51
|
LIM-domain proteins in transforming growth factor β-induced epithelial-to-mesenchymal transition and myofibroblast differentiation. Cell Signal 2012; 24:819-25. [DOI: 10.1016/j.cellsig.2011.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/15/2011] [Accepted: 12/04/2011] [Indexed: 12/16/2022]
|
52
|
Cardiac remodeling is not modulated by overexpression of muscle LIM protein (MLP). Basic Res Cardiol 2012; 107:262. [DOI: 10.1007/s00395-012-0262-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/17/2022]
|
53
|
CRP1, a protein localized in filopodia of growth cones, is involved in dendritic growth. J Neurosci 2012; 31:16781-91. [PMID: 22090504 DOI: 10.1523/jneurosci.2595-11.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cysteine-rich protein (CRP) family is a subgroup of LIM domain proteins. CRP1, which cross-links actin filaments to make actin bundles, is the only CRP family member expressed in the CNS with little known about its function in nerve cells. Here, we report that CRP1 colocalizes with actin in the filopodia of growth cones in cultured rat hippocampal neurons. Knockdown of CRP1 expression by short hairpin RNA interference results in inhibition of filopodia formation and dendritic growth in neurons. Overexpression of CRP1 increases filopodia formation and neurite branching, which require its actin-bundling activity. Expression of CRP1 with a constitutively active form of Cdc42, a GTPase involved in filopodia formation, increases filopodia formation in COS-7 cells, suggesting cooperation between the two proteins. Moreover, we demonstrate that neuronal activity upregulates CRP1 expression in hippocampal neurons via Ca²⁺ influx after depolarization. Ca²⁺/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein mediate the Ca²⁺-induced upregulation of CRP1 expression. Furthermore, CRP1 is required for the dendritic growth induced by Ca²⁺ influx or CaMKIV. Together, these data are the first to demonstrate a role for CRP1 in dendritic growth.
Collapse
|
54
|
Kong BW, Song JJ, Lee JY, Hargis BM, Wing T, Lassiter K, Bottje W. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult Sci 2011; 90:2535-47. [PMID: 22010239 DOI: 10.3382/ps.2011-01435] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Global RNA expression in breast muscle obtained from a male broiler line phenotyped for high or low feed efficiency (FE) was investigated. Pooled RNA samples (n = 6/phenotype) labeled with cyanine 3 or cyanine 5 fluorescent dyes to generate cRNA probes were hybridized on a 4 × 44K chicken oligo microarray. Local polynomial regression normalization was applied to background-corrected red and green intensities with a moderated t-statistic. Corresponding P-values were computed and adjusted for multiple testing by false discovery rate to identify differentially expressed genes. Microarray validation was carried out by comparing findings with quantitative reverse-transcription PCR. A 1.3-fold difference in gene expression was set as a cutoff value, which encompassed 20% (782 of 4,011) of the total number of genes that were differentially expressed between FE phenotypes. Using an online software program (Ingenuity Pathway Analysis), the top 10 upregulated genes identified by Ingenuity Pathway Analysis in the high-FE group were generally associated with anabolic processes. In contrast, 7 of the top 10 downregulated genes in the high-FE phenotype (upregulated in the low-FE phenotype) were associated with muscle fiber development, muscle function, and cytoskeletal organization, with the remaining 3 genes associated with self-recognition or stress-responding genes. The results from this study focusing on only the top differentially expressed genes suggest that the high-FE broiler phenotype is derived from the upregulation of genes associated with anabolic processes as well as a downregulation of genes associated with muscle fiber development, muscle function, cytoskeletal organization, and stress response.
Collapse
Affiliation(s)
- B-W Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
56
|
Kihara T, Shinohara S, Fujikawa R, Sugimoto Y, Murata M, Miyake J. Regulation of cysteine-rich protein 2 localization by the development of actin fibers during smooth muscle cell differentiation. Biochem Biophys Res Commun 2011; 411:96-101. [PMID: 21718689 DOI: 10.1016/j.bbrc.2011.06.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/26/2022]
Abstract
Cysteine-rich protein 2 (CRP2) is a cofactor for smooth muscle cell (SMC) differentiation. Here, we examined the mechanism of CRP2 distribution dynamics during SMC differentiation. CRP2 protein directly associated with F-actin through its N-terminal LIM domain and Gly-rich region, as determined by ELISA. In undifferentiated cells that contain few actin stress fibers, CRP2 was broadly distributed throughout the whole cell, including the nucleus. After induction of SMC differentiation, CRP2 localized to actin stress fibers as they formed. The stress fiber-localized CRP2 entered the nucleus because of induced actin depolymerization. These CRP2 dynamics were reproduced by in silico simulation. CRP2 localization dynamics, which affect CRP2 function, are regulated by the formation of actin stress fibers in conjunction with SMC differentiation.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | | | | | |
Collapse
|
57
|
Clark KA, Lesage-Horton H, Zhao C, Beckerle MC, Swank DM. Deletion of Drosophila muscle LIM protein decreases flight muscle stiffness and power generation. Am J Physiol Cell Physiol 2011; 301:C373-82. [PMID: 21562304 DOI: 10.1152/ajpcell.00206.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle LIM protein (MLP) can be found at the Z-disk of sarcomeres where it is hypothesized to be involved in sensing muscle stretch. Loss of murine MLP results in dilated cardiomyopathy, and mutations in human MLP lead to cardiac hypertrophy, indicating a critical role for MLP in maintaining normal cardiac function. Loss of MLP in Drosophila (mlp84B) also leads to muscle dysfunction, providing a model system to examine MLP's mechanism of action. Mlp84B-null flies that survive to adulthood are not able to fly or beat their wings. Transgenic expression of the mlp84B gene in the Mlp84B-null background rescues flight ability and restores wing beating ability. Mechanical analysis of skinned flight muscle fibers showed a 30% decrease in oscillatory power production and a slight increase in the frequency at which maximum power is generated for fibers lacking Mlp84B compared with rescued fibers. Mlp84B-null muscle fibers displayed a 25% decrease in passive, active, and rigor stiffness compared with rescued fibers, but no significant decrease in isometric tension generation was observed. Muscle ultrastructure of Mlp84B-null muscle fibers is grossly normal; however, the null fibers have a slight decrease, 11%, in thick filament number per unit cross-sectional area. Our data indicate that MLP contributes to muscle stiffness and is necessary for maximum work and power generation.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute,, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
58
|
Buyandelger B, Ng KE, Miocic S, Piotrowska I, Gunkel S, Ku CH, Knöll R. MLP (muscle LIM protein) as a stress sensor in the heart. Pflugers Arch 2011; 462:135-42. [PMID: 21484537 PMCID: PMC3114083 DOI: 10.1007/s00424-011-0961-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/24/2011] [Indexed: 01/22/2023]
Abstract
Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221-231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393-403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674-2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78-85, 2006; Geier et al. Circulation 107:1390-1395, 2003; Hershberger et al. Clin Transl Sci 1:21-26, 2008; Knöll et al. Cell 111:943-955, 2002; Knöll et al. Circ Res 106:695-704, 2010; Mohapatra et al. Mol Genet Metab 80:207-215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms-how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research.
Collapse
Affiliation(s)
- Byambajav Buyandelger
- Myocardial Genetics, British Heart Foundation-Centre for Research Excellence, National Heart & Lung Institute, Imperial College, South Kensington Campus, Flowers Building, 4th floor, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
59
|
Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C. Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. THE PLANT CELL 2010; 22:3034-52. [PMID: 20817848 PMCID: PMC2965535 DOI: 10.1105/tpc.110.075960] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/04/2010] [Accepted: 08/19/2010] [Indexed: 05/18/2023]
Abstract
Recently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen. LIM-green fluorescent protein (GFP) fusions all decorated the actin cytoskeleton and increased actin bundle thickness in transgenic plants and in vitro, although with different affinities and efficiencies. Remarkably, the activities of WLIMs were calcium and pH independent, whereas those of PLIMs were inhibited by high pH and, in the case of PLIM2c, by high [Ca(2+)]. Domain analysis showed that the C-terminal domain is key for the responsiveness of PLIM2c to pH and calcium. Regulation of LIM by pH was further analyzed in vivo by tracking GFP-WLIM1 and GFP-PLIM2c during intracellular pH modifications. Cytoplasmic alkalinization specifically promoted release of GFP-PLIM2c but not GFP-WLIM1, from filamentous actin. Consistent with these data, GFP-PLIM2c decorated long actin bundles in the pollen tube shank, a region of relatively low pH. Together, our data support a prominent role of Arabidopsis LIM proteins in the regulation of actin cytoskeleton organization and dynamics in sporophytic tissues and pollen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clément Thomas
- Centre de Recherche Public-Santé, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
60
|
Dialynas G, Speese S, Budnik V, Geyer PK, Wallrath LL. The role of Drosophila Lamin C in muscle function and gene expression. Development 2010; 137:3067-77. [PMID: 20702563 DOI: 10.1242/dev.048231] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner side of the nuclear envelope (NE) is lined with lamins, a meshwork of intermediate filaments that provides structural support for the nucleus and plays roles in many nuclear processes. Lamins, classified as A- or B-types on the basis of biochemical properties, have a conserved globular head, central rod and C-terminal domain that includes an Ig-fold structural motif. In humans, mutations in A-type lamins give rise to diseases that exhibit tissue-specific defects, such as Emery-Dreifuss muscular dystrophy. Drosophila is being used as a model to determine tissue-specific functions of A-type lamins in development, with implications for understanding human disease mechanisms. The GAL4-UAS system was used to express wild-type and mutant forms of Lamin C (the presumed Drosophila A-type lamin), in an otherwise wild-type background. Larval muscle-specific expression of wild type Drosophila Lamin C caused no overt phenotype. By contrast, larval muscle-specific expression of a truncated form of Lamin C lacking the N-terminal head (Lamin C DeltaN) caused muscle defects and semi-lethality, with adult 'escapers' possessing malformed legs. The leg defects were due to a lack of larval muscle function and alterations in hormone-regulated gene expression. The consequences of Lamin C association at a gene were tested directly by targeting a Lamin C DNA-binding domain fusion protein upstream of a reporter gene. Association of Lamin C correlated with localization of the reporter gene at the nuclear periphery and gene repression. These data demonstrate connections among the Drosophila A-type lamin, hormone-induced gene expression and muscle function.
Collapse
Affiliation(s)
- George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, IA 52241, USA
| | | | | | | | | |
Collapse
|
61
|
Ermolina LV, Martynova NI, Zaraĭskiĭ AG. [The cytoskeletal protein zyxin--a universal regulator of cell adhesion and gene expression]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:29-37. [PMID: 20386576 DOI: 10.1134/s1068162010010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The attachment of a cell to an extracellular matrix or the surface of another cells affects not only the cell motility, but also gene expression. In view of this, an important problem is to establish the molecular mechanisms of signal transduction from the receptors of cell adhesion to the nucleus, in particular, to identify and investigate the protein transducers of these signals. One of these transducers, the LIM domain protein zyxin, is predominantly localized at the sites of cell adhesion, where it participates in the assembly of actin filaments. Owing to its location near the inner surface of the membrane, zyxin can interact with the transmembrane receptors of some signaling cascades and affect the signal transduction from the extracellular ligands of these receptors. Furthermore, under particular conditions, zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. Of particular interest is the function of zyxin as a possible coordinator of gene expression and morphogenetic movements in embryogenesis. The published data discussed in the present review indicate the important role of zyxin in transmitting information from the regions of cell contacts to the genetic apparatus of the cell.
Collapse
|
62
|
Chen CH, Wu ML, Lee YC, Layne MD, Yet SF. Intronic CArG box regulates cysteine-rich protein 2 expression in the adult but not in developing vasculature. Arterioscler Thromb Vasc Biol 2010; 30:835-42. [PMID: 20075421 DOI: 10.1161/atvbaha.109.197251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE An absence of cysteine-rich protein 2 (CRP2) enhances vascular smooth muscle cell (VSMC) migration and increases neointima formation after arterial injury; therefore, CRP2 plays an important role in the response to vascular injury. The goal of the present study was to elucidate the molecular mechanisms that preserve CRP2 expression in the adult vasculature and thus might serve to inhibit the response to injury. METHODS AND RESULTS We generated a series of transgenic mice harboring potential Csrp2 regulatory regions with a lacZ reporter. We determined that the 12-kb first intron was necessary for transgene activity in adult but not in developing vasculature. Within the intron we identified a 6.3-kb region that contains 2 CArG boxes. Serum response factor preferentially bound to CArG2 box in gel mobility shift and chromatin immunoprecipitation assays; additionally, serum response factor coactivator myocardin factors activated CRP2 expression via the CArG2 box. Mutational analysis revealed that CArG2 box was important in directing lacZ expression in VSMC of adult vessels. CONCLUSIONS Although CRP2 expression during development is independent of CArG box regulatory sites, CRP2 expression in adult VSMC requires CArG2 element within the first intron. Our results suggest that distinct mechanisms regulate CRP2 expression in VSMC that are controlled by separate embryonic and adult regulatory modules.
Collapse
Affiliation(s)
- Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | | | | | | | | |
Collapse
|
63
|
Lilly B, Clark KA, Yoshigi M, Pronovost S, Wu ML, Periasamy M, Chi M, Paul RJ, Yet SF, Beckerle MC. Loss of the serum response factor cofactor, cysteine-rich protein 1, attenuates neointima formation in the mouse. Arterioscler Thromb Vasc Biol 2010; 30:694-701. [PMID: 20056913 DOI: 10.1161/atvbaha.109.200741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cysteine-rich protein (CRP) 1 and 2 are cytoskeletal lin-11 isl-1 mec-3 (LIM)-domain proteins thought to be critical for smooth muscle differentiation. Loss of murine CRP2 does not overtly affect smooth muscle differentiation or vascular function but does exacerbate neointima formation in response to vascular injury. Because CRPs 1 and 2 are coexpressed in the vasculature, we hypothesize that CRPs 1 and 2 act redundantly in smooth muscle differentiation. METHODS AND RESULTS We generated Csrp1 (gene name for CRP1) null mice by genetic ablation of the Csrp1 gene and found that mice lacking CRP1 are viable and fertile. Smooth muscle-containing tissues from Csrp1-null mice are morphologically indistinguishable from wild-type mice and have normal contractile properties. Mice lacking CRPs 1 and 2 are viable and fertile, ruling out functional redundancy between these 2 highly related proteins as a cause for the lack of an overt phenotype in the Csrp1-null mice. Csrp1-null mice challenged by wire-induced arterial injury display reduced neointima formation, opposite to that seen in Csrp2-null mice, whereas Csrp1/Csrp2 double-null mice produce a wild-type response. CONCLUSIONS Smooth muscle CRPs are not essential for normal smooth muscle differentiation during development, but may act antagonistically to modulate the smooth muscle response to pathophysiological stress.
Collapse
Affiliation(s)
- Brenda Lilly
- Huntsman Cancer Institute, Department of Biology, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 2009; 29:6046-58. [PMID: 19752190 DOI: 10.1128/mcb.00654-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The muscle LIM protein (MLP) and cofilin 2 (CFL2) are important regulators of striated myocyte function. Mutations in the corresponding genes have been directly associated with severe human cardiac and skeletal myopathies, and aberrant expression patterns have often been observed in affected muscles. Herein, we have investigated whether MLP and CFL2 are involved in common molecular mechanisms, which would promote our understanding of disease pathogenesis. We have shown for the first time, using a range of biochemical and immunohistochemical methods, that MLP binds directly to CFL2 in human cardiac and skeletal muscles. The interaction involves the inter-LIM domain, amino acids 94 to 105, of MLP and the amino-terminal domain, amino acids 1 to 105, of CFL2, which includes part of the actin depolymerization domain. The MLP/CFL2 complex is stronger in moderately acidic (pH 6.8) environments and upon CFL2 phosphorylation, while it is independent of Ca(2+) levels. This interaction has direct implications in actin cytoskeleton dynamics in regulating CFL2-dependent F-actin depolymerization, with maximal depolymerization enhancement at an MLP/CFL2 molecular ratio of 2:1. Deregulation of this interaction by intracellular pH variations, CFL2 phosphorylation, MLP or CFL2 gene mutations, or expression changes, as observed in a range of cardiac and skeletal myopathies, could impair F-actin depolymerization, leading to sarcomere dysfunction and disease.
Collapse
|
65
|
Porcine CSRP3: polymorphism and association analyses with meat quality traits and comparative analyses with CSRP1 and CSRP2. Mol Biol Rep 2009; 37:451-9. [DOI: 10.1007/s11033-009-9632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 07/10/2009] [Indexed: 11/26/2022]
|
66
|
Gao X, Sun JY, Cao ZY, Lin Y, Zha DJ, Wang F, Xue T, Qiao L, Lu LJ, Qiu JH. Polyclonal antibodies to LIM proteins CRP2 and CRIP2 reveal their subcellular localizations in olfactory precursor cells. BIOCHEMISTRY (MOSCOW) 2009; 74:336-41. [PMID: 19364329 DOI: 10.1134/s0006297909030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we describe the presence of CRP2 (cysteine- and glycine-rich protein 2) and CRIP2 (cysteine-rich intestinal protein 2), which are members of group 2 LIM proteins, in rat olfactory precursor cells by reverse transcription polymerase chain reaction. We have developed polyclonal antibodies against CRP2 and CRIP2 individually. Specificity of the antibodies was demonstrated by Western blot analysis, using CRP2 and CRIP2 transfected cells. No cross-reactivity was observed between the antibodies. Furthermore, we used the antibodies to determine the expression and localization of CRP2 and CRIP2 in olfactory precursor cells by Western blot analysis and immunofluorescence staining. Our results demonstrated that in undifferentiated olfactory precursor cells CRP2 was distributed both in the nucleus and the cytoplasm, whereas CRIP2 was predominantly localized in the cytoplasm. While the olfactory precursor cells differentiated into end cells, only the expression of CRIP2 would be detected. The function of these LIM proteins in olfactory precursor cells warrants further study.
Collapse
Affiliation(s)
- Xue Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Campos LCG, Miyakawa AA, Barauna VG, Cardoso L, Borin TF, Dallan LADO, Krieger JE. Induction of CRP3/MLP expression during vein arterialization is dependent on stretch rather than shear stress. Cardiovasc Res 2009; 83:140-7. [PMID: 19351738 DOI: 10.1093/cvr/cvp108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. METHODS AND RESULTS Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. CONCLUSION Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Collapse
Affiliation(s)
- Luciene Cristina Gastalho Campos
- Laboratory of Genetic and Molecular Cardiology, Heart Institute , University of Sao Paulo Medical School, Av. Dr. Eneas C. Aguiar, 44-10 andar, Sao Paulo SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
68
|
Schallus T, Fehér K, Ulrich AS, Stier G, Muhle-Goll C. Structure and dynamics of the human muscle LIM protein. FEBS Lett 2009; 583:1017-22. [PMID: 19230835 DOI: 10.1016/j.febslet.2009.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/01/2022]
Abstract
The family of cysteine rich proteins (CRP) comprises three closely homologous members that have been reported to interact with alpha-actinin. Muscular LIM protein (MLP/CRP3), the skeletal muscle variant, was originally discovered as a positive regulator of myogenesis and is suggested to be part of the stretch sensor of the myofibril through its interaction with telethonin (T-Cap). We determined the structure of both LIM domains of human MLP by nuclear magnetic resonance spectroscopy. We confirm by (15)N relaxation measurements that both LIM domains act as independent units and that the adjacent linker regions are fully flexible. With the published structures of CRP1 and CRP2, the complete family has now been structurally characterized.
Collapse
Affiliation(s)
- Thomas Schallus
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
69
|
Glycine-rich region regulates cysteine-rich protein 1 binding to actin cytoskeleton. Biochem Biophys Res Commun 2009; 380:484-8. [PMID: 19284992 DOI: 10.1016/j.bbrc.2009.01.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 11/22/2022]
Abstract
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.
Collapse
|
70
|
Gehmlich K, Geier C, Milting H, Fürst D, Ehler E. Back to square one: what do we know about the functions of Muscle LIM Protein in the heart? J Muscle Res Cell Motil 2008; 29:155-8. [DOI: 10.1007/s10974-008-9159-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022]
|
71
|
Pinotsis N, Abrusci P, Djinović-Carugo K, Wilmanns M. Terminal assembly of sarcomeric filaments by intermolecular beta-sheet formation. Trends Biochem Sci 2008; 34:33-9. [PMID: 18996015 DOI: 10.1016/j.tibs.2008.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 09/21/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
The contraction-relaxation cycle of muscle cells translates into large movements of several filament systems in sarcomeres, requiring special molecular mechanisms to maintain their structural integrity. Recent structural and functional data from three filaments harboring extensive arrays of immunoglobulin-like domains - titin, filamin and myomesin--have, for the first time, unraveled a common function of their terminal domains: assembly and anchoring of the respective filaments. In each case, the protein-protein interactions are mediated by antiparallel dimerization modules via intermolecular beta-sheets. These observations on terminal filament assembly indicate an attractive model for several other filament proteins that require structural characterization.
Collapse
Affiliation(s)
- Nikos Pinotsis
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | | | | | | |
Collapse
|
72
|
A broken heart: a stretch too far: an overview of mouse models with mutations in stretch-sensor components. Int J Cardiol 2008; 131:33-44. [PMID: 18715658 DOI: 10.1016/j.ijcard.2008.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 05/07/2008] [Accepted: 06/03/2008] [Indexed: 12/11/2022]
Abstract
With every heartbeat the heart must contract and relax. This seemingly trivial process critically needs tight control of contraction and relaxation phases, and extremely efficient coordination between these two phases to control blood flow and maintain cardiac homeostasis. To achieve this, specialized sensors are required to detect the inherent repeatedly changing environment and needs. One sensor is a stretch-sensor that monitors the filling of the ventricles. Its molecular identity and localization are only partly understood. Here we give a synopsis of the genetic models that leap into our understanding of stretch-sensors. We focus on the widely acknowledged sarcomeric sensor at the Z-disc and the costamere sensor at the sarcolemma. Recently, several novel components of both sensors were discovered. Given that these two sensors seem physically connected, it is likely that these two models are not mutually exclusive and might even communicate. We describe briefly how candidate and known proteins within these sensors receive and transduce mechanical signals in the cardiomyocyte that lead to changes in gene expression underlying homeostasis and its restoration in the heart. Emphasis is placed on the putative link between altered stretch-sensor function and heart failure observed in different genetic mouse models of stretch-sensor components.
Collapse
|
73
|
Sagave JF, Moser M, Ehler E, Weiskirchen S, Stoll D, Günther K, Büttner R, Weiskirchen R. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure. BMC DEVELOPMENTAL BIOLOGY 2008; 8:80. [PMID: 18713466 PMCID: PMC2529283 DOI: 10.1186/1471-213x-8-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/19/2008] [Indexed: 11/23/2022]
Abstract
Background The cysteine and glycine rich protein 2 (CRP2) encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. Results A ~17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central). A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as β-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. Conclusion We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.
Collapse
Affiliation(s)
- Julia F Sagave
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH- University Hospital Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
LIM domain protein TES changes its conformational states in different cellular compartments. Mol Cell Biochem 2008; 320:85-92. [PMID: 18696217 DOI: 10.1007/s11010-008-9901-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 07/25/2008] [Indexed: 01/14/2023]
Abstract
The human TESTIN (TES) is a putative tumor suppressor and localizes to the cytoplasm as a component of focal adhesions and cell contacts. TES contains a PET domain in the NH(2)-terminus and three tandem LIM domains in the COOH-terminus. It has been hypothesized that interactions between two termini of TES might lead to a "closed" conformational state of the protein. Here, we provide evidence for different conformational states of TES. We confirmed that the NH(2)-terminus of TES can interact with its third LIM domain in the COOH-terminus by GST pull-down assays. In addition, antisera against the full-length or two truncations of TES were prepared to examine the relationship between the conformation and cellular distribution of the protein. We found that these antisera recognize different regions of TES and showed that TES is co-localised with the marker protein B23 in nucleolus, in addition to its localization in endoplasmic reticulum (ER). Furthermore, our co-immunoprecipitation (co-IP) analysis of TES and B23 demonstrated their co-existence in the same complex. Taken together, our results suggest that TES has different conformational states in different cellular compartments, and a "closed" conformational state of TES may be involved in nucleolar localization.
Collapse
|
75
|
Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, Cardim N, Wenzel K, Erdmann B, Krackhardt F, Posch MG, Bublak A, Nägele H, Scheffold T, Dietz R, Chien KR, Spuler S, Fürst DO, Nürnberg P, Özcelik C. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet 2008; 17:2753-65. [DOI: 10.1093/hmg/ddn160] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
76
|
Lin DW, Chang IC, Tseng A, Wu ML, Chen CH, Patenaude CA, Layne MD, Yet SF. Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2. J Biol Chem 2008; 283:15003-14. [PMID: 18387947 DOI: 10.1074/jbc.m801621200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CRP2 (cysteine-rich protein) is a vascular smooth muscle cell (VSMC)-expressed LIM-only protein. CRP2 associates with the actin cytoskeleton and interacts with transcription factors in the nucleus to mediate smooth muscle cell gene expression. Using Csrp2 (gene symbol of the mouse CRP2 gene)-deficient mice, we previously demonstrated that an absence of CRP2 enhances VSMC migration and increases neointima formation following arterial injury. Despite its importance in vascular injury, the molecular mechanisms controlling CRP2 expression in VSMC are largely unknown. Transforming growth factor beta (TGFbeta), a key factor present in the vessel wall in the early phases of arterial response to injury, plays an important role in modulating lesion formation. Because both CRP2 and TGFbeta are mediators of VSMC responses, we examined the possibility that TGFbeta might regulate CRP2 expression. TGFbeta significantly induced CRP2 mRNA and protein expression in VSMCs. Promoter analysis identified a conserved cAMP-responsive element (CRE)-like site (TAACGTCA) in the Csrp2 promoter that was critical for basal promoter activity and response to TGFbeta. Gel mobility shift assays revealed that mainly ATF2 bound to this CRE-like element, and mutation of the CRE sequences abolished binding. TGFbeta enhanced the activation of ATF2, leading to increased phospho-ATF2 levels within the DNA-protein complexes. Furthermore, ATF2-transactivated Csrp2 promoter activity and TGFbeta enhanced this activation. In addition, a phosphorylation-negative ATF2 mutant construct decreased basal and TGFbeta-mediated Csrp2 promoter activity. Our results show for the first time in VSMC that TGFbeta activates ATF2 phosphorylation and Csrp2 gene expression via a CRE promoter element.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
The Sarcomere and the Nucleus: Functional Links to Hypertrophy, Atrophy and Sarcopenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:176-91. [DOI: 10.1007/978-0-387-84847-1_13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Latonen L, Järvinen PM, Laiho M. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death. Exp Cell Res 2007; 314:738-47. [PMID: 18177859 DOI: 10.1016/j.yexcr.2007.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/25/2007] [Accepted: 11/27/2007] [Indexed: 11/19/2022]
Abstract
Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions.
Collapse
Affiliation(s)
- Leena Latonen
- Molecular Cancer Biology Program, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
79
|
Thomas C, Moreau F, Dieterle M, Hoffmann C, Gatti S, Hofmann C, Van Troys M, Ampe C, Steinmetz A. The LIM domains of WLIM1 define a new class of actin bundling modules. J Biol Chem 2007; 282:33599-33608. [PMID: 17827159 DOI: 10.1074/jbc.m703691200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin filament bundling, i.e. the formation of actin cables, is an important process that relies on proteins able to directly bind and cross-link subunits of adjacent actin filaments. Animal cysteine-rich proteins and their plant counterparts are two LIM domain-containing proteins that were recently suggested to define a new family of actin cytoskeleton regulators involved in actin filament bundling. We here identified the LIM domains as responsible for F-actin binding and bundling activities of the tobacco WLIM1. The deletion of one of the two LIM domains reduced significantly, but did not entirely abolish, the ability of WLIM1 to bind actin filaments. Individual LIM domains were found to interact directly with actin filaments, although with a reduced affinity compared with the native protein. Variants lacking the C-terminal or the inter-LIM domain were only weakly affected in their F-actin stabilizing and bundling activities and trigger the formation of thick cables containing tightly packed actin filaments as does the native protein. In contrast, the deletion of one of the two LIM domains negatively impacted both activities and resulted in the formation of thinner and wavier cables. In conclusion, we demonstrate that the LIM domains of WLIM1 are new autonomous actin binding and bundling modules that cooperate to confer WLIM1 high actin binding and bundling activities.
Collapse
Affiliation(s)
- Clément Thomas
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg.
| | - Flora Moreau
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg
| | - Monika Dieterle
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg
| | - Céline Hoffmann
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg
| | - Sabrina Gatti
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg
| | - Christina Hofmann
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, F-67084 Strasbourg, France
| | - Marleen Van Troys
- VIB Department of Medical Protein Research, Ugent and Department of Biochemistry, Faculty of Medicine and Health Sciences, B-9052 Ghent, Belgium
| | - Christophe Ampe
- VIB Department of Medical Protein Research, Ugent and Department of Biochemistry, Faculty of Medicine and Health Sciences, B-9052 Ghent, Belgium
| | - André Steinmetz
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg
| |
Collapse
|
80
|
Tsukamoto Y, Hijiya N, Yano S, Yokoyama S, Nakada C, Uchida T, Matsuura K, Moriyama M. Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I-band to the nucleus after muscle injury. Histochem Cell Biol 2007; 129:55-64. [PMID: 17926058 DOI: 10.1007/s00418-007-0348-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2007] [Indexed: 01/01/2023]
Abstract
Ankyrin-repeat protein with a PEST motif and a proline-rich region (Arpp), also designated as Ankrd2, is a member of the muscle ankyrin repeat proteins (MARPs), which have been proposed to be involved in muscle stress response pathways. Arpp/Ankrd2 is localized mainly in the I-band of striated muscle. However, it has recently been reported that Arpp/Ankrd2 can interact with nuclear proteins, such as premyelocytic leukemia protein (PML), p53 and YB-1 in vitro. In this study, to determine whether nuclear accumulation of Arpp/Ankrd2 actually occurs, we performed an immunohistochemical investigation of gastrocnemius muscles that had been injured by injection of cardiotoxin or contact with dry ice. We found that Arpp/Ankrd2 accumulated in the nuclei of myofibers located adjacent to severely damaged myofibers after muscle injury. Double-labeled immunohistochemistry revealed that Arpp/Ankrd2 accumulated in the nuclei of sarcomere-damaged myofibers. Furthermore, we found that Arpp/Ankrd2 tended to be localized in euchromatin where genes are transcriptionally activated. Based on these findings, we suggest that Arpp/Ankrd2 may translocate from the I-band to the nucleus in response to muscle damage and may participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu-city, Oita, 879-5593, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Ihalainen S, Soliymani R, Iivanainen E, Mykkänen K, Sainio A, Pöyhönen M, Elenius K, Järveläinen H, Viitanen M, Kalimo H, Baumann M. Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient. Mol Med 2007. [PMID: 17622327 DOI: 10.2119/2006-00069.ihalainen] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in the NOTCH3 gene, most which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor-like repeats in the extracellular domain of Notch3 receptor (N3ECD). CADASIL is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we used proteomic analysis to characterize the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs, and cellular stress. Our findings indicate that misfolding of Notch3 may cause endoplasmic reticulum stress and activation of unfolded protein response, leading to increased reactive oxygen species and inhibition of cell proliferation. In addition, upregulation of contractile proteins suggests an alteration in the signaling system of VSMC contraction. The accumulation of N3ECD on the cell surface possibly upregulates the angiotensin II regulatory feedback loop and thereby enhances the readiness of the cells to respond to angiotensin II stimulation.
Collapse
Affiliation(s)
- Saara Ihalainen
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Ihalainen S, Soliymani R, Iivanainen E, Mykkänen K, Sainio A, Pöyhönen M, Elenius K, Järveläinen H, Viitanen M, Kalimo H, Baumann M. Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:305-14. [PMID: 17622327 PMCID: PMC1906681 DOI: 10.2119/2006–00069.ihalainen] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 03/07/2007] [Indexed: 01/13/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in the NOTCH3 gene, most which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor-like repeats in the extracellular domain of Notch3 receptor (N3ECD). CADASIL is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we used proteomic analysis to characterize the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs, and cellular stress. Our findings indicate that misfolding of Notch3 may cause endoplasmic reticulum stress and activation of unfolded protein response, leading to increased reactive oxygen species and inhibition of cell proliferation. In addition, upregulation of contractile proteins suggests an alteration in the signaling system of VSMC contraction. The accumulation of N3ECD on the cell surface possibly upregulates the angiotensin II regulatory feedback loop and thereby enhances the readiness of the cells to respond to angiotensin II stimulation.
Collapse
MESH Headings
- CADASIL/pathology
- Cells, Cultured
- Collagen/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Gels
- Gene Expression Profiling
- Humans
- Infant, Newborn
- Muscle Contraction
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/pathology
- Proteins/metabolism
- Proteome/analysis
Collapse
Affiliation(s)
- Saara Ihalainen
- Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Schallus T, Edlich C, Stier G, Muhle-Goll C. 1H, 13C, and 15N assignment of the muscular LIM protein MLP/CRP3. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:41-43. [PMID: 19636821 DOI: 10.1007/s12104-007-9010-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 02/22/2007] [Indexed: 05/28/2023]
Abstract
The family of CRP proteins comprises three members, which are composed of two LIM domains separated by a long linker of more than 50 residues. We determined the structure of the muscle variant, MLP (CRP3), by nuclear magnetic resonance and show that the two LIM domains are independent of each other.
Collapse
Affiliation(s)
- Thomas Schallus
- Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, Heidelberg 69120, Germany
| | | | | | | |
Collapse
|
84
|
Schilling T, Nöth U, Klein-Hitpass L, Jakob F, Schütze N. Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol Cell Endocrinol 2007; 271:1-17. [PMID: 17475397 DOI: 10.1016/j.mce.2007.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/12/2006] [Accepted: 09/13/2006] [Indexed: 01/14/2023]
Abstract
We established a cell culture system of human mesenchymal stem cells that allows not only for osteogenic and adipogenic differentiation but also for transdifferentiation between both cell lineages. Committed osteoblasts were transdifferentiated into adipocytes with losing osteogenic but highly expressing adipogenic markers. Adipocytes were transdifferentiated into osteoblasts with most of the resulting cells showing osteogenic but some still displaying adipogenic markers apparently not responding to the reprogramming stimulus. Comparing transdifferentiated adipocytes with committed osteoblasts by microarray analysis revealed 258 regulated transcripts, many of them associated with signal transduction, metabolism, and transcription but mostly distinct from established inducing factors of normal adipogenic and osteogenic differentiation, respectively. The regulation pattern of 20 of 22 selected genes was confirmed by semiquantitative RT-PCR. Our results indicate that the plasticity between osteogenesis and adipogenesis extends into the differentiation pathways of both cell lineages and may contribute to the age-related expansion of adipose tissue in human bone marrow.
Collapse
Affiliation(s)
- Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
85
|
Clark KA, Bland JM, Beckerle MC. The Drosophila muscle LIM protein, Mlp84B, cooperates with D-titin to maintain muscle structural integrity. J Cell Sci 2007; 120:2066-77. [PMID: 17535853 DOI: 10.1242/jcs.000695] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muscle LIM protein (MLP) is a cytoskeletal LIM-only protein expressed in striated muscle. Mutations in human MLP are associated with cardiomyopathy; however, the molecular mechanism by which MLP functions is not established. A Drosophila MLP homolog, mlp84B, displays many of the same features as the vertebrate protein, illustrating the utility of the fly for the study of MLP function. Animals lacking Mlp84B develop into larvae with a morphologically intact musculature, but the mutants arrest during pupation with impaired muscle function. Mlp84B displays muscle-specific expression and is a component of the Z-disc and nucleus. Preventing nuclear retention of Mlp84B does not affect its function, indicating that Mlp84B site of action is likely to be at the Z-disc. Within the Z-disc, Mlp84B is colocalized with the N-terminus of D-titin, a protein crucial for sarcomere organization and stretch mechanics. The mlp84B mutants phenotypically resemble weak D-titin mutants. Furthermore, reducing D-titin activity in the mlp84B background leads to pronounced enhancement of the mlp84B muscle defects and loss of muscle structural integrity. The genetic interactions between mlp84B and D-titin reveal a role for Mlp84B in maintaining muscle structural integrity that was not obvious from analysis of the mlp84B mutants themselves, and suggest Mlp84B and D-titin cooperate to stabilize muscle sarcomeres.
Collapse
Affiliation(s)
- Kathleen A Clark
- Huntsman Cancer Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
86
|
Gustavsson M, Mallard C, Vannucci SJ, Wilson MA, Johnston MV, Hagberg H. Vascular response to hypoxic preconditioning in the immature brain. J Cereb Blood Flow Metab 2007; 27:928-38. [PMID: 17033689 DOI: 10.1038/sj.jcbfm.9600408] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesized that hypoxic preconditioning (PC) modifies the microvasculature in the immature brain and thereby affects the cerebral blood flow (CBF) during a subsequent hypoxic-ischemic (HI) insult. On postnatal day 6 rats were exposed to hypoxia (36 degrees C, 8.0% O2) or normoxia for 3 h. Unilateral HI (unilateral carotid ligation and 8% hypoxia) was induced 24 h later. Cortical CBF was measured with the 14C-iodoantipyrine technique (at the end of HI) or with laser Doppler flowmetry (Perimed PF5001) before and during HI. At 0, 2, 8, and 24 h cerebral cortex was sampled and analyzed with gene arrays (Affymetrix 230 2.0). L-nitroarginine or vehicle was administrated before hypoxic PC or 30 mins before HI followed by CBF measurement (laser Doppler) during subsequent HI. Twenty-four hours after PC animals were perfusion-fixed and brains immunolabeled for von Willebrand factor and vascular density was determined by stereological quantification. The decrease in CBF during HI was attenuated significantly in PC versus control animals (P<0.01), as detected by both techniques. Several vascular genes (Angpt2, Adm, Apln, Vegf, Flt1, Kdr, Pdgfra, Agtrap, Adora2a, Ednra, serpine1, caveolin, Id1, Prrx1, Ero1l, Acvrl1, Egfl7, Nudt6, Angptl4, Anxa2, and NOS3) were upregulated and a few (Csrp2, Adora2b) were downregulated after PC. A significant increase in vascular density (P<0.05) was seen after PC. Nitric oxide synthase inhibition did not affect CBF during HI after PC. In conclusion, hypoxic PC upregulates vascular genes, increases vascular density and attenuates the decrease of CBF during a subsequent HI, which could contribute to tolerance.
Collapse
Affiliation(s)
- Malin Gustavsson
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
87
|
Adyshev DM, Kolosova IA, Verin AD. Potential protein partners for the human TIMAP revealed by bacterial two-hybrid screening. Mol Biol Rep 2007; 33:83-9. [PMID: 16817016 DOI: 10.1007/s11033-005-2311-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
BacterioMatch Two-Hybrid System (Stratagene) was applied in order to identify potential human TIMAP interaction proteins in the lung. TIMAP highly expressed in endothelial cells and may be involved in endothelial cytoskeletal and barrier regulation. Seven TIMAP interacting partner proteins were identified. Four of identified proteins: cystein and glycine-rich protein 1, eukaryotic translation elongation factor 2, U5 snRNP-specific protein 116 kD, and solute carrier family 3 member 2 are involved in actin cytoskeleton organization, cell adhesion or translation and transcriptional regulation.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, MFL Building Center Tower, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
88
|
Fraterman S, Zeiger U, Khurana TS, Wilm M, Rubinstein NA. Quantitative proteomics profiling of sarcomere associated proteins in limb and extraocular muscle allotypes. Mol Cell Proteomics 2007; 6:728-37. [PMID: 17229715 DOI: 10.1074/mcp.m600345-mcp200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sarcomere is the major structural and functional unit of striated muscle. Approximately 65 different proteins have been associated with the sarcomere, and their exact composition defines the speed, endurance, and biology of each individual muscle. Past analyses relied heavily on electrophoretic and immunohistochemical techniques, which only allow the analysis of a small fraction of proteins at a time. Here we introduce a quantitative label-free, shotgun proteomics approach to differentially quantitate sarcomeric proteins from microgram quantities of muscle tissue in a fast and reliable manner by liquid chromatography and mass spectrometry. The high sequence similarity of some sarcomeric proteins poses a problem for shotgun proteomics because of limitations in subsequent database search algorithms in the exclusive assignment of peptides to specific isoforms. Therefore multiple sequence alignments were generated to improve the identification of isoform specific peptides. This methodology was used to compare the sarcomeric proteome of the extraocular muscle allotype to limb muscle. Extraocular muscles are a unique group of highly specialized muscles with distinct biochemical, physiological, and pathological properties. We were able to quantitate 40 sarcomeric proteins; although the basic sarcomeric proteins in extraocular muscle are similar to those in limb muscle, key proteins stabilizing the connection of the Z-bands to thin filaments and the costamere are augmented in extraocular muscle and may represent an adaptation to the eccentric contractions known to normally occur during eye movements. Furthermore, a number of changes are seen that closely relate to the unique nature of extraocular muscle.
Collapse
Affiliation(s)
- Sven Fraterman
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
89
|
Hervy M, Hoffman L, Beckerle MC. From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. Curr Opin Cell Biol 2006; 18:524-32. [PMID: 16908128 DOI: 10.1016/j.ceb.2006.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 08/02/2006] [Indexed: 01/21/2023]
Abstract
Cell substratum adhesion influences a variety of processes including motility, proliferation and survival. In recent years, it has become clear that there are proteins that are capable of shuttling between cell adhesion zones and the nucleus, providing a mechanism for transcellular coordination and communication. Recent findings have given insight into the physiological signals that trigger trafficking of focal adhesion constituents to the nucleus, where they make diverse contributions to the control of gene expression.
Collapse
Affiliation(s)
- Martial Hervy
- Huntsman Cancer Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
90
|
Thomas C, Hoffmann C, Dieterle M, Van Troys M, Ampe C, Steinmetz A. Tobacco WLIM1 is a novel F-actin binding protein involved in actin cytoskeleton remodeling. THE PLANT CELL 2006; 18:2194-206. [PMID: 16905656 PMCID: PMC1560925 DOI: 10.1105/tpc.106.040956] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/22/2006] [Accepted: 07/13/2006] [Indexed: 05/05/2023]
Abstract
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.
Collapse
|
91
|
Herrmann J, Borkham-Kamphorst E, Haas U, Van de Leur E, Fraga MF, Esteller M, Gressner AM, Weiskirchen R. The expression of CSRP2 encoding the LIM domain protein CRP2 is mediated by TGF-β in smooth muscle and hepatic stellate cells. Biochem Biophys Res Commun 2006; 345:1526-35. [PMID: 16735029 DOI: 10.1016/j.bbrc.2006.05.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 05/10/2006] [Indexed: 01/20/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a cytokine implicated in differentiation of smooth muscle cells and other mesenchymal-derived cells. During hepatic fibrogenesis, TGF-beta has a pivotal role in the initiation, promotion, and progression of transdifferentiation of hepatic stellate cells into myofibroblasts that play a central role in the synthesis of extracellular matrix components. Both, smooth muscle and activated hepatic stellate cells, express smooth muscle alpha-actin, the calponin-related protein SM22alpha, and CSRP2 encoding the cysteine- and glycine-rich LIM domain protein 2 (CRP2). The aim of the present study was to determine whether the expression of CSRP2 is influenced by TGF-beta. Stimulation as well as sequestering experiments demonstrated that TGF-beta markedly influences CSRP2 gene activity. Inhibition experiments using the ALK5 inhibitor SB-431542 further reveal that the transcriptional stimulation of the CSRP2 gene is mediated via the ALK5/Smad2/Smad3 signalling pathway. By use of bisulfite genomic analysis of CpG islands within the 5' regulatory regions we could exclude methylation-associated silencing, previously found to be responsible for the transcriptional inactivity of CSRP2 in a variety of human cancer cells and in a multistage carcinogenesis model, as a cause for CSRP2 inactivity in hepatocytes or fully transdifferentiated myofibroblasts.
Collapse
MESH Headings
- Activin Receptors, Type I/antagonists & inhibitors
- Activin Receptors, Type I/physiology
- Animals
- Base Sequence
- Benzamides/pharmacology
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cells, Cultured
- DNA Methylation
- Dioxoles/pharmacology
- Gene Expression/drug effects
- Immunohistochemistry
- LIM Domain Proteins
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Male
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/physiology
- Signal Transduction/drug effects
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jens Herrmann
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 2006; 290:H1313-25. [PMID: 16537787 PMCID: PMC3241960 DOI: 10.1152/ajpheart.00816.2005] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac muscle is equipped with intricate intrinsic mechanisms to regulate adaptive remodeling. Recent and extensive experimental findings powered by novel strategies for screening protein-protein interactions, improved imaging technologies, and versatile transgenic mouse methodologies reveal that Z disks and titin filaments possess unexpectedly complicated sensory and modulatory mechanisms for signal reception and transduction. These mechanisms employ molecules such as muscle-enriched LIM domain proteins, PDZ-LIM domain proteins, myozenin gene family members, titin-associated ankyrin repeat family proteins, and muscle-specific ring finger proteins, which have been identified as potential molecular sensor components. Moreover, classic transmembrane signaling processes, including mitogen-activated kinase, protein kinase C, and calcium signaling, also involve novel interactions with the Z disk/titin network. This compartmentalization of signaling complexes permits alteration of receptor-dependent transcriptional regulation by direct sensing of intrinsic stress. Newly identified mechanical stress sensors are not limited to Z-disk region and to I-band and M-band regions of titin but are also embedded in muscle-specific membrane systems such as the costamere, intercalated disks, and caveolae-like microdomains. This review summarizes current knowledge of this rapidly developing area with focus on how the heart adjusts physiological remodeling process to meet with mechanical demands and how this process fails in cardiac pathologies.
Collapse
Affiliation(s)
- Masahiko Hoshijima
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0734, USA.
| |
Collapse
|
93
|
Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 2006; 84:446-68. [PMID: 16416311 DOI: 10.1007/s00109-005-0033-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/23/2005] [Indexed: 12/11/2022]
Abstract
The perception of the Z-disc in striated muscle has undergone significant changes in the past decade. Traditionally, the Z-disc has been viewed as a passive constituent of the sarcomere, which is important only for the cross-linking of thin filaments and transmission of force generated by the myofilaments. The recent discovery of multiple novel molecular components, however, has shed light on an emerging role for the Z-disc in signal transduction in both cardiac and skeletal muscles. Strikingly, mutations in several Z-disc proteins have been shown to cause cardiomyopathies and/or muscular dystrophies. In addition, the elusive cardiac stretch receptor appears to localize to the Z-disc. Various signalling molecules have been shown to interact with Z-disc proteins, several of which shuttle between the Z-disc and other cellular compartments such as the nucleus, underlining the dynamic nature of Z-disc-dependent signalling. In this review, we provide a systematic view on the currently known Z-disc components and the functional significance of the Z-disc as an interface between biomechanical sensing and signalling in cardiac and skeletal muscle functions and diseases.
Collapse
Affiliation(s)
- Derk Frank
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
94
|
McGrath MJ, Cottle DL, Nguyen MA, Dyson JM, Coghill ID, Robinson PA, Holdsworth M, Cowling BS, Hardeman EC, Mitchell CA, Brown S. Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. J Biol Chem 2006; 281:7666-83. [PMID: 16407297 DOI: 10.1074/jbc.m512552200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Four and a half LIM protein 1 (FHL1/SLIM1) is highly expressed in skeletal and cardiac muscle; however, the function of FHL1 remains unknown. Yeast two-hybrid screening identified slow type skeletal myosin-binding protein C as an FHL1 binding partner. Myosin-binding protein C is the major myosin-associated protein in striated muscle that enhances the lateral association and stabilization of myosin thick filaments and regulates actomyosin interactions. The interaction between FHL1 and myosin-binding protein C was confirmed using co-immunoprecipitation of recombinant and endogenous proteins. Recombinant FHL2 and FHL3 also bound myosin-binding protein C. FHL1 impaired co-sedimentation of myosin-binding protein C with reconstituted myosin filaments, suggesting FHL1 may compete with myosin for binding to myosin-binding protein C. In intact skeletal muscle and isolated myofibrils, FHL1 localized to the I-band, M-line, and sarcolemma, co-localizing with myosin-binding protein C at the sarcolemma in intact skeletal muscle. Furthermore, in isolated myofibrils FHL1 staining at the M-line appeared to extend partially into the C-zone of the A-band, where it co-localized with myosin-binding protein C. Overexpression of FHL1 in differentiating C2C12 cells induced "sac-like" myotube formation (myosac), associated with impaired Z-line and myosin thick filament assembly. This phenotype was rescued by co-expression of myosin-binding protein C. FHL1 knockdown using RNAi resulted in impaired myosin thick filament formation associated with reduced incorporation of myosin-binding protein C into the sarcomere. This study identified FHL1 as a novel regulator of myosin-binding protein C activity and indicates a role for FHL1 in sarcomere assembly.
Collapse
Affiliation(s)
- Meagan J McGrath
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Tran TC, Singleton C, Fraley TS, Greenwood JA. Cysteine-rich protein 1 (CRP1) regulates actin filament bundling. BMC Cell Biol 2005; 6:45. [PMID: 16336664 PMCID: PMC1318456 DOI: 10.1186/1471-2121-6-45] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 12/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cysteine-rich protein 1 (CRP1) is a LIM domain containing protein localized to the nucleus and the actin cytoskeleton. CRP1 has been demonstrated to bind the actin-bundling protein alpha-actinin and proposed to modulate the actin cytoskeleton; however, specific regulatory mechanisms have not been identified. RESULTS CRP1 expression increased actin bundling in rat embryonic fibroblasts. Although CRP1 did not affect the bundling activity of alpha-actinin, CRP1 was found to stabilize the interaction of alpha-actinin with actin bundles and to directly bundle actin microfilaments. Using confocal and photobleaching fluorescence resonance energy transfer (FRET) microscopy, we demonstrate that there are two populations of CRP1 localized along actin stress fibers, one associated through interaction with alpha-actinin and one that appears to bind the actin filaments directly. Consistent with a role in regulating actin filament cross-linking, CRP1 also localized to the membrane ruffles of spreading and PDGF treated fibroblasts. CONCLUSION CRP1 regulates actin filament bundling by directly cross-linking actin filaments and stabilizing the interaction of alpha-actinin with actin filament bundles.
Collapse
Affiliation(s)
- Thuan C Tran
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - CoreyAyne Singleton
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Tamara S Fraley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jeffrey A Greenwood
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
96
|
Wei J, Gorman TE, Liu X, Ith B, Tseng A, Chen Z, Simon DI, Layne MD, Yet SF. Increased neointima formation in cysteine-rich protein 2-deficient mice in response to vascular injury. Circ Res 2005; 97:1323-31. [PMID: 16269651 DOI: 10.1161/01.res.0000194331.76925.5c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to arterial injury, medial vascular smooth muscle cells (VSMCs) proliferate and migrate into the intima, contributing to the development of occlusive vascular disease. The LIM protein cysteine-rich protein (CRP) 2 associates with the actin cytoskeleton and may maintain the cytoarchitecture. CRP2 also interacts with transcription factors in the nucleus to mediate SMC gene expression. To test the hypothesis that CRP2 may be an important regulator of vascular development or function we generated Csrp2 (gene symbol of the mouse CRP2 gene)-deficient (Csrp2(-/-)) mice by targeted mutation. Csrp2(-/-) mice did not have any gross vascular defects or altered expression levels of SM alpha-actin, SM22alpha, or calponin. Following femoral artery injury, CRP2 expression persisted in the vessel wall at 4 days and then decreased by 14 days. Intimal thickening was enhanced 3.4-fold in Csrp2(-/-) compared with wild-type (WT) mice 14 days following injury. Cellular proliferation was similar between WT and Csrp2(-/-) VSMC both in vivo and in vitro. Interestingly, Csrp2(-/-) VSMC migrated more rapidly in response to PDGF-BB and had increased Rac1 activation. Our data demonstrate that CRP2 is not required for vascular development. However, an absence of CRP2 enhanced VSMC migration and increased neointima formation following arterial injury.
Collapse
Affiliation(s)
- Jiao Wei
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Barash IA, Mathew L, Lahey M, Greaser ML, Lieber RL. Muscle LIM protein plays both structural and functional roles in skeletal muscle. Am J Physiol Cell Physiol 2005; 289:C1312-20. [PMID: 16093282 DOI: 10.1152/ajpcell.00117.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle LIM protein (MLP) has been suggested to be an important mediator of mechanical stress in cardiac tissue, but the role that it plays in skeletal muscle remains unclear. Previous studies have shown that it is dramatically upregulated in fast-to-slow fiber-type transformation and also after eccentric contraction (EC)-induced muscle injury. The functional consequences of this upregulation, if any, are unclear. In the present study, we have examined the skeletal muscle phenotype of MLP-knockout (MLPKO) mice in terms of their response to EC-induced muscle injuries. The data suggest that while the MLPKO mice recover completely after EC-induced injury, their torque production lags behind that of heterozygous littermates in the early stages of the recovery process. This lag is accompanied by decreased expression of the muscle regulatory factor MyoD, suggesting that MLP may influence gene expression. In addition, there is evidence of type I fiber atrophy and a shorter resting sarcomere length in the MLPKO mice, but no significant differences in fiber type distribution. In summary, MLP appears to play a subtle role in the maintenance of normal muscle characteristics and in the early events of the recovery process of skeletal muscle to injury, serving both structural and gene-regulatory roles.
Collapse
Affiliation(s)
- Ilona A Barash
- Deptartment of Orthopaedics, Veterans Affairs Medical Center and Univ. of California, San Diego, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
98
|
Najwer I, Lilly B. Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. Am J Physiol Cell Physiol 2005; 289:C785-93. [PMID: 15917302 DOI: 10.1152/ajpcell.00098.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle-specific transcription is controlled by a multitude of transcriptional regulators that cooperate to drive expression in a temporospatial manner. Previous analysis of the cysteine-rich protein 1 ( CRP1/Csrp) gene revealed an intronic enhancer that is sufficient for expression in arterial smooth muscle cells and requires a serum response factor-binding CArG element for activity. The presence of a CArG box in smooth muscle regulatory regions is practically invariant; however, it stands to reason that additional elements contribute to the modulation of transcription in concert with the CArG. Because of the potential importance of other regulatory elements for expression of the CRP1 gene, we sought to identify additional motifs within the enhancer that are necessary for expression. In this effort, we identified a conserved cAMP response element (CRE) that, when mutated, diminishes the expression of the enhancer in cultured vascular smooth muscle cells. Using transfection and electrophoretic mobility shift assays, we have shown that the CRE binds the cAMP response element-binding protein (CREB) and is activated by Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), but not by CaMKII. Furthermore, our data demonstrate that CaMKIV stimulates CRP1 expression not only through the CRE but also through the CArG box. These findings represent evidence of a functional CRE within a smooth muscle-specific gene and provide support for a mechanism in which CREB functions as a smooth muscle determinant through CaMKIV activation.
Collapse
Affiliation(s)
- Ida Najwer
- Vascular Biology Center and Department of Obstetrics and Gynecology, Medical College of Georgia, 1459 Laney Walker Blvd., CB3207, Augusta, Georgia 30912-2500, USA
| | | |
Collapse
|
99
|
Kadrmas JL, Beckerle MC. The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 2004; 5:920-31. [PMID: 15520811 DOI: 10.1038/nrm1499] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
First described 15 years ago as a cysteine-rich sequence that was common to a small group of homeodomain transcription factors, the LIM domain is now recognized as a tandem zinc-finger structure that functions as a modular protein-binding interface. LIM domains are present in many proteins that have diverse cellular roles as regulators of gene expression, cytoarchitecture, cell adhesion, cell motility and signal transduction. An emerging theme is that LIM proteins might function as biosensors that mediate communication between the cytosolic and the nuclear compartments.
Collapse
Affiliation(s)
- Julie L Kadrmas
- Huntsman Cancer Institute and the Department of Biology, University of Utah, 2000 East, Circle of Hope, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
100
|
Mueller SM, Jung R, Weiler S, Lang SM. Vpx proteins of SIVmac239 and HIV-2ROD interact with the cytoskeletal protein alpha-actinin 1. J Gen Virol 2004; 85:3291-3303. [PMID: 15483243 DOI: 10.1099/vir.0.80198-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
vpx genes of human immunodeficiency virus type 2 (HIV-2) and immunodeficiency viruses from macaques (SIVmac), sooty mangabeys (SIVsm) and red-capped mangabeys (SIVrcm) encode a 112 aa protein that is packed into virion particles via interaction with the p6 domain of p55(gag). Vpx localizes to the nucleus when expressed in the absence of other viral proteins. Moreover, Vpx is necessary for efficient nuclear import of the pre-integration complex (PIC) and critical for virus replication in quiescent cells, such as terminally differentiated macrophages and memory T cells. Vpx does not contain sequence elements that are homologous to previously characterized nuclear localization signals (NLSs). Therefore, it is likely that Vpx-dependent import of the PIC is mediated by interaction of Vpx with cellular proteins that do not belong to the classical import pathways. By using a yeast two-hybrid screen, alpha-actinin 1, a cytoskeletal protein, was identified to interact with SIVmac239 Vpx. Interestingly, deletion of the proline-rich C-terminal domain (aa 101-112) of Vpx, which is important for nuclear localization, resulted in loss of interaction with alpha-actinin 1. These findings suggest that the interaction with alpha-actinin 1 may play an important role in the transport of Vpx to the nucleus and in Vpx-mediated nuclear import of the PIC.
Collapse
Affiliation(s)
- Sandra M Mueller
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Ronny Jung
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Sigrid Weiler
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | - Sabine M Lang
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuernberg, Schlossgarten 4, D-91054 Erlangen, Germany
| |
Collapse
|