(L), an anti-apoptotic protein of the Bcl-2 family. In this report, we examine whether Stat5 can induce transactivation of the bcl-x gene in response to Epo. Two Epo-responsive progenitor cell lines, HCD-57 and Bcl-2-transfected Ba/F3-Epo receptor (Ba/F3-EpoR-Bcl-2), were used in this study. After Epo stimulation, we observed a correlation between expression of bcl-x(L) and activation of Stat5 as assessed by the expression of oncostatin M, a direct target of Stat5, and the phosphorylation and nuclear translocation of Stat5. Moreover, a Stat binding element in the bcl-x promoter was found to be active in response to Epo, a finding that was further confirmed because mutagenesis of this sequence motif abrogated its promoter activity and overexpression of a dominant negative Stat5 protein blocked transactivation. When DNA-protein binding analyses were performed, we found that Stat5, not Stat1 or Stat3, was the protein bound to the bcl-x promoter in response to Epo. These data suggest that Epo-dependent activation of Stat5 is a transcriptional pathway that can be used by Epo-responsive progenitor cells to induce the expression of bcl-x(L) and consequently to inhibit apoptosis.
Collapse
Affiliation(s)
- M Silva
- Servicio de Inmunologia, Hospital Universitario Marques de Valdecilla, INSALUD, 39008 Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
67
|
The Glucocorticoid Receptor Cooperates With the Erythropoietin Receptor and c-Kit to Enhance and Sustain Proliferation of Erythroid Progenitors In Vitro. Blood 1999. [DOI: 10.1182/blood.v94.2.550] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Although erythropoietin (Epo) is essential for the production of mature red blood cells, the cooperation with other factors is required for a proper balance between progenitor proliferation and differentiation. In avian erythroid progenitors, steroid hormones cooperate with tyrosine kinase receptors to induce renewal of erythroid progenitors. We examined the role of corticosteroids in the in vitro expansion of primary human erythroid cells in liquid cultures and colony assays. Dexamethasone (Dex), a synthetic glucocorticoid hormone, cooperated with Epo and stem cell factor to induce erythroid progenitors to undergo 15 to 22 cell divisions, corresponding to a 105- to 106-fold amplification of erythroid cells. Dex acted directly on erythroid progenitors and maintained the colony-forming capacity of the progenitor cells expanded in liquid cultures. The hormone delayed terminal differentiation into erythrocytes, which was assayed by morphology, hemoglobin accumulation, and the expression of genes characteristic for immature cells. Sustained proliferation of erythroid progenitors could be induced equally well from purified erythroid burst-forming units (BFU-E), from CD34+ blast cells, and from bone marrow depleted from CD34+ cells.
Collapse
|
68
|
The Glucocorticoid Receptor Cooperates With the Erythropoietin Receptor and c-Kit to Enhance and Sustain Proliferation of Erythroid Progenitors In Vitro. Blood 1999. [DOI: 10.1182/blood.v94.2.550.414k39_550_559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although erythropoietin (Epo) is essential for the production of mature red blood cells, the cooperation with other factors is required for a proper balance between progenitor proliferation and differentiation. In avian erythroid progenitors, steroid hormones cooperate with tyrosine kinase receptors to induce renewal of erythroid progenitors. We examined the role of corticosteroids in the in vitro expansion of primary human erythroid cells in liquid cultures and colony assays. Dexamethasone (Dex), a synthetic glucocorticoid hormone, cooperated with Epo and stem cell factor to induce erythroid progenitors to undergo 15 to 22 cell divisions, corresponding to a 105- to 106-fold amplification of erythroid cells. Dex acted directly on erythroid progenitors and maintained the colony-forming capacity of the progenitor cells expanded in liquid cultures. The hormone delayed terminal differentiation into erythrocytes, which was assayed by morphology, hemoglobin accumulation, and the expression of genes characteristic for immature cells. Sustained proliferation of erythroid progenitors could be induced equally well from purified erythroid burst-forming units (BFU-E), from CD34+ blast cells, and from bone marrow depleted from CD34+ cells.
Collapse
|
69
|
Erythropoietin– and Stem Cell Factor–Induced DNA Synthesis in Normal Human Erythroid Progenitor Cells Requires Activation of Protein Kinase C and Is Strongly Inhibited by Thrombin. Blood 1999. [DOI: 10.1182/blood.v94.1.114.413k21_114_126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proliferation, differentiation, and survival of erythroid progenitor cells are mainly regulated by stem cell factor (SCF) and erythropoietin (Epo). Using normal human progenitors, we analyzed the role of Ca2+-sensitive protein kinase C (PKC) subtypes and of G-protein–coupled receptor ligands on growth factor–dependent DNA synthesis. We show that stimulation of DNA synthesis by the two growth factors requires activation of PKC. Inhibitors of Ca2+-activated PKC subtypes blocked the growth factor–induced 3H-thymidine incorporation. SCF and Epo caused no significant translocation of PKC into the membrane, but treatment of intact cells with either of the two cytokines resulted in enhanced activity of immunoprecipitated cytosolic PKC. Stimulation of PKC with the phorbol ester PMA mimicked the cytokine effect on DNA synthesis. Epo-, SCF-, and PMA-induced thymidine incorporation was potently inhibited by thrombin (half-maximal inhibition with 0.1 U/mL). This effect was mediated via the G-protein-coupled thrombin receptor and the Rho guanosine triphosphatase. Adenosine diphosphate caused a modest Ca2+-dependent stimulation of DNA synthesis in the absence of cytokines and specifically enhanced the effect of SCF. Cyclic 3′,5′-adenosine monophosphate exerted a selective inhibitory effect on Epo-stimulated thymidine incorporation. Our results define PKC as major intermediate effector of cytokine signaling and suggest a role for thrombin in controlling erythroid progenitor proliferation.
Collapse
|
70
|
Abstract
The transcription factor GATA-1 is essential for normal erythropoiesis. By examining in vitro–differentiated embryonic stem cells, we showed previously that in the absence of GATA-1, committed erythroid precursors fail to complete maturation and instead undergo apoptosis. The mechanisms by which GATA-1 controls cell survival are unknown. Here we report that in erythroid cells, GATA-1 strongly induces the expression of the anti-apoptotic protein bcl-xL, but not the related proteins bcl-2 and mcl-1. Consistent with a role for bcl-xL in mediating GATA-1–induced erythroid cell survival, in vitro–differentiated bcl-xL−/− embryonic stem cells fail to generate viable mature definitive erythroid cells, a phenotype resembling that of GATA-1 gene disruption. In addition, we show that erythropoietin, which is also required for erythroid cell survival, cooperates with GATA-1 to stimulate bcl-xL gene expression and to maintain erythroid cell viability during terminal maturation. Together, our data show that bcl-xL is essential for normal erythroid development and suggest a regulatory hierarchy in which bcl-xL is a critical downstream effector of GATA-1 and erythropoietin-mediated signals.
Collapse
|
71
|
Tamir A, Howard J, Higgins RR, Li YJ, Berger L, Zacksenhaus E, Reis M, Ben-David Y. Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol Cell Biol 1999; 19:4452-64. [PMID: 10330185 PMCID: PMC104404 DOI: 10.1128/mcb.19.6.4452] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1998] [Accepted: 03/11/1999] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (Epo) is a major regulator of erythropoiesis that alters the survival, proliferation, and differentiation of erythroid progenitor cells. The mechanism by which these events are regulated has not yet been determined. Using HB60, a newly established erythroblastic cell line, we show here that Epo-induced terminal erythroid differentiation is associated with a transient downregulation in the expression of the Ets-related transcription factor Fli-1. Constitutive expression of Fli-1 in HB60 cells, similar to retroviral insertional activation of Fli-1 observed in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia, blocks Epo-induced differentiation while promoting Epo-induced proliferation. These results suggest that Fli-1 modulates the response of erythroid cells to Epo. To understand the mechanism by which Fli-1 regulates erythropoiesis, we searched for downstream target genes whose expression is regulated by this transcription factor. Here we show that the retinoblastoma (Rb) gene, which was previously shown to be involved in the development of mature erythrocytes, contains a Fli-1 consensus binding site within its promoter. Fli-1 binds to this cryptic Ets consensus site within the Rb promoter and transcriptionally represses Rb expression. Both the expression level and the phosphorylation status of Rb are consistent with the response of HB60 cells to Epo-induced terminal differentiation. We suggest that the negative regulation of Rb by Fli-1 could be one of the critical determinants in erythroid progenitor cell differentiation that is specifically deregulated during F-MuLV-induced erythroleukemia.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Cycle
- Cell Differentiation
- Cell Division
- Chromatin/metabolism
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Erythroid Precursor Cells/physiology
- Erythropoietin/physiology
- Genes, Retinoblastoma/genetics
- Immunoblotting
- Mice
- Mice, Inbred BALB C
- Models, Genetic
- Neoplasms, Experimental
- Oligonucleotides, Antisense
- Precipitin Tests
- Promoter Regions, Genetic
- Proto-Oncogene Protein c-fli-1
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-kit/physiology
- Recombinant Fusion Proteins
- Stem Cell Factor/physiology
- Time Factors
- Trans-Activators/physiology
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Tamir
- Department of Medical Biophysics, Cancer Biology Research, Sunnybrook and Women's College Health Science Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Protein Kinase B (c-Akt), Phosphatidylinositol 3-Kinase, and STAT5 Are Activated by Erythropoietin (EPO) in HCD57 Erythroid Cells But Are Constitutively Active in an EPO-Independent, Apoptosis-Resistant Subclone (HCD57-SREI Cells). Blood 1999. [DOI: 10.1182/blood.v93.11.3757.411a34_3757_3773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that erythropoietin (EPO) and stem cell factor (SCF) activated protein kinase B (PKB/Akt) in EPO-dependent HCD57 erythroid cells. To better understand signals controlling proliferation and viability, erythroid cells that resist apoptosis in the absence of EPO were subcloned and characterized (HCD57-SREI cells). Constitutive activations of PKB/Akt, STAT5a, and STAT5b were noted in these EPO-independent cells. PI3-kinase activity was an upstream activator of PKB/Akt because the PI3-kinase inhibitor LY294002 blocked both constitutive PKB/Akt and factor-dependent PKB/Akt activity. The LY294002 study showed that proliferation and viability of both HCD57-SREI and HCD57 cells correlated with the activity of PKB/Akt; however, PKB/Akt activity alone did not protect these cells from apoptosis. Treatment of HCD57 cells with SCF also activated PKB/Akt, but did not protect from apoptosis. This result suggested that PKB/PI3-kinase activity is necessary but not sufficient to promote viability and/or proliferation. Constitutive STAT5 activity, activated through an unknown pathway not including JAK2 or EPOR, may act in concert with the constitutive PI3-kinase/PKB/Akt pathway to protect the EPO-independent HCD57-SREI cells from apoptosis and promote limited proliferation.
Collapse
|
73
|
Protein Kinase B (c-Akt), Phosphatidylinositol 3-Kinase, and STAT5 Are Activated by Erythropoietin (EPO) in HCD57 Erythroid Cells But Are Constitutively Active in an EPO-Independent, Apoptosis-Resistant Subclone (HCD57-SREI Cells). Blood 1999. [DOI: 10.1182/blood.v93.11.3757] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe found that erythropoietin (EPO) and stem cell factor (SCF) activated protein kinase B (PKB/Akt) in EPO-dependent HCD57 erythroid cells. To better understand signals controlling proliferation and viability, erythroid cells that resist apoptosis in the absence of EPO were subcloned and characterized (HCD57-SREI cells). Constitutive activations of PKB/Akt, STAT5a, and STAT5b were noted in these EPO-independent cells. PI3-kinase activity was an upstream activator of PKB/Akt because the PI3-kinase inhibitor LY294002 blocked both constitutive PKB/Akt and factor-dependent PKB/Akt activity. The LY294002 study showed that proliferation and viability of both HCD57-SREI and HCD57 cells correlated with the activity of PKB/Akt; however, PKB/Akt activity alone did not protect these cells from apoptosis. Treatment of HCD57 cells with SCF also activated PKB/Akt, but did not protect from apoptosis. This result suggested that PKB/PI3-kinase activity is necessary but not sufficient to promote viability and/or proliferation. Constitutive STAT5 activity, activated through an unknown pathway not including JAK2 or EPOR, may act in concert with the constitutive PI3-kinase/PKB/Akt pathway to protect the EPO-independent HCD57-SREI cells from apoptosis and promote limited proliferation.
Collapse
|
74
|
Affiliation(s)
- P A Tilbrook
- Department of Biochemistry, University of Western Australia, Australia
| | | |
Collapse
|
75
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
76
|
Synergistic Activation of MAP Kinase (ERK1/2) by Erythropoietin and Stem Cell Factor Is Essential for Expanded Erythropoiesis. Blood 1998. [DOI: 10.1182/blood.v92.4.1142.416k42_1142_1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF) and erythropoietin (EPO) work synergistically to support erythropoiesis, but the mechanism for this synergism is unknown. By using purified human erythroid colony-forming cells (ECFC), we have found that SCF and EPO synergistically activate MAP kinase (MAPK, ERK1/2), which correlates with the cell growth and thus may be responsible for the synergistic effects. Treatment of the cells with PD98059 and wortmannin, inhibitors of MEK and PI-3 kinase, respectively, inhibited the synergistic activation of MAPK and also the cell growth, further supporting this conclusion. Wortmannin only inhibits MAPK activation induced by EPO but not that by SCF, suggesting that SCF and EPO may activate MAPK through different pathways, which would facilitate synergy. Furthermore, EPO, but not SCF, led to activation of STAT5, whereas SCF and wortmannin had no effect on the EPO-induced STAT5 activation, suggesting that STAT5 is not involved in the synergistic action of SCF and EPO. Together, the data suggest that synergistic activation of MAPK by SCF and EPO is essential for expanded erythropoiesis.© 1998 by The American Society of Hematology.
Collapse
|
77
|
Jacobs-Helber SM, Wickrema A, Birrer MJ, Sawyer ST. AP1 regulation of proliferation and initiation of apoptosis in erythropoietin-dependent erythroid cells. Mol Cell Biol 1998; 18:3699-707. [PMID: 9632752 PMCID: PMC108952 DOI: 10.1128/mcb.18.7.3699] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1997] [Accepted: 03/29/1998] [Indexed: 02/07/2023] Open
Abstract
The transcription factor AP1 has been implicated in the induction of apoptosis in cells in response to stress factors and growth factor withdrawal. We report here that AP1 is necessary for the induction of apoptosis following hormone withdrawal in the erythropoietin (EPO)-dependent erythroid cell line HCD57. AP1 DNA binding activity increased upon withdrawal of HCD57 cells from EPO. A dominant negative AP1 mutant rendered these cells resistant to apoptosis induced by EPO withdrawal and blocked the downregulation of Bcl-XL. JunB is a major binding protein in the AP1 complex observed upon EPO withdrawal; JunB but not c-Jun was present in the AP1 complex 3 h after EPO withdrawal in HCD57 cells, with a concurrent increase in junB message and protein. Furthermore, analysis of AP1 DNA binding activity in an apoptosis-resistant subclone of HCD57 revealed a lack of induction in AP1 DNA binding activity and no change in junB mRNA levels upon EPO withdrawal. In addition, we determined that c-Jun and AP1 activities correlated with EPO-induced proliferation and/or protection from apoptosis. AP1 DNA binding activity increased over the first 3 h following EPO stimulation of HCD57 cells, and suppression of AP1 activity partially inhibited EPO-induced proliferation. c-Jun but not JunB was present in the AP1 complex 3 h after EPO addition. These results implicate AP1 in the regulation of proliferation and survival of erythroid cells and suggest that different AP1 factors may play distinct roles in both triggering apoptosis (JunB) and protecting erythroid cells from apoptosis (c-Jun).
Collapse
Affiliation(s)
- S M Jacobs-Helber
- Department of Pharmacology/Toxicology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
78
|
Chu J, Gui CY, Fan J, Tang XD, Qiao RL. STAT1 is involved in signal transduction in the EPO induced HEL cells. Cell Res 1998; 8:105-17. [PMID: 9669026 DOI: 10.1038/cr.1998.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Erythropoietin (EPO) is the major regulator of mammalian erythropoisis, which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor (EPO-R). Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells. Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase (Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells. Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the binding of EPO to HEL cells. Furthermore, the binding of both STAT1 and STAT5 proteins to specific DNA elements (SIE and PIE elements) is revealed in an EPO-dependent manner. Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature erythroid cell from the spleen of mice infected with anemia strain of Friend virus.
Collapse
Affiliation(s)
- J Chu
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
79
|
Ooi J, Tojo A, Asano S, Sato Y, Oka Y. Thrombopoietin induces tyrosine phosphorylation of a common beta subunit of GM-CSF receptor and its association with Stat5 in TF-1/TPO cells. Biochem Biophys Res Commun 1998; 246:132-6. [PMID: 9600081 DOI: 10.1006/bbrc.1998.8588] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TF-1/TPO cells are derived from an erythroleukemia cell line, TF-1, and are absolutely dependent on either TPO or granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin-3 (IL3) for their continuous growth and survival. To gain insight into the molecular basis of hemopoietic activities shared by TPO and GM-CSF/IL3 in TF-1/TPO cells, we studied the cross-talk between signal transduction pathways elicited by these cytokines. Stimulation of TF-1/TPO cells with TPO resulted in tyrosine phosphorylation of the TPO receptor (c-Mpl) as well as the common beta subunit (beta c) of GM-CSF/IL3 receptor complex. GM-CSF, however, induced tyrosine phosphorylation of beta c but not c-Mpl. TPO-induced tyrosine phosphorylation of beta c was time- and dose-dependent. We next examined whether or not TPO-induced tyrosine phosphorylation of beta c led to recruitment of SH2-containing molecules such as Stat5 and Shc. While GM-CSF caused association of Stat5 and Shc with beta c, TPO caused association of Stat5, but not Shc, with beta c, suggesting that TPO and GM-CSF may not induce phosphorylation of the same sets of tyrosine residues in beta c. These results suggest that activation of c-Mpl affects the signaling pathway of GM-CSF/IL3 but not vice versa.
Collapse
Affiliation(s)
- J Ooi
- Third Department of Internal Medicine, Yamaguchi University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
80
|
Abstract
Stem cell factor (SCF) binding to the c-kit receptor triggers homodimerization and intermolecular tyrosine phosphorylation of the c-kit receptor, thus initiating signal transduction. Receptor dimerization is a critical early step in this process. Prior biochemical studies of c-kit receptor dimerization have mainly used affinity cross-linking techniques, which are beset with problems including low efficiency of cross-linking and the usual requirement for radiolabeled SCF to detect the cross-linked complex. We used the fluorescence resonance energy transfer (FRET) technique to examine the effects of SCF and other hematopoietic cytokines on c-kitreceptor dimerization. The nonneutralizing anti–c-kit receptor monoclonal antibody 104D2 was directly conjugated to fluorescein isothiocyanate (FITC) or to the carbocyanine dye Cy3 and used to label cytokine-responsive human hematopoietic cell lines. The ability of SCF to induce c-kit receptor dimerization was assessed by flow cytometric analysis of FRET between the donor fluorochrome FITC and the acceptor fluorochrome Cy3. SCF induced a dose-dependent increase inc-kit receptor dimerization that correlated well with the concentrations of SCF required to stimulate cell proliferation. Receptor dimerization was detectable within 3 minutes after the addition of SCF and was maximal 30 minutes after the addition of SCF. Confocal microscopy showed redistribution of the c-kit receptor (from a diffuse distribution on the cell surface to “caps” at one end of the cell) within 3 minutes after SCF addition, followed by receptor internalization. Reappearance of the c-kit receptor on the cell surface required new protein synthesis, suggesting that thec-kit receptor is not recycled to the cell surface after internalization. Finally, erythropoietin (Epo), but not the structurally and functionally related cytokine thrombopoietin (Tpo), stimulated c-kit receptor dimerization detectable by FRET, and tyrosine phosphorylation of the c-kit receptor. These results suggest that exposure to Epo can activate the c-kit receptor and provide further evidence for cross-talk between the Epo andc-kit receptors in human hematopoietic cell lines. Studies with progeny of burst-forming unit-erythroid (BFU-E) suggest that the FRET technique is sufficiently sensitive to detectc-kit receptor dimerization on normal human hematopoietic cells.
Collapse
|
81
|
Abstract
AbstractStem cell factor (SCF) binding to the c-kit receptor triggers homodimerization and intermolecular tyrosine phosphorylation of the c-kit receptor, thus initiating signal transduction. Receptor dimerization is a critical early step in this process. Prior biochemical studies of c-kit receptor dimerization have mainly used affinity cross-linking techniques, which are beset with problems including low efficiency of cross-linking and the usual requirement for radiolabeled SCF to detect the cross-linked complex. We used the fluorescence resonance energy transfer (FRET) technique to examine the effects of SCF and other hematopoietic cytokines on c-kitreceptor dimerization. The nonneutralizing anti–c-kit receptor monoclonal antibody 104D2 was directly conjugated to fluorescein isothiocyanate (FITC) or to the carbocyanine dye Cy3 and used to label cytokine-responsive human hematopoietic cell lines. The ability of SCF to induce c-kit receptor dimerization was assessed by flow cytometric analysis of FRET between the donor fluorochrome FITC and the acceptor fluorochrome Cy3. SCF induced a dose-dependent increase inc-kit receptor dimerization that correlated well with the concentrations of SCF required to stimulate cell proliferation. Receptor dimerization was detectable within 3 minutes after the addition of SCF and was maximal 30 minutes after the addition of SCF. Confocal microscopy showed redistribution of the c-kit receptor (from a diffuse distribution on the cell surface to “caps” at one end of the cell) within 3 minutes after SCF addition, followed by receptor internalization. Reappearance of the c-kit receptor on the cell surface required new protein synthesis, suggesting that thec-kit receptor is not recycled to the cell surface after internalization. Finally, erythropoietin (Epo), but not the structurally and functionally related cytokine thrombopoietin (Tpo), stimulated c-kit receptor dimerization detectable by FRET, and tyrosine phosphorylation of the c-kit receptor. These results suggest that exposure to Epo can activate the c-kit receptor and provide further evidence for cross-talk between the Epo andc-kit receptors in human hematopoietic cell lines. Studies with progeny of burst-forming unit-erythroid (BFU-E) suggest that the FRET technique is sufficiently sensitive to detectc-kit receptor dimerization on normal human hematopoietic cells.
Collapse
|