51
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
52
|
Liu X, Zhou Q, Lin H, Wu J, Wu Z, Qu S, Bi Y. The Protective Effects of Blue Light-Blocking Films With Different Shielding Rates: A Rat Model Study. Transl Vis Sci Technol 2019; 8:19. [PMID: 31143526 PMCID: PMC6526960 DOI: 10.1167/tvst.8.3.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose To examine light emitting diode (LED)-induced retinal photochemical damage and assess the protective performance of blue light-shielding films with different shielding rates in Sprague-Dawley rats (SD rats). Methods SD rats were randomly divided into five groups: blank control (group I), white LED illumination (group II), and white LED illumination combined with shielding of blue light of wavelength 440 nm at 40%, 60%, and 80% (groups III, IV, and V). The illumination was 200 lux. All animals underwent electroretinography (ERG), hematoxylin-eosin (H&E) staining, immunohistochemical (IHC) staining, and transmission electron microscopy (TEM) observation after 14 days of dark-adaptation before illumination, after 14 days of cyclic illumination, and after 14 days of darkness for recovery following illumination. Results ERG showed retinal functional loss after LED light exposure. However, retinal cell function was partly recovered after a further 2 weeks of dark adaptation. H&E staining and TEM revealed increases in photoreceptor cell death after illumination. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although retinal light injury was discovered in the LED light-exposure groups, shielding 60% of blue light of wavelength 440 nm (bandwidth 20 nm) protected retinas. Conclusions Cyclic illumination of low light intensity (200 lux) for 14 days produced retinal degeneration; shielding 60% of blue light may protect retinas from light damage. Translational Relevance This study found the effective shielding rate that could protect retinas from light damage when shielding specific narrow-band harmful blue light; thus providing a more normative method for protecting eyes from blue light hazard.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.,Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Qi Zhou
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University School of Medicine, Shanghai, China
| | - Hui Lin
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University School of Medicine, Shanghai, China
| | - Jinzhong Wu
- Actif Polarizers Technology R & D Center, Xiamen, Fujian, China
| | - Zijing Wu
- Actif Polarizers Technology R & D Center, Xiamen, Fujian, China
| | - Shen Qu
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University School of Medicine, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
53
|
Yang X, Song J, Yan LJ. Chronic Inhibition of Mitochondrial Dihydrolipoamide Dehydrogenase (DLDH) as an Approach to Managing Diabetic Oxidative Stress. Antioxidants (Basel) 2019; 8:E32. [PMID: 30717346 PMCID: PMC6406859 DOI: 10.3390/antiox8020032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial dihydrolipoamide dehydrogenase (DLDH) is a redox enzyme involved in decarboxylation of pyruvate to form acetyl-CoA during the cascade of glucose metabolism and mitochondrial adenine triphosphate (ATP) production. Depending on physiological or pathophysiological conditions, DLDH can either enhance or attenuate the production of reactive oxygen species (ROS) and reactive nitrogen species. Recent research in our laboratory has demonstrated that inhibition of DLDH induced antioxidative responses and could serve as a protective approach against oxidative stress in stroke injury. In this perspective article, we postulated that chronic inhibition of DLDH could also attenuate oxidative stress in type 2 diabetes. We discussed DLDH-involving mitochondrial metabolic pathways and metabolic intermediates that could accumulate upon DLDH inhibition and their corresponding roles in abrogating oxidative stress in diabetes. We also discussed a couple of DLDH inhibitors that could be tested in animal models of type 2 diabetes. It is our belief that DLDH inhibition could be a novel approach to fighting type 2 diabetes.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Jing Song
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
54
|
Coluzzi E, Leone S, Sgura A. Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells 2019; 8:cells8010019. [PMID: 30609792 PMCID: PMC6356380 DOI: 10.3390/cells8010019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative DNA damage, particularly 8-oxoguanine, represents the most frequent DNA damage in human cells, especially at the telomeric level. The presence of oxidative lesions in the DNA can hinder the replication fork and is able to activate the DNA damage response. In this study, we wanted to understand the mechanisms by which oxidative damage causes telomere dysfunction and senescence in human primary fibroblasts. After acute oxidative stress at telomeres, our data demonstrated a reduction in TRF1 and TRF2, which are involved in proper telomere replication and T-loop formation, respectively. Furthermore, we observed a higher level of γH2AX with respect to 53BP1 at telomeres, suggesting a telomeric replication fork stall rather than double-strand breaks. To confirm this finding, we studied the replication of telomeres by Chromosome Orientation-FISH (CO-FISH). The data obtained show an increase in unreplicated telomeres after hydrogen peroxide treatment, corroborating the idea that the presence of 8-oxoG can induce replication fork arrest at telomeres. Lastly, we analyzed the H3K9me3 histone mark after oxidative stress at telomeres, and our results showed an increase of this marker, most likely inducing the heterochromatinization of telomeres. These results suggest that 8-oxoG is fundamental in oxidative stress-induced telomeric damage, principally causing replication fork arrest.
Collapse
Affiliation(s)
- Elisa Coluzzi
- Department of Science, University of Rome "Roma TRE", Viale Guglielmo Marconi, 446, 00146 Rome, Italy.
| | - Stefano Leone
- Department of Science, University of Rome "Roma TRE", Viale Guglielmo Marconi, 446, 00146 Rome, Italy.
| | - Antonella Sgura
- Department of Science, University of Rome "Roma TRE", Viale Guglielmo Marconi, 446, 00146 Rome, Italy.
| |
Collapse
|
55
|
Döring J, Hurek T. Dual coding potential of a 2',5'-branched ribonucleotide in DNA. RNA (NEW YORK, N.Y.) 2019; 25:105-120. [PMID: 30361268 PMCID: PMC6298571 DOI: 10.1261/rna.068486.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Branchpoints in RNA templates are highly mutagenic, but it is not known yet whether this also applies to branchpoints in DNA templates. Here, we report how nucleic acid polymerases replicate a 2',5'-branched DNA (bDNA) molecule. We constructed long-chained bDNA templates containing a branch guanosine and T7 promoters at both arms by splinted ligation. Quantitative real-time PCR analysis was used to investigate whether a branchpoint blocks DNA synthesis from the two arms in the same manner. We find that the blocking effect of a branchpoint is arm-specific. DNA synthesis from the 2'-arm is more than 20,000-fold decreased, whereas from the 3'-arm only 15-fold. Our sequence analysis of full-length nucleic acid generated by Taq DNA polymerase, Moloney murine leukemia virus reverse transcriptase, and T7 RNA polymerase from the 2'-arm of bDNA shows that the branched guanine has a dual coding potential and can base-pair with cytosine and guanine. We find that branchpoint templating is influenced by the type of the surrounding nucleic acid and is probably modulated by polymerase and RNase H active sites. We show that the branchpoint bypass by the polymerases from the 3'-arm of bDNA is predominantly error-free, indicating that bDNA is not as highly mutagenic as 2',5'-branched RNA.
Collapse
Affiliation(s)
- Jessica Döring
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), University of Bremen, D-28334 Bremen, Germany
| |
Collapse
|
56
|
Bansal S, Kare PK, Tripathi AK, Madhu SV. Advanced Glycation End Products: A Potential Contributor of Oxidative Stress for Cardio-Vascular Problems in Diabetes. OXIDATIVE STRESS IN HEART DISEASES 2019:437-459. [DOI: 10.1007/978-981-13-8273-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
57
|
Jung E, Kang WS, Jo K, Kim J. Ethyl Pyruvate Prevents Renal Damage Induced by Methylglyoxal-Derived Advanced Glycation End Products. J Diabetes Res 2019; 2019:4058280. [PMID: 31737683 PMCID: PMC6815569 DOI: 10.1155/2019/4058280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The renal accumulation of advanced glycation end products (AGEs) is a causative factor of various renal diseases, including chronic kidney disease and diabetic nephropathy. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in renal AGE burden. This study evaluated the inhibitory effects of ethyl pyruvate (EP) on methylglyoxal- (MGO-) modified AGE cross-links with proteins in vitro. We also determined the potential activity of EP in reducing the renal AGE burden in exogenously MGO-injected rats. EP inhibited MGO-modified AGE-bovine serum albumin (BSA) cross-links to collagen (IC50 = 0.19 ± 0.03 mM) in a dose-dependent manner, and its activity was stronger than aminoguanidine (IC50 = 35.97 ± 0.85 mM). In addition, EP directly trapped MGO (IC50 = 4.41 ± 0.08 mM) in vitro. In exogenous MGO-injected rats, EP suppressed AGE burden and MGO-induced oxidative injury in renal tissues. These activities of EP on the MGO-mediated AGEs cross-links with protein in vitro and in vivo showed its pharmacological potential for inhibiting AGE-induced renal diseases.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seok Kang
- College Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyuhyung Jo
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Junghyun Kim
- College Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
58
|
Eki̇nci̇-Akdemi̇r FN, Yildirim S, Kandemi̇r FM, Gülçi̇n İ, Küçükler S, Sağlam YS, Yakan S. The effects of casticin and myricetin on liver damage induced by methotrexate in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1281-1288. [PMID: 30627373 PMCID: PMC6312684 DOI: 10.22038/ijbms.2018.29922.7217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In this study, we evaluated the therapeutic effects of casticin and myricetin on liver damage induced by methotrexate in rats. MATERIALS AND METHODS Thirty-six male rats were used for the study and divided into 6 groups: control, methotrexate, casticin, myricetin, casticin+methotrexate, and myricetin+methotrexate. It was performed by methotrexate (20 mg/kg single dose, IP) in methotrexate, casticin+methotrexate and myricetin+methotrexate groups. Casticin 200 mg/kg dose was given to casticin and casticin+methotrexate groups. Myricetin 50 mg/kg dose was given to myricetin and myriceytin+methotrexate groups. At the end of the experiment, liver tissues were removed for the purpose of histopathological, biochemical and immunohistochemical assessments. RESULTS In our study, we have detected that MDA levels increased and activities of antioxidant enzymes SOD, CAT, and GPX decreased in the methotrexate group compared to the other groups, but the level of MDA decreased and activities of these enzymes increased in casticin+methotrexate and myricetin+methotrexate groups compared to the methotrexate group. In immunohistochemical examinations of control, casticin and myricetin groups in liver tissues no caspase-3 and 8-OHdG expressions were observed. In the MTX group, caspase-3 and 8-OHdG expressions were seen at the severe levels. Caspase-3 and 8-OHdG expressions were mild in hepatocytes in the casticin+methotrexate and myricetin+methotrexate groups. When the liver tissues of the rats in the methotrexate group were examined, severe pathological damage was detected both in the parietal region and in the portal region. CONCLUSION By looking at these results, we can say that casticin and myricetin are effective against liver damage induced by methotrexate.
Collapse
Affiliation(s)
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | | | - İlhami Gülçi̇n
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Selvinaz Yakan
- Department of Animal Health, School of Eleşkirt Celal Oruç, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|
59
|
de Souza MR, Kahl VFS, Rohr P, Kvitko K, Cappetta M, Lopes WM, da Silva J. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:36-41. [DOI: 10.1016/j.mrgentox.2018.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/31/2017] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
|
60
|
Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomed Pharmacother 2018; 109:440-447. [PMID: 30399579 DOI: 10.1016/j.biopha.2018.10.142] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 11/24/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a treatment procedure that involves breathing 100% O2 for a certain time and under a certain pressure. HBOT is commonly administrated as a primary or alternative therapy for different diseases such as infections. In this paper, we reviewed the general aspect of HBOT procedures, the mechanisms of antimicrobial effects and the application in the treatment of infections. Parts of the antimicrobial effects of HBOT are believed to result of reactive from the formation of reactive oxygen species (ROS). It is also said that HBOT enhances the antimicrobial effects of the immune system and has an additive or synergistic effect with certain antimicrobial agents. HBOT has been described as a useful procedure for different infections, particularly in deep and chronic infections such as necrotizing fasciitis, osteomyelitis, chronic soft tissue infections, and infective endocarditis. The anti-inflammation property of HBOT has demonstrated that it may play a significant role in decreasing tissue damage and infection expansion. Patients treated by HBOT need carful pre-examination and monitoring. If safety standards are strictly tracked, HBOT can be considered a suitable procedure with an apt rate of complication.
Collapse
|
61
|
Wang YQ, Lu JL, Liang YR, Li QS. Suppressive Effects of EGCG on Cervical Cancer. Molecules 2018; 23:E2334. [PMID: 30213130 PMCID: PMC6225117 DOI: 10.3390/molecules23092334] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the fourth most common gynecological cancer worldwide. Although prophylactic vaccination presents the most effective method for cervical cancer prevention, chemotherapy is still the primary invasive intervention. It is urgent to exploit low-toxic natural anticancer drugs on account of high cytotoxicity and side-effects of conventional agents. As a natural product, (-)-epigallocatechingallate (EGCG) has abilities in anti-proliferation, anti-metastasis and pro-apoptosis of cervical cancer cells. Moreover, EGCG also has pharmaceutical synergistic effects with conventional agents such as cisplatin (CDDP) and bleomycin (BLM). The underlying mechanisms of EGCG suppressive effects on cervical cancer are reviewed in this article. Further research directions and ambiguous results are also discussed.
Collapse
Affiliation(s)
- Ying-Qi Wang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
62
|
Sinitsky MY, Minina VI, Asanov MA, Yuzhalin AE, Ponasenko AV, Druzhinin VG. Association of DNA repair gene polymorphisms with genotoxic stress in underground coal miners. Mutagenesis 2018; 32:501-509. [PMID: 28992182 DOI: 10.1093/mutage/gex018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In underground coal mining, numerous harmful substances and ionising radiation pose a major threat to the occupational safety and health of workers. Because cell DNA repair machinery eliminates genotoxic stress conferred by these agents, we examined whether single nucleotide polymorphisms in hOGG1 (rs1052133), XRCC1 (rs25487), ADPRT (rs1136410), XRCC4 (rs6869366) and LIG4 (rs1805388) genes modulate the genotoxic damage assessed by the cytokinesis-block micronucleus assay in lymphocytes from 143 underground coal miners and 127 healthy non-exposed males. We also analyzed models of gene-gene interactions associated with increased cytogenetic damage in coal miners and determined 'protective' and 'risk' combinations of alleles. We showed that miners with the G/G genotype of the hOGG1 (rs1052133) gene had a significantly increased frequency of binucleated lymphocytes with micronuclei (13.17‰, 95% CI = 10.78-15.56) compared to the C/C genotype carriers (10.35‰, 95% CI = 9.59-11.18). In addition, in the exposed group this indicator was significantly increased in carriers of the T/T genotype of the LIG4 (rs1805388) gene compared to miners harbouring the C/T genotype (13.00‰, 95% CI = 10.96-15.04 and 9.69‰, 95% CI = 8.32-11.06, respectively). Using the multifactor dimensionality reduction method, we found the three-locus model of gene-gene interactions hOGG1 (rs1052133) × ADPRT (rs1136410) × XRCC4 (rs6869366) associated with high genotoxic risk in coal miners. These results indicate that the studied polymorphisms and their combinations are associated with cytogenetic status in miners and may be used as molecular predictors of occupational risks in underground coal mines.
Collapse
Affiliation(s)
- Maxim Yu Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, 650002 Kemerovo, Russia.,Federal Research Center of Coal and Coal Chemistry, Leningradsky Avenue 10, 650065 Kemerovo, Russia
| | - Varvara I Minina
- Federal Research Center of Coal and Coal Chemistry, Leningradsky Avenue 10, 650065 Kemerovo, Russia.,Department of Genetics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Maxim A Asanov
- Federal Research Center of Coal and Coal Chemistry, Leningradsky Avenue 10, 650065 Kemerovo, Russia
| | - Arseniy E Yuzhalin
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anastasia V Ponasenko
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, 650002 Kemerovo, Russia
| | - Vladimir G Druzhinin
- Federal Research Center of Coal and Coal Chemistry, Leningradsky Avenue 10, 650065 Kemerovo, Russia.,Department of Genetics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
63
|
Lukina MV, Koval VV, Lomzov AA, Zharkov DO, Fedorova OS. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation. MOLECULAR BIOSYSTEMS 2018; 13:1954-1966. [PMID: 28770925 DOI: 10.1039/c7mb00343a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The toxic action of different endogenous and exogenous agents leads to damage in genomic DNA. 8-Oxoguanine is one of the most often generated and highly mutagenic oxidative forms of damage in DNA. Normally, in human cells it is promptly removed by 8-oxoguanine-DNA-glycosylase hOGG1, the key DNA-repair enzyme. An association between the accumulation of oxidized guanine and an increased risk of harmful processes in organisms was already found. However, the detailed mechanism of damaged base recognition and removal is still unclear. To clarify the role of active site amino acids in the damaged base coordination and to reveal the elementary steps in the overall enzymatic process we investigated hOGG1 mutant forms with substituted amino acid residues in the enzyme base-binding pocket. Replacing the functional groups of the enzyme active site allowed us to change the rates of the individual steps of the enzymatic reaction. To gain further insight into the mechanism of hOGG1 catalysis a detailed pre-steady state kinetic study of this enzymatic process was carried out using the stopped-flow approach. The changes in the DNA structure after mixing with enzymes were followed by recording the FRET signal using Cy3/Cy5 labels in DNA substrates in the time range from milliseconds to hundreds of seconds. DNA duplexes containing non-damaged DNA, 8-oxoG, or an AP-site or its unreactive synthetic analogue were used as DNA-substrates. The kinetic parameters of DNA binding and damage processing were obtained for the mutant forms and for WT hOGG1. The analyses of fluorescence traces provided information about the DNA dynamics during damage recognition and removal. The kinetic study for the mutant forms revealed that all introduced substitutions reduced the efficiency of the hOGG1 activity; however, they played pivotal roles at certain elementary stages identified during the study. Taken together, our results gave the opportunity to restore the role of substituted amino acids and main "damaged base-amino acid" contacts, which provide an important link in the understanding the mechanism of the DNA repair process catalyzed by hOGG1.
Collapse
Affiliation(s)
- M V Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
64
|
Antioxidant Supplements and Breast Cancer: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.10082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
65
|
Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist 2018; 11:567-576. [PMID: 29731645 PMCID: PMC5926076 DOI: 10.2147/idr.s142397] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infections caused by drug-resistant pathogens are a global public health problem. The introduction of a new antimicrobial strategy is an unavoidable option for the management of drug-resistant pathogens. Induction of high levels of reactive oxygen species (ROS) by several procedures has been extensively studied for the treatment of infections. In this article, the general aspects of ROS production and the common procedures that exert their antimicrobial effects due to ROS formation are reviewed. ROS generation is the antimicrobial mechanism of nanoparticles, hyperbaric oxygen therapy, medical honey, and photodynamic therapy. In addition, it is an alternative bactericidal mechanism of clinically traditional antibiotics. The development of ROS delivery methods with a desirable selectivity for pathogens without side effects for the host tissue may be a promising approach for the treatment of infections, especially those caused by drug-resistant organisms.
Collapse
Affiliation(s)
| | - Reza Ghotaslou
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Faculity of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
66
|
Sargazi S, Galavi H, Zarei S. Evaluation of attenuative effect of tert-butylhydroquinone against diazinon-induced oxidative stress on hematological indices in male Wistar rats. Biomed Rep 2018; 8:565-570. [PMID: 29774145 DOI: 10.3892/br.2018.1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Diazinon is an organophosphate toxicant that has been identified to induce oxidative stress within biological systems through altering biochemical and hematological indices, by generating free radicals while deteriorating the cellular antioxidant defense system. The present study was designed to evaluate the effectiveness of tert-butylhydroquinone (TBHQ), a synthetic food additive, in serving as an antioxidant against sub-lethal diazinon-induced oxidative stress in male Wistar rats. Animals were randomly divided into 4 groups: Control (treated with corn oil as a vehicle), diazinon (10 mg/kg/day), TBHQ (0.028 g/kg of diet) and a combination group of TBHQ (0.028 g/kg of diet) plus diazinon (10 mg/kg/day). All animals were treated orally once a day by gastric tube and treatments were continued for 7 weeks. Hematological indices, including red blood cell (RBC) indices and white blood cell (WBC) and platelet counts, were measured at the end of the treatment schedule. On comparison of the treatment groups with the untreated control group, RBC count, hemoglobin (Hb), hematocrit (Hct), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were significantly decreased in the diazinon and TBHQ+diazinon groups, while MCHC in the TBHQ group and MCV in the diazinon and TBHQ+diazinon groups were significantly increased. When the diazinon and TBHQ+diazinon groups were compared with the TBHQ group, RBC, Hb, Hct, and MCHC were significantly decreased whereas MCV was increased in both groups. Additionally, when comparing the TBHQ+diazinon group with the diazinon group, MCHC was determined to be significantly decreased. The results of the current experiments suggested that TBHQ could not efficiently protect blood cells against diazinon toxicity.
Collapse
Affiliation(s)
- Saman Sargazi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Razavi Khorasan 9177948974, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Sistan and Baluchestan 9816743181, Iran
| | - Hamidreza Galavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Sistan and Baluchestan 9816743181, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran
| |
Collapse
|
67
|
Tanaka T, Kobunai T, Yamamoto Y, Murono K, Otani K, Yasuda K, Nishikawa T, Kiyomatsu T, Kawai K, Hata K, Nozawa H, Ishihara S, Watanabe T. Increased Copy Number Variation of mtDNA in an Array-based Digital PCR Assay Predicts Ulcerative Colitis-associated Colorectal Cancer. ACTA ACUST UNITED AC 2018; 31:713-718. [PMID: 28652445 DOI: 10.21873/invivo.11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 01/14/2023]
Abstract
AIM Mitochondrial dysfunction plays a central role in carcinogenesis in numerous cancer-related diseases. We examined the copy number variation of mitochondrial DNA (mtDNA) and the expression of energy-producing genes in relation to ulcerative colitis (UC)-associated carcinogenesis. MATERIALS AND METHODS We studied 17 patients with UC-associated adenocarcinoma (UC-Ca) and 16 without UC-associated adenocarcinoma (UC-nonCa). The copy number of mtDNA in non-dysplastic mucosa in both groups was quantified by an array-based digital polymerase chain reaction (PCR) assay. Simultaneously, gene expression related to mitochondrial energy metabolism was determined by a PCR array. RESULTS We observed a higher copy number of mtDNA in non-dysplastic mucosa in the UC-Ca group compared to the UC-nonCa group (484.2 vs. 747.7 copies/cell, p=0.022). The sensitivity, specificity, positive predictive value, and negative predictive value for the detection of UC-associated adenocarcinoma by mtDNA copy number were 43.8%, 100%, 100%, and 60.9%, respectively. We observed an increased expression of mitochondrial genes related to energy metabolism together with an increased copy number of mtDNA. CONCLUSION Mitochondrial function and its metabolic process play essential roles in UC carcinogenesis and are possible risk markers for the development of colitic cancer.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Takashi Kobunai
- Translational Research Laboratory, Taiho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Kensuke Otani
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Koji Yasuda
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | | | - Kazushige Kawai
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| | - Toshiaki Watanabe
- Department of Surgical Oncology, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
68
|
Sklirou A, Papanagnou ED, Fokialakis N, Trougakos IP. Cancer chemoprevention via activation of proteostatic modules. Cancer Lett 2018; 413:110-121. [DOI: 10.1016/j.canlet.2017.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
69
|
Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. Saudi Pharm J 2017; 26:177-190. [PMID: 30166914 PMCID: PMC6111235 DOI: 10.1016/j.jsps.2017.12.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide, accounting for almost 13% of deaths in the world. Among the conventional cancer treatments, chemotherapy is most frequently carried out to treat malignant cancer rather than localised lesions which is amenable to surgery and radiotherapy. However, anticancer drugs are associated with a plethora of side effects. Each drug, within every class, has its own set of adverse reactions which may cause patient incompliance and deterioration of the quality of life. One of the major causes of adverse reactions, especially for drugs targeting DNA, is the excessive production of reactive oxygen species (ROS) and subsequent build up of oxidative stress. To curb these undesired side effects, several dietary supplements have been tested, amongst which antioxidants have gained increasing popularity as adjuvant in chemotherapy. However, many oncologists discourage the use of antioxidant rich food supplements because these may interfere with the modalities which kill cancer by generating free radicals. In the present review, all studies reporting concomitant use of several antioxidants with chemotherapy are indiscriminately included and discussed impartially. The effect of supplementation of thirteen different antioxidants and their analogues as a single agent or in combination with chemotherapy has been compiled in this article. The present review encompasses a total of 174 peer-reviewed original articles from 1967 till date comprising 93 clinical trials with a cumulative number of 18,208 patients, 56 animal studies and 35 in vitro studies. Our comprehensive data suggests that antioxidant has superior potential of ameliorating chemotherapeutic induced toxicity. Antioxidant supplementation during chemotherapy also promises higher therapeutic efficiency and increased survival times in patients.
Collapse
|
70
|
Nilson KA, Lawson CK, Mullen NJ, Ball CB, Spector BM, Meier JL, Price DH. Oxidative stress rapidly stabilizes promoter-proximal paused Pol II across the human genome. Nucleic Acids Res 2017; 45:11088-11105. [PMID: 28977633 PMCID: PMC5737879 DOI: 10.1093/nar/gkx724] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress has pervasive effects on cells but how they respond transcriptionally upon the initial insult is incompletely understood. We developed a nuclear walk-on assay that semi-globally quantifies nascent transcripts in promoter-proximal paused RNA polymerase II (Pol II). Using this assay in conjunction with ChIP-Seq, in vitro transcription, and a chromatin retention assay, we show that within a minute, hydrogen peroxide causes accumulation of Pol II near promoters and enhancers that can best be explained by a rapid decrease in termination. Some of the accumulated polymerases slowly move or ‘creep’ downstream. This second effect is correlated with and probably results from loss of NELF association and function. Notably, both effects were independent of DNA damage and ADP-ribosylation. Our results demonstrate the unexpected speed at which a global transcriptional response can occur. The findings provide strong support for the residence time of paused Pol II elongation complexes being much shorter than estimated from previous studies.
Collapse
Affiliation(s)
- Kyle A Nilson
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.,Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Christine K Lawson
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas J Mullen
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher B Ball
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin M Spector
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffery L Meier
- Department of Internal Medicine, University of Iowa and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.,Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
71
|
Li W, Qi Y, Cui X, Sun Y, Huo Q, Yang Y, Wen X, Tan M, Du S, Zhang H, Zhang M, Liu C, Kong Q. Heteroplasmy and Copy Number Variations of Mitochondria in 88 Hepatocellular Carcinoma Individuals. J Cancer 2017; 8:4011-4017. [PMID: 29187876 PMCID: PMC5706003 DOI: 10.7150/jca.21218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/28/2017] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. In this study, we had analysed the copy number variations and heteroplasmic mutations of mitochondria (MT) in 88 HCC individuals. The average copy number of MT genome in normal samples was significantly greater than that in tumor samples. Overall, the number of heteroplasmic mutations in 88 tumor and their matched normal samples were 241 and 173, respectively. There was higher positive ratio of heteroplasmic mutations in tumor samples (86%) than normal samples (73%). Worthwhile mention, ND1 gene harbored greater mutation frequency and more nonsynonymous mutations in tumor samples. Interestingly, 202 tumor-specific heteroplasmic mutations were detected. Moreover, ND1, ND3, ND4, ND5 and ND6 genes had higher ratio of nonsynonymous versus synonymous mutations in tumor-specific heteroplasmic mutations. It might suggest that the disorder of NADH dehydrogenase (complex I) resulted by heteroplasmic mutations may have close relation with tumorigenesis of hepatocellular carcinoma. This study provided theoretical basis for further understanding mechanism of tumorigenesis from the perspective of mitochondrial heteroplasmic mutations.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Yanwei Qi
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaofang Cui
- Jining Medical University, Jining, Shandong 272067, China
| | - Yuhui Sun
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Qing Huo
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yan Yang
- Jining Medical University, Jining, Shandong 272067, China
| | - Xinyuan Wen
- Jining Medical University, Jining, Shandong 272067, China
| | | | - Shiyi Du
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huali Zhang
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Meng Zhang
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Chuanxin Liu
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| | - Qingsheng Kong
- Jining Medical University, Jining, Shandong 272067, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
72
|
Nallanthighal S, Chan C, Murray TM, Mosier AP, Cady NC, Reliene R. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice. Nanotoxicology 2017; 11:996-1011. [PMID: 29046123 DOI: 10.1080/17435390.2017.1388863] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.
Collapse
Affiliation(s)
- Sameera Nallanthighal
- a Cancer Research Center , University at Albany, State University of New York , Rensselaer , NY , USA.,b Department of Biomedical Sciences , University at Albany, State University of New York , Albany , NY , USA
| | - Cadia Chan
- a Cancer Research Center , University at Albany, State University of New York , Rensselaer , NY , USA.,c Department of Biomedical Sciences , Queen's University , Kingston , ON , Canada
| | - Thomas M Murray
- d Colleges of Nanoscale Sciences and Engineering , SUNY Polytechnic Institute , Albany , NY , USA
| | - Aaron P Mosier
- d Colleges of Nanoscale Sciences and Engineering , SUNY Polytechnic Institute , Albany , NY , USA
| | - Nathaniel C Cady
- d Colleges of Nanoscale Sciences and Engineering , SUNY Polytechnic Institute , Albany , NY , USA
| | - Ramune Reliene
- a Cancer Research Center , University at Albany, State University of New York , Rensselaer , NY , USA.,e Department of Environmental Health Sciences , University at Albany, State University of New York , Albany , NY , USA
| |
Collapse
|
73
|
Musthafa QA, Abdul Shukor MF, Ismail NAS, Mohd Ghazi A, Mohd Ali R, M Nor IF, Dimon MZ, Wan Ngah WZ. Oxidative status and reduced glutathione levels in premature coronary artery disease and coronary artery disease. Free Radic Res 2017; 51:787-798. [PMID: 28899235 DOI: 10.1080/10715762.2017.1379602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7-10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n = 30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR = 0.569 95%CI [0.375 - 0.864], p = .008) and cut-off values of 6.69 μM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80-0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.
Collapse
Affiliation(s)
- Qurratu Aini Musthafa
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Muhd Faizan Abdul Shukor
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Noor Akmal Shareela Ismail
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Azmee Mohd Ghazi
- b National Heart Institute of Malaysia , Kuala Lumpur , Malaysia
| | - Rosli Mohd Ali
- b National Heart Institute of Malaysia , Kuala Lumpur , Malaysia
| | | | - Mohd Zamrin Dimon
- c Department of Medicine , UiTM Private Specialist Centre , Selangor , Malaysia
| | - Wan Zurinah Wan Ngah
- a Department of Biochemistry, Faculty of Medicine , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| |
Collapse
|
74
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
75
|
Bou Saada Y, Zakharova V, Chernyak B, Dib C, Carnac G, Dokudovskaya S, Vassetzky YS. Control of DNA integrity in skeletal muscle under physiological and pathological conditions. Cell Mol Life Sci 2017; 74:3439-3449. [PMID: 28444416 PMCID: PMC11107590 DOI: 10.1007/s00018-017-2530-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a highly oxygen-consuming tissue that ensures body support and movement, as well as nutrient and temperature regulation. DNA damage induced by reactive oxygen species is present in muscles and tends to accumulate with age. Here, we present a summary of data obtained on DNA damage and its implication in muscle homeostasis, myogenic differentiation and neuromuscular disorders. Controlled and transient DNA damage appears to be essential for muscular homeostasis and differentiation while uncontrolled and chronic DNA damage negatively affects muscle health.
Collapse
Affiliation(s)
- Yara Bou Saada
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
| | - Vlada Zakharova
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117334, Russia
| | - Boris Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117334, Russia
| | - Carla Dib
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
| | - Gilles Carnac
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, 34295, Montpellier Cedex 5, France
| | - Svetlana Dokudovskaya
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- UMR 8126, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut de Cancérologie Gustave-Roussy, 94805, Villejuif, France.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 117334, Russia.
- Koltzov Institute of Developmental Biology, Moscow, 117334, Russia.
| |
Collapse
|
76
|
Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses. PLoS One 2017; 12:e0182930. [PMID: 28793334 PMCID: PMC5549971 DOI: 10.1371/journal.pone.0182930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in spheroid versus monolayer ovarian cancer cells treated with TGFβ to induce EMT. Transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold. Interestingly, EMT factors, stress responses and epigenetic processes were significantly affected by 3D growth. The heat shock response and the oxidative stress response were also identified as transcriptome responses that showed significant changes upon 3D growth. Subnetwork enrichment analysis revealed that DNA integrity (e.g. DNA damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway) were altered in the 3D spheroid model. In addition, two epigenetic processes, DNA methylation and histone acetylation, were increased with 3D growth. These findings support the hypothesis that three dimensional ovarian cell culturing is physiologically different from its monolayer counterpart.
Collapse
|
77
|
Carvalho-Silva M, Gomes LM, Scaini G, Rebelo J, Damiani AP, Pereira M, Andrade VM, Gava FF, Valvassori SS, Schuck PF, Ferreira GC, Streck EL. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II. Metab Brain Dis 2017; 32:1043-1050. [PMID: 28315992 DOI: 10.1007/s11011-017-9994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.
Collapse
Affiliation(s)
- Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maiara Pereira
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira S Valvassori
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
78
|
Dimauro I, Sgura A, Pittaluga M, Magi F, Fantini C, Mancinelli R, Sgadari A, Fulle S, Caporossi D. Regular exercise participation improves genomic stability in diabetic patients: an exploratory study to analyse telomere length and DNA damage. Sci Rep 2017. [PMID: 28646223 PMCID: PMC5482873 DOI: 10.1038/s41598-017-04448-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Physical activity has been demonstrated to be effective in the prevention and treatment of different chronic conditions, including type 2 diabetes (T2D). In particular, several studies highlighted how the beneficial effects of physical activity may be related to the stability of the DNA molecule, such as longer telomeric ends. Here we analyze the effect of exercise training on telomere length, spontaneous and H2O2-induced DNA damage, as well as the apoptosis level in leukocytes from untrained or trained T2D patients vs. age-matched control subjects (CS) (57–66 years). Moreover, expression analysis of selected genes belonging to DNA repair systems, cell cycle control, antioxidant and defence systems was performed. Subjects that participated in a regular exercise program showed a longer telomere sequence than untrained counterparts. Moreover, ex vivo treatment of leukocytes with H2O2 highlighted that: (1) oxidative DNA damage induced similar telomere attrition in all groups; (2) in T2D subjects, physical activity seemed to prevent a significant increase of genomic oxidative DNA damage induced by chronic exposure to pro-oxidant stimulus, and (3) decreased the sensitivity of leukocytes to apoptosis. Finally, the gene expression analysis in T2D subjects suggested an adaptive response to prolonged exercise training that improved the response of specific genes.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Monica Pittaluga
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Antonio Sgadari
- Department of Geriatrics, Gerontology and Physiatry, University Hospital Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
79
|
Assessing Free-Radical-Mediated DNA Damage during Cardiac Surgery: 8-Oxo-7,8-dihydro-2'-deoxyguanosine as a Putative Biomarker. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9715898. [PMID: 28660009 PMCID: PMC5474244 DOI: 10.1155/2017/9715898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/09/2017] [Indexed: 02/07/2023]
Abstract
Coronary artery bypass grafting (CABG), one of the most common cardiac surgical procedures, is characterized by a burst of oxidative stress. 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), produced following DNA repairing, is used as an indicator of oxidative DNA damage in humans. The effect of CABG on oxidative-induced DNA damage, evaluated through the measurement of urinary 8-oxodG by a developed and validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in 52 coronary artery disease (CAD) patients, was assessed before (T0), five days (T1), and six months (T2) after CABG procedure. These results were compared with those obtained in 40 subjects with cardiovascular risk factors and without overt cardiovascular disease (CTR). Baseline (T0) 8-oxodG was higher in CAD than in CTR (p = 0.035). A significant burst was detected at T1 (p = 0.019), while at T2, 8-oxodG levels were significantly lower than those measured at T0 (p < 0.0001) and comparable to those found in CTR (p = 0.73). A similar trend was observed for urinary 8-iso-prostaglandin F2α (8-isoPGF2α), a reliable marker of oxidative stress. In the whole population baseline, 8-oxodG significantly correlated with 8-isoPGF2α levels (r = 0.323, p = 0.002). These data argue for CABG procedure in CAD patients as inducing a short-term increase in oxidative DNA damage, as revealed by 8-oxodG concentrations, and a long-term return of such metabolite toward physiological levels.
Collapse
|
80
|
Hou Y, Liu X, Tang X, Li T, Wu Q, Jiang Y, Yi J, Zhang G. Nucleobase chemosensor based on carbon nanodots. Talanta 2017; 173:107-112. [PMID: 28602184 DOI: 10.1016/j.talanta.2017.05.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
A facile and sensitive fluorescence protocol for nucleobase detection was developed based on carbon nanodot (CD) chemosensors. The novel fluorescent CDs were prepared using four kinds of nucleobases (including adenine, guanine, thymine and cytosine) as separate carbon sources via simple hydrothermal strategy. The quantum yield of adenine CDs (A-CDs), guanine CDs (G-CDs), thymine CDs (T-CDs) and cytosine CDs (C-CDs) was checked as 15.1%, 28.3%, 10.6% and 11.7%, respectively. Four CDs can recognize their complementary nucleobases based on the principle of complementary base pairing. Their fluorescence was linearly quenched with the increase of nucleobase concentrations under optimal conditions. Combining the calibration curve, quantitative assay of nucleobase in solution can be realized. For example, A-CDs could determine thymine in the concentration range of 2-20mM with a detection limit of ca. 0.053mM, and the linear equation is fitting as (I0-I) / I = 0.01961 × CT(mM) + 0.01756 (R2 = 0.994). Thymine can induce the fluorescence lifetime of A-CDs decreasing from 5.58 to 3.34ns, indicating a dynamic quenching mechanism. The novel nucleobase sensors were also evaluated in specific solution environment. A-CDs showed a relatively minor relative standard deviation (< 4.0%) in fetal calf serum solution, indicating a high accuracy and credibility of the sensing system. In view of the excellent sensitivity, preferable biocompatibility as well as simple constructing method, the sensing platform derived from the nucleobase-based CDs present great potential in biological sensing applications.
Collapse
Affiliation(s)
- Yu Hou
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Xiuping Tang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Tianze Li
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Qiuhua Wu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yuchun Jiang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jie Yi
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Guolin Zhang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
81
|
NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626501 PMCID: PMC5463201 DOI: 10.1155/2017/9420539] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Collapse
|
82
|
DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. Eur J Pharmacol 2017; 816:116-128. [PMID: 28347738 DOI: 10.1016/j.ejphar.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A decline in the function of the macro- and micro-vasculature occurs with ageing. DNA damage also accumulates with ageing, and thus DNA damage and repair have important roles in physiological ageing. Considerable evidence also supports a crucial role for DNA damage in the development and progression of macrovascular disease such as atherosclerosis. These findings support the concept that prolonged exposure to risk factors is a major stimulus for DNA damage within the vasculature, in part via the generation of reactive oxygen species. Genomic instability can directly affect vascular cellular function, leading to cell cycle arrest, apoptosis and premature vascular cell senescence. In contrast, the study of age-related impaired function and DNA damage mechanisms in the microvasculature is limited, although ageing is associated with microvessel endothelial dysfunction. This review examines current knowledge on the role of DNA damage and DNA repair systems in macrovascular disease such as atherosclerosis and microvascular disease. We also discuss the cellular responses to DNA damage to identify possible strategies for prevention and treatment.
Collapse
|
83
|
Zeng T, Fleming AM, Ding Y, White HS, Burrows CJ. Interrogation of Base Pairing of the Spiroiminodihydantoin Diastereomers Using the α-Hemolysin Latch. Biochemistry 2017; 56:1596-1603. [PMID: 28230976 DOI: 10.1021/acs.biochem.6b01175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiroiminodihydantoin (Sp) is a hyperoxidized form of guanine (G) resulting from oxidation by reactive oxygen species. The lesion is highly mutagenic, and the stereocenter renders the two isomers with distinct behaviors in chemical, spectroscopic, enzymatic, and computational studies. In this work, the α-hemolysin (αHL) latch sensing zone was employed to investigate the base pairing properties of the Sp diastereomers embedded in a double-stranded DNA. Duplexes containing (S)-Sp consistently gave deeper current blockage, and a baseline resolution of ∼0.8 pA was achieved between (S)-Sp:G and (R)-Sp:G base pairs. Ion fluxes were generally more hindered when Sp was placed opposite pyrimidines. Analysis of the current noise of blockade events further provided dynamics information about the Sp-containing base pairs. In general, base pairs comprised of (S)-Sp generated current fluctuations larger than those of their (R)-Sp counterparts, suggesting enhanced base pairing dynamics. The current noise was also substantially affected by the identity of the base opposite Sp, increasing in the following order: A < G < T < C. This report provides information about the dynamic structure of Sp in the DNA duplex and therefore has implications for the enzymatic repair of the Sp diastereomers.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yun Ding
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Henry S White
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
84
|
Di Minno A, Turnu L, Porro B, Squellerio I, Cavalca V, Tremoli E, Di Minno MND. 8-Hydroxy-2-deoxyguanosine levels and heart failure: A systematic review and meta-analysis of the literature. Nutr Metab Cardiovasc Dis 2017; 27:201-208. [PMID: 28065503 DOI: 10.1016/j.numecd.2016.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The generation of reactive oxygen species (ROS) plays an important role in the etiology of several pathological conditions. High levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), a biomarker of oxidative damage of DNA, have been found in patients with heart failure (HF). We performed a meta-analysis of the literature to investigate the association between 8-OHdG levels and HF. METHODS AND RESULTS A systematic search was performed in the PubMed, Web of Science, Scopus, EMBASE databases and studies evaluating 8-OHdG levels in HF patients and controls were included. Differences between cases and controls were expressed as standard mean difference (SMD) or mean difference (MD) with pertinent 95% confidence intervals (95%CI). Impact of clinical and demographic features on effect size was assessed by meta-regression. Six studies (446 HF patients and 140 controls) were included in the analysis. We found that HF patients showed higher 8-OHdG levels than controls (SMD:0.89, 95%CI: 0.68, 1.10). The difference was confirmed both in studies in which 8-OHdG levels were assessed in urine (MD:6.28 ng/mg creatinine, 95%CI: 4.01, 8.56) and in blood samples (MD:0.36 ng/ml, 95%CI: 0.04, 0.69). Interestingly, 8-OHdG levels progressively increased for increasing New York Heart Association (NYHA) class. Meta-regression models showed that none of clinical and demographic variables impacted on the difference in 8-OHdG levels among HF patients and controls. CONCLUSIONS 8-OHdG levels are higher in HF patients HF than in controls, with a progressive increase for increasing NYHA class. However, larger prospective studies are needed to test 8-OHdG as a biomarker of HF severity and progression.
Collapse
Affiliation(s)
- A Di Minno
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | - L Turnu
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - B Porro
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - I Squellerio
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - V Cavalca
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, 20138 Milan, Italy
| | - E Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, 20138 Milan, Italy
| | - M N D Di Minno
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Advanced Biomedical Sciences, Division of Cardiology, Federico II University, Naples, Italy
| |
Collapse
|
85
|
Augustin LSA, Libra M, Crispo A, Grimaldi M, De Laurentiis M, Rinaldo M, D'Aiuto M, Catalano F, Banna G, Ferrau' F, Rossello R, Serraino D, Bidoli E, Massarut S, Thomas G, Gatti D, Cavalcanti E, Pinto M, Riccardi G, Vidgen E, Kendall CWC, Jenkins DJA, Ciliberto G, Montella M. Low glycemic index diet, exercise and vitamin D to reduce breast cancer recurrence (DEDiCa): design of a clinical trial. BMC Cancer 2017; 17:69. [PMID: 28114909 PMCID: PMC5259892 DOI: 10.1186/s12885-017-3064-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mechanisms influencing breast cancer (BC) development and recurrence include hyperglycemia, hyperinsulinemia, high insulin-like growth factor-1, high circulating estrogen, inflammation and impaired cellular differentiation/apoptosis. A lifestyle program that targets all the above mechanisms may be warranted. Low glycemic index (GI) foods produce lower post-prandial glucose and insulin responses and have been associated with lower BC risk. Moderate physical activity post-diagnosis reduces BC recurrence and mortality, partly explained by reduced insulin and estrogen levels. Vitamin D increases cell differentiation/apoptosis and high serum vitamin D levels improve BC survival. Yet no trial has evaluated the combined effect of a low GI diet, moderate physical activity and vitamin D supplementation on BC recurrence in the context of a Mediterranean lifestyle setting. METHODS Women (30-74 yr) who had undergone surgery for primary histologically confirmed BC (stages I-III) within the previous 12 months, in cancer centres in Italy, will be randomized to follow, for a maximum of 33 months, either a high intensity treatment (HIT) composed of low GI diet + exercise + vitamin D (60 ng/mL serum concentration) or a lower intensity treatment (LITE) with general advice to follow a healthy diet and exercise pattern + vitamin D to avoid insufficiency. Both interventions are on a background of a Mediterranean diet. Considering a 20% recurrence rate within 3 years for BC cases and a predicted rate of 10% in the HIT group, with power of 80% and two-sided alpha of 0.05, the subject number required will be 506 (n = 253 in each arm). Clinic visits will be scheduled every 3 months. Dietary and exercise counselling and vitamin D supplements will be given at each clinic visit when blood samples, anthropometric measures and 7-day food records will be collected. DISCUSSION DEDiCa study aims to reduce BC recurrence in women with BC using a lifestyle approach with additional vitamin D and to investigate possible cardio-metabolic benefits as well as epigenetic modifications according to lifestyle changes. Given the supporting evidence and safety of the components of our intervention we believe it is feasible and urgent to test it in cancer patients. TRIAL REGISTRATION May 11, 2016; NCT02786875 . EUDRACT NUMBER 2015-005147-14.
Collapse
Affiliation(s)
- Livia S A Augustin
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy. .,Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences Oncologic, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Anna Crispo
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Maria Grimaldi
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Michele De Laurentiis
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Massimo Rinaldo
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Massimiliano D'Aiuto
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | | | | | | | | | | | | | | | - Guglielmo Thomas
- Seconda Universita' di Napoli, Naples, Italy.,Clinica Mediterranea SpA, Naples, Italy
| | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Ernesta Cavalcanti
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Monica Pinto
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Edward Vidgen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cyril W C Kendall
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.,College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - David J A Jenkins
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Gennaro Ciliberto
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy.,National Cancer Institute IRCCS Istituto Nazionale Tumori "Regina Elena", Rome, Italy
| | - Maurizio Montella
- National Cancer Institute Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| |
Collapse
|
86
|
The lower alkyl methacrylates: Genotoxic profile of non-carcinogenic compounds. Regul Toxicol Pharmacol 2017; 84:77-93. [PMID: 28087335 DOI: 10.1016/j.yrtph.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
All of the lower alkyl methacrylates are high production chemicals with potential for human exposure. The genotoxicity of seven mono-functional alkyl esters of methacrylic acid, i.e. methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, n-, i- and t-butyl methacrylate and 2 ethyl hexyl methacrylate, as well as methacrylic acid itself, the acyl component common to all, is reviewed and compared with the lack of carcinogenicity of methyl methacrylate, the representative member of the series so evaluated. Also reviewed are the similarity of structure, chemical and biological reactivity, metabolism and common metabolic products of this group of compounds which allows a category approach for assessing genotoxicity. As a class, the lower alkyl methacrylates are universally negative for gene mutations in prokaryotes but do exhibit high dose clastogenicity in mammalian cells in vitro. There is no convincing evidence that these compounds induce genotoxic effects in vivo in either sub-mammalian or mammalian species. This dichotomy of effects can be explained by the potential genotoxic intermediates generated in vitro. This genotoxic profile of the lower alkyl methacrylates is consistent with the lack of carcinogenicity of methyl methacrylate.
Collapse
|
87
|
Sethi S, Das PK, Behera N. The chemistry of aminoferrocene, Fe{(η5-C5H4NH2)(η5-Cp)}: Synthesis, reactivity and applications. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
88
|
Senapati R, Senapati NN, Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infect Agent Cancer 2016; 11:59. [PMID: 27933097 PMCID: PMC5123406 DOI: 10.1186/s13027-016-0107-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/05/2016] [Indexed: 12/15/2022] Open
Abstract
Human Papillomavirus is the major etiological agent in the development of cervical cancer but not a sufficient cause. Despite significant research, the underlying mechanisms of progression from a low-grade squamous intraepithelial lesion to high grade squamous intraepithelial lesion are yet to be understood. Deregulation of viral gene expression and host genomic instability play a central role in virus-mediated carcinogenesis. Key events such as viral integration and epigenetic modifications may lead to the deregulation of viral and host gene expression. This review has summarized the available literature to describe the possible mechanism and role of viral integration in mediating carcinogenesis. HPV integration begins with DNA damage or double strand break induced either by oxidative stress or HPV proteins and the subsequent steps are driven by the DNA damage responses. Inflammation and oxidative stress could be considered as cofactors in stimulating viral integration and deregulation of cellular and viral oncogenes during the progression of cervical carcinoma. All these events together with the host and viral genetic and epigenetic modifications in neoplastic progression have also been reviewed which may be relevant in identifying a new preventive therapeutic strategy. In the absence of therapeutic intervention for HPV-infected individuals, future research focus should be directed towards preventing and reversing of HPV integration. DNA damage response, knocking out integrated HPV sequences, siRNA approach, modulating the selection mechanism of cells harboring integrated genomes and epigenetic modifiers are the possible therapeutic targets.
Collapse
Affiliation(s)
- Rashmirani Senapati
- Virology Division, Regional Medical Research centre (ICMR), Nalco square, Chandrasekharpur, Bhubaneswar, 751023 Odisha India
| | | | - Bhagirathi Dwibedi
- Virology Division, Regional Medical Research centre (ICMR), Nalco square, Chandrasekharpur, Bhubaneswar, 751023 Odisha India
| |
Collapse
|
89
|
|
90
|
Swartzlander DB, McPherson AJ, Powers HR, Limpose KL, Kuiper EG, Degtyareva NP, Corbett AH, Doetsch PW. Identification of SUMO modification sites in the base excision repair protein, Ntg1. DNA Repair (Amst) 2016; 48:51-62. [PMID: 27839712 DOI: 10.1016/j.dnarep.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.
Collapse
Affiliation(s)
- Daniel B Swartzlander
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Annie J McPherson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Harry R Powers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Kristin L Limpose
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Emily G Kuiper
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Natalya P Degtyareva
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Hematology and Medical Oncology Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
91
|
Crispo A, Augustin LSA, Grimaldi M, Nocerino F, Giudice A, Cavalcanti E, Di Bonito M, Botti G, De Laurentiis M, Rinaldo M, Esposito E, Riccardi G, Amore A, Libra M, Ciliberto G, Jenkins DJA, Montella M. Risk Differences Between Prediabetes And Diabetes According To Breast Cancer Molecular Subtypes. J Cell Physiol 2016; 232:1144-1150. [PMID: 27579809 DOI: 10.1002/jcp.25579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023]
Abstract
Hyperglycemia and hyperinsulinemia may play a role in breast carcinogenesis and prediabetes and diabetes have been associated with increased breast cancer (BC) risk. However, whether BC molecular subtypes may modify these associations is less clear. We therefore investigated these associations in all cases and by BC molecular subtypes among women living in Southern Italy. Cases were 557 patients with non-metastatic incident BC and controls were 592 outpatients enrolled during the same period as cases and in the same hospital for skin-related non-malignant conditions. Adjusted multivariate logistic regression models were built to assess the risks of developing BC in the presence of prediabetes or diabetes. The analyses were repeated by strata of BC molecular subtypes: Luminal A, Luminal B, HER2+, and Triple Negative (TN). Prediabetes and diabetes were significantly associated with higher BC incidence after controlling for known risk factors (OR = 1.94, 95% CI 1.32-2.87 and OR = 2.46, 95% CI 1.38-4.37, respectively). Similar results were seen in Luminal A and B while in the TN subtype only prediabetes was associated with BC (OR = 2.43, 95% CI 1.11-5.32). Among HER2+ patients, only diabetes was significantly associated with BC risk (OR = 3.04, 95% CI 1.24-7.47). Furthermore, when postmenopausal HER2+ was split into hormone receptor positive versus negative, the association with diabetes remained significant only in the former (OR = 5.13, 95% CI 1.53-17.22). These results suggest that prediabetes and diabetes are strongly associated with BC incidence and that these metabolic conditions may be more relevant in the presence of breast cancer molecular subtypes with positive hormone receptors. J. Cell. Physiol. 232: 1144-1150, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Crispo
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - L S A Augustin
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy.,Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada
| | - M Grimaldi
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - F Nocerino
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - A Giudice
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - E Cavalcanti
- Department of Diagnostic Pathology and Laboratory, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M Di Bonito
- Department of Diagnostic Pathology and Laboratory, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - G Botti
- Department of Diagnostic Pathology and Laboratory, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M De Laurentiis
- Department of Breast Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M Rinaldo
- Department of Breast Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - E Esposito
- Department of Breast Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy.,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - G Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - A Amore
- Department of Surgery, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - M Libra
- Section of Clinical and General Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Ciliberto
- Scientific Direction, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - D J A Jenkins
- Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada
| | - M Montella
- Unit of Epidemiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| |
Collapse
|
92
|
Suresh G, Padhi S, Patil I, Priyakumar UD. Urea Mimics Nucleobases by Preserving the Helical Integrity of B-DNA Duplexes via Hydrogen Bonding and Stacking Interactions. Biochemistry 2016; 55:5653-5664. [DOI: 10.1021/acs.biochem.6b00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gorle Suresh
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Siladitya Padhi
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Indrajit Patil
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - U. Deva Priyakumar
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
93
|
Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17:703-721. [DOI: 10.1038/nrm.2016.111] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
94
|
Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem J 2016; 473:961-1000. [PMID: 27060105 DOI: 10.1042/bj20151182] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
The consensuscis-regulatory AP-1 (activator protein-1)-like AREs (antioxidant-response elements) and/or EpREs (electrophile-response elements) allow for differential recruitment of Nrf1 [NF-E2 (nuclear factor-erythroid 2)-related factor 1], Nrf2 and Nrf3, together with each of their heterodimeric partners (e.g. sMaf, c-Jun, JunD or c-Fos), to regulate different sets of cognate genes. Among them, NF-E2 p45 and Nrf3 are subject to tissue-specific expression in haemopoietic and placental cell lineages respectively. By contrast, Nrf1 and Nrf2 are two important transcription factors expressed ubiquitously in various vertebrate tissues and hence may elicit putative combinational or competitive functions. Nevertheless, they have de facto distinct biological activities because knockout of their genes in mice leads to distinguishable phenotypes. Of note, Nrf2 is dispensable during development and growth, albeit it is accepted as a master regulator of antioxidant, detoxification and cytoprotective genes against cellular stress. Relative to the water-soluble Nrf2, less attention has hitherto been drawn to the membrane-bound Nrf1, even though it has been shown to be indispensable for embryonic development and organ integrity. The biological discrepancy between Nrf1 and Nrf2 is determined by differences in both their primary structures and topovectorial subcellular locations, in which they are subjected to distinct post-translational processing so as to mediate differential expression of ARE-driven cytoprotective genes. In the present review, we focus on the molecular and cellular basis for Nrf1 and its isoforms, which together exert its essential functions for maintaining cellular homoeostasis, normal organ development and growth during life processes. Conversely, dysfunction of Nrf1 results in spontaneous development of non-alcoholic steatohepatitis, hepatoma, diabetes and neurodegenerative diseases in animal models.
Collapse
|
95
|
Sinitsky MY, Minina VI, Gafarov NI, Asanov MA, Larionov AV, Ponasenko AV, Volobaev VP, Druzhinin VG. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis 2016; 31:669-675. [DOI: 10.1093/mutage/gew038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
96
|
Albertini RJ, Kaden DA. Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Crit Rev Toxicol 2016; 47:145-184. [DOI: 10.1080/10408444.2016.1211987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
97
|
Burak MJ, Guja KE, Hambardjieva E, Derkunt B, Garcia-Diaz M. A fidelity mechanism in DNA polymerase lambda promotes error-free bypass of 8-oxo-dG. EMBO J 2016; 35:2045-59. [PMID: 27481934 DOI: 10.15252/embj.201694332] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxo-dG) has high mutagenic potential as it is prone to mispair with deoxyadenine (dA). In order to maintain genomic integrity, post-replicative 8-oxo-dG:dA mispairs are removed through DNA polymerase lambda (Pol λ)-dependent MUTYH-initiated base excision repair (BER). Here, we describe seven novel crystal structures and kinetic data that fully characterize 8-oxo-dG bypass by Pol λ. We demonstrate that Pol λ has a flexible active site that can tolerate 8-oxo-dG in either the anti- or syn-conformation. Importantly, we show that discrimination against the pro-mutagenic syn-conformation occurs at the extension step and identify the residue responsible for this selectivity. This residue acts as a kinetic switch, shunting repair toward long-patch BER upon correct dCMP incorporation, thus enhancing repair efficiency. Moreover, this switch also provides a potential mechanism to increase repair fidelity of MUTYH-initiated BER.
Collapse
Affiliation(s)
- Matthew J Burak
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Kip E Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elena Hambardjieva
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Burak Derkunt
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
98
|
Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1908164. [PMID: 27375834 PMCID: PMC4916325 DOI: 10.1155/2016/1908164] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023]
Abstract
Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy.
Collapse
|
99
|
DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. Int J Mol Sci 2016; 17:ijms17060856. [PMID: 27258260 PMCID: PMC4926390 DOI: 10.3390/ijms17060856] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia and autism spectrum disorder (ASD) are multi-factorial and multi-symptomatic psychiatric disorders, each affecting 0.5%-1% of the population worldwide. Both are characterized by impairments in cognitive functions, emotions and behaviour, and they undermine basic human processes of perception and judgment. Despite decades of extensive research, the aetiologies of schizophrenia and ASD are still poorly understood and remain a significant challenge to clinicians and scientists alike. Adding to this unsatisfactory situation, patients with schizophrenia or ASD often develop a variety of peripheral and systemic disturbances, one prominent example of which is cancer, which shows a direct (but sometimes inverse) comorbidity in people affected with schizophrenia and ASD. Cancer is a disease characterized by uncontrolled proliferation of cells, the molecular origin of which derives from mutations of a cell's DNA sequence. To counteract such mutations and repair damaged DNA, cells are equipped with intricate DNA repair pathways. Oxidative stress, oxidative DNA damage, and deficient repair of oxidative DNA lesions repair have been proposed to contribute to the development of schizophrenia and ASD. In this article, we summarize the current evidence of cancer comorbidity in these brain disorders and discuss the putative roles of oxidative stress, DNA damage and DNA repair in the aetiopathology of schizophrenia and ASD.
Collapse
|
100
|
Kienhöfer D, Boeltz S, Hoffmann MH. Reactive oxygen homeostasis – the balance for preventing autoimmunity. Lupus 2016; 25:943-54. [DOI: 10.1177/0961203316640919] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Being mainly known for their role in the antimicrobial defense and collateral damage they cause in tissues as agents of oxidative stress, reactive oxygen species were considered “the bad guys” for decades. However, in the last years it was shown that the absence of reactive oxygen species can lead to the development of immune-mediated inflammatory diseases. Animal models of lupus, arthritis and psoriasis revealed reactive oxygen species-deficiency as a potent driver of pathogenesis. On the contrary, in chronic stages oxidative stress can still contribute to progression of inflammation. It seems that a neatly adjusted redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity and attenuates chronic stages of disease.
Collapse
Affiliation(s)
- D Kienhöfer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| | - S Boeltz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| | - M H Hoffmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3—Rheumatology and Immunology, Erlangen, Germany
| |
Collapse
|