51
|
Yang C, Cao P, Gao Y, Wu M, Lin Y, Tian Y, Yuan W. Differential expression of p38 MAPK α, β, γ, δ isoforms in nucleus pulposus modulates macrophage polarization in intervertebral disc degeneration. Sci Rep 2016; 6:22182. [PMID: 26911458 PMCID: PMC4766431 DOI: 10.1038/srep22182] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/09/2016] [Indexed: 11/09/2022] Open
Abstract
P38MAPK mediates cytokine induced inflammation in nucleus pulposus (NP) cells and involves in multiple cellular processes which are related to intervertebral disc degeneration (IDD). The aim of this study was to investigate the expression, activation and function of p38 MAPK isoforms (α,β, γ and δ) in degenerative NP and the effect of p38 activation in NP cells on macrophage polarization. P38 α, β and δ isoforms are preferential expressed, whereas the p38γ isoform is absent in human NP tissue. LV-sh-p38α, sh-p38β transfection in NP cells significantly decreased the ADAMTS-4,-5, MMP-13,CCL3 expression and restored collagen-II and aggrecan expression upon IL-1β stimulation. As compared with p38α and p38β, p38δ exhibited an opposite effect on ADAMTS-4,-5, MMP-13 and aggrecan expression in NP cells. Furthermore, the production of GM-CSF and IFNγ which were trigged by p38α or p38β in NP cells induced macrophage polarization into M1 phenotype. Our finding indicates that p38 MAPK α, β and δ isoform are predominantly expressed and activated in IDD. P38 positive NP cells modulate macrophage polarization through the production of GM-CSF and IFNγ. Hence, Our study suggests that selectively targeting p38 isoforms could ameliorate the inflammation in IDD and regard IDD progression.
Collapse
Affiliation(s)
- Chen Yang
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Peng Cao
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Yang Gao
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Ming Wu
- Kidney Institute, Department of Nephrology, Changzheng Hospital, Shanghai 200003, China
| | - Yun Lin
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Ye Tian
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| | - Wen Yuan
- Department of orthopedic Surgery, Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
52
|
Li X, Ma J, Li Y. Molecular Cloning and Expression Determination ofp38 MAPKfrom the Liver and Kidney of Silver Carp. J Biochem Mol Toxicol 2016; 30:224-31. [DOI: 10.1002/jbt.21781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yuanyuan Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
53
|
Rodríguez-González J, Wilkins-Rodríguez A, Argueta-Donohué J, Aguirre-García M, Gutiérrez-Kobeh L. Leishmania mexicana promastigotes down regulate JNK and p-38 MAPK activation: Role in the inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells. Exp Parasitol 2016; 163:57-67. [PMID: 26777406 DOI: 10.1016/j.exppara.2015.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DC) are one of the principal host cells of the obligate intracellular parasite Leishmania. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously shown that the infection of monocyte-derived dendritic cells (moDC) with Leishmania mexicana inhibits campthotecin-induced apoptosis. Nevertheless, the mechanisms involved in the inhibition of apoptosis of dendritic cells by Leishmania have not been established. Mitogen-activated protein kinases (MAPK) are key participants in the process of apoptosis and different species of Leishmania have been shown to regulate these kinases. In the present study, we analyzed the effect of L. mexicana promastigotes in the activation of JNK and p38 MAP kinase and their participation in the inhibition of apoptosis. The infection of moDC with L. mexicana promastigotes diminished significantly the phosphorylation of the MAP kinases JNK and p38. The inhibition of both kinases diminished DNA fragmentation, but in a major extent was the reduction of DNA fragmentation when JNK was inhibited. The capacity of L. mexicana promastigotes to diminish MAP kinases activation is probably one of the strategies employed to delay apoptosis induction in the infected moDC and may have implications for Leishmania pathogenesis by favoring the invasion of its host and the persistence of the parasite in the infected cells.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Arturo Wilkins-Rodríguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Jesús Argueta-Donohué
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Magdalena Aguirre-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, D. F., Mexico.
| |
Collapse
|
54
|
Zhou X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J Nephrol 2016; 5:20-32. [PMID: 26788461 PMCID: PMC4707165 DOI: 10.5527/wjn.v5.i1.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to maintain robustness against hypertonic or hypotonic stress.
Collapse
|
55
|
Umasuthan N, Bathige SDNK, Noh JK, Lee J. Gene structure, molecular characterization and transcriptional expression of two p38 isoforms (MAPK11 and MAPK14) from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2015; 47:331-343. [PMID: 26363230 DOI: 10.1016/j.fsi.2015.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The p38 kinases are one of the four subgroups of mitogen-activated protein kinase (MAPK) superfamily which are involved in the innate immunity. The p38 subfamily that includes four members namely p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13), regulates the activation of several transcription factors. In this study, a p38β (OfMAPK11) homolog and a p38α (OfMAPK14) homolog of Oplegnathus fasciatus were identified at genomic level. Results clearly showed that both MAPK11 and MAPK14 are well-conserved at both genomic structural- and amino acid (aa)-levels. Genomic sequences of OfMAPK11 (∼ 15.6 kb) and OfMAPK14 (∼ 13.4 kb) had 12 exons. A comparison of exon-intron structural arrangement of these genes from different vertebrate lineages indicated that all the exon lengths are highly conserved, except their terminal exons. Full-length cDNAs of OfMAPK11 (3957 bp) and OfMAPK14 (2504 bp) encoded corresponding proteins of 361 aa and 360 aa, respectively. Both OfMAPK proteins harbored a Ser/Thr protein kinases catalytic domain (S_TKc domain) which includes an activation loop with a dual phosphorylation site (TGY motif) and several specific-binding sites for ATP and substrates. Molecular modeling of the activation loop and substrate binding sites of rock bream MAPKs revealed the conservation of crucial residues and their orientation in 3D space. Transcripts of OfMAPKs were ubiquitously detected in eleven tissues examined, however at different levels. The modulation of OfMAPKs' transcription upon pathogen-associated molecular patterns (PAMPs: flagellin, lipopolysaccharide and poly I:C) and pathogens (Edwardsiella tarda, Streptococcus iniae and rock bream iridovirus) was investigated. Among the seven examined tissues, the flagellin-challenge upregulated the mRNA level of both OfMAPKs in the head kidney. Meanwhile, modulation of OfMAPK mRNA expression in the liver upon other immune-challenges varied in a time-dependent manner. Collectively, these results suggest that OfMAPKs are true members of p38 subfamily, which might be induced by different immune stimuli.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
56
|
Du M, Chen M, Shen H, Wang W, Li Z, Wang W, Huang J, Chen J. CyHV-2 ORF104 activates the p38 MAPK pathway. FISH & SHELLFISH IMMUNOLOGY 2015; 46:268-273. [PMID: 26072141 DOI: 10.1016/j.fsi.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen responsible for herpesviral hematopoietic necrosis disease, which causes huge losses on aquaculture. So far the studies of CyHV-2 mainly focus on the identification and detection of this virus, but little is known about the role of specific CyHV-2 genes in the infection process. Based on the genomic information, CyHV-2 ORF104 encodes a kinase-like protein, which is highly conserved among the three CyHVs. Our study was initiated to investigate the role of kinase-like protein ORF104 during virus infection. Subcellular localization study showed that ORF104 was mainly expressed in the nucleus in both human HEK293T and fish EPC cells. However, deletion of the putative nuclear localization signal of ORF104 (ORF104M) resulted in the cytoplasmic distribution in HEK293T. We then examined whether MAPKs were involved in the ORF104-mediated signaling pathway by overexpressing ORF104 and ORF104M in HEK293T. Overexpression of ORF104 and ORF104M resulted in the up-regulation of p38 phosphorylation, but not JNK or ERK, indicating that ORF104 specifically activates p38 signaling pathway. In vivo study showed that CyHV-2 infection enhanced p38 phosphorylation in gibel carp (Carassius auratus gibelio). Interestingly, p38 inhibitor SB203580 strongly reduced fish death caused by CyHV-2 infection. Therefore, our study for the first time reveals the function of ORF104 during CyHV-2 infection, indicating that ORF104 is a potential vaccine candidate for CyHV-2.
Collapse
Affiliation(s)
- Mi Du
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Haifeng Shen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Jianhui Huang
- Putian Aquatic Products, Technical Extension Station, Putian, 351100 Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China.
| |
Collapse
|
57
|
Al-Sawalha N, Pokkunuri I, Omoluabi O, Kim H, Thanawala VJ, Hernandez A, Bond RA, Knoll BJ. Epinephrine Activation of the β2-Adrenoceptor Is Required for IL-13-Induced Mucin Production in Human Bronchial Epithelial Cells. PLoS One 2015; 10:e0132559. [PMID: 26161982 PMCID: PMC4498766 DOI: 10.1371/journal.pone.0132559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Mucus hypersecretion by airway epithelium is a hallmark of inflammation in allergic asthma and results in airway narrowing and obstruction. Others have shown that administration a TH2 cytokine, IL-13 is sufficient to cause mucus hypersecretion in vivo and in vitro. Asthma therapy often utilizes β2-adrenoceptor (β2AR) agonists, which are effective acutely as bronchodilators, however chronic use may lead to a worsening of asthma symptoms. In this study, we asked whether β2AR signaling in normal human airway epithelial (NHBE) cells affected mucin production in response to IL-13. This cytokine markedly increased mucin production, but only in the presence of epinephrine. Mucin production was blocked by ICI-118,551, a preferential β2AR antagonist, but not by CGP-20712A, a preferential β1AR antagonist. Constitutive β2AR activity was not sufficient for IL-13 induced mucin production and β-agonist-induced signaling is required. A clinically important long-acting β-agonist, formoterol, was as effective as epinephrine in potentiating IL-13 induced MUC5AC transcription. IL-13 induced mucin production in the presence of epinephrine was significantly reduced by treatment with selective inhibitors of ERK1/2 (FR180204), p38 (SB203580) and JNK (SP600125). Replacement of epinephrine with forskolin + IBMX resulted in a marked increase in mucin production in NHBE cells in response to IL-13, and treatment with the inhibitory cAMP analogue Rp-cAMPS decreased mucin levels induced by epinephrine + IL-13. Our findings suggest that β2AR signaling is required for mucin production in response to IL-13, and that mitogen activated protein kinases and cAMP are necessary for this effect. These data lend support to the notion that β2AR-agonists may contribute to asthma exacerbations by increasing mucin production via activation of β2ARs on epithelial cells.
Collapse
Affiliation(s)
- Nour Al-Sawalha
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Indira Pokkunuri
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Ozozoma Omoluabi
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Hosu Kim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Vaidehi J. Thanawala
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Adrian Hernandez
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
| | - Brian J. Knoll
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas, 77204, United States of America
- * E-mail:
| |
Collapse
|
58
|
Gocek E, Studzinski GP. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy. J Clin Med 2015; 4:504-34. [PMID: 26239344 PMCID: PMC4470153 DOI: 10.3390/jcm4040504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 17101, USA.
| |
Collapse
|
59
|
Jiang M, Österlund P, Fagerlund R, Rios DN, Hoffmann A, Poranen MM, Bamford DH, Julkunen I. MAP kinase p38α regulates type III interferon (IFN-λ1) gene expression in human monocyte-derived dendritic cells in response to RNA stimulation. J Leukoc Biol 2015; 97:307-20. [PMID: 25473098 DOI: 10.1189/jlb.2a0114-059rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recognition of viral nucleic acids leads to type I and type III IFN gene expression and activation of host antiviral responses. At present, type III IFN genes are the least well-characterized IFN types. Here, we demonstrate that the p38 MAPK signaling pathway is involved in regulating IFN-λ1 gene expression in response to various types of RNA molecules in human moDCs. Inhibition of p38 MAPK strongly reduced IFN gene expression, and overexpression of p38α MAPK enhanced IFN-λ1 gene expression in RNA-stimulated moDCs. The regulation of IFN gene expression by p38 MAPK signaling was independent of protein synthesis and thus, a direct result of RNA stimulation. Moreover, the RIG-I/MDA5-MAVS-IRF3 pathway was required for p38α MAPK to up-regulate IFN-λ1 promoter activation, whereas the MyD88-IRF7 pathway was not needed, and the regulation was not involved directly in IRF7-dependent IFN-α1 gene expression. The stimulatory effect of p38α MAPK on IFN-λ1 mRNA expression in human moDCs did not take place directly via the activating TBK1/IKKε complex, but rather, it occurred through some other parallel pathways. Furthermore, mutations in ISRE and NF-κB binding sites in the promoter region of the IFN-λ1 gene led to a significant reduction in p38α MAPK-mediated IFN responses after RNA stimulation. Altogether, our data suggest that the p38α MAPK pathway is linked with RLR signaling pathways and regulates the expression of early IFN genes after RNA stimulation cooperatively with IRF3 and NF-κB to induce antiviral responses further.
Collapse
Affiliation(s)
- Miao Jiang
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Pamela Österlund
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Riku Fagerlund
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Diana N Rios
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Alexander Hoffmann
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Minna M Poranen
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Dennis H Bamford
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Ilkka Julkunen
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| |
Collapse
|
60
|
Kasuya Y. [Trends in functions and inhibitors of p38]. Nihon Yakurigaku Zasshi 2015; 145:21-26. [PMID: 25743232 DOI: 10.1254/fpj.145.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
61
|
Wang Q, Li Y, Zhang Z, Fang Y, Li X, Sun Y, Xiong C, Yan L, Zhao J. Bioinformatics analysis of gene expression profiles of osteoarthritis. Acta Histochem 2015; 117:40-6. [PMID: 25466988 DOI: 10.1016/j.acthis.2014.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
This study aimed to explore the underlying molecular mechanisms of osteoarthritis (OA) by bioinformatics analysis. Synovial tissue samples from five OA and five normal donors (ND) were used to identify the differentially expressed genes (DEGs) by paired t-test. Pathway enrichment analysis of DEGs was performed, followed by construction of a protein-protein interaction (PPI) network. A functional enrichment analysis of the modules identified from the PPI network was performed, and the module with the highest enrichment scores was selected for pathway enrichment analysis. A total of 184 DEGs, including 95 up-regulated and 89 down-regulated DEGs, were identified. Up-regulated DEGs were enriched in 6 pathways, such as MAPK signaling and Wnt signaling pathway, while down-regulated DEGs were mainly enriched in glycolysis/gluconeogenesis. In the PPI network, PTTG1 with the highest connectivity degree of 18 was significantly related to nuclear division, mitosis and the cell cycle. Genes in Module A with the highest functional enrichment scores of 9.27 were mainly enriched in the pathways of oocyte meiosis, cell cycle, ubiquitin mediated proteolysis and progesterone-mediated oocyte maturation. The MAPK signaling and Wnt signaling pathways were closely associated with OA. The DEGs, such as PTTG1, MAP2K6, PPP3CC and CSNK1E, may be the potential targets for OA diagnosis and treatment.
Collapse
|
62
|
Martin EC, Krebs AE, Burks HE, Elliott S, Baddoo M, Collins-Burow BM, Flemington EK, Burow ME. miR-155 induced transcriptome changes in the MCF-7 breast cancer cell line leads to enhanced mitogen activated protein kinase signaling. Genes Cancer 2014; 5:353-64. [PMID: 25352952 PMCID: PMC4209600 DOI: 10.18632/genesandcancer.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/01/2014] [Indexed: 11/25/2022] Open
Abstract
A single microRNA (miRNA) has the potential to regulate thousands of genes and thus govern multiple signaling pathways at once. miR-155 is an oncogenic miRNA which regulates many cellular pathways, designating it as a multifaceted regulator of proliferation, chemo-resistance, and apoptosis. While many singular targeted effects of miR-155 have been defined and an oncogenic role has been attributed to miR-155 expression, the global effect of miR-155 on the cellular transcriptomes of an ER+ breast cancer cell line has yet to be determined. Here we demonstrate that miR-155 expression increases tumorigenesis in vivo and we determine miR-155 mediated transcriptome changes through next generation sequencing analysis. miR-155 expression alters many signaling pathways, with the chief altered pathway being the MAPK signaling cascade and miR-155 induces shortening of target mRNA 3′UTRs and alternative isoform expression of MAPK related genes. In addition there is an observed increase in protein phosphorylation of components of MAPK signaling including ERK1/2 and AP-1 complex members (Fra-1 and c-Fos) as well as elevated gene expression of MAPK regulated genes Zeb1, Snail, Plaur, and SerpinE1.
Collapse
Affiliation(s)
- Elizabeth C Martin
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Adrienne E Krebs
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Hope E Burks
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Steven Elliott
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA ; Department of Pathology, Tulane University, New Orleans, LA
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA ; Department of Pathology, Tulane University, New Orleans, LA
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA ; Tulane Cancer Center, Tulane University, New Orleans, LA ; Department of Pharmacology, Tulane University, New Orleans, LA
| |
Collapse
|
63
|
p38δ MAPK: Emerging Roles of a Neglected Isoform. Int J Cell Biol 2014; 2014:272689. [PMID: 25313309 PMCID: PMC4182853 DOI: 10.1155/2014/272689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
p38δ mitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δ MAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δ MAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δ MAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δ MAPK activity. We outline a role for p38δ MAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δ MAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δ MAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δ MAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.
Collapse
|
64
|
Abstract
Mitogen-activated protein kinases (MAPKs) mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the main subgroups, the p38 MAP kinases, has been implicated in a wide range of complex biologic processes, such as cell proliferation, cell differentiation, cell death, cell migration, and invasion. Dysregulation of p38 MAPK levels in patients are associated with advanced stages and short survival in cancer patients (e.g., prostate, breast, bladder, liver, and lung cancer). p38 MAPK plays a dual role as a regulator of cell death, and it can either mediate cell survival or cell death depending not only on the type of stimulus but also in a cell type specific manner. In addition to modulating cell survival, an essential role of p38 MAPK in modulation of cell migration and invasion offers a distinct opportunity to target this pathway with respect to tumor metastasis. The specific function of p38 MAPK appears to depend not only on the cell type but also on the stimuli and/or the isoform that is activated. p38 MAPK signaling pathway is activated in response to diverse stimuli and mediates its function by components downstream of p38. Extrapolation of the knowledge gained from laboratory findings is essential to address the clinical significance of p38 MAPK signaling pathways. The goal of this review is to provide an overview on recent progress made in defining the functions of p38 MAPK pathways with respect to solid tumor biology and generate testable hypothesis with respect to the role of p38 MAPK as an attractive target for intervention of solid tumors.
Collapse
Affiliation(s)
- Hari K Koul
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA ; Feist-Weiller Cancer Center, Shreveport, LA, USA ; Veterans Administration Medical Center, Shreveport, LA, USA
| | - Mantu Pal
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA ; Veterans Administration Medical Center, Shreveport, LA, USA
| | - Sweaty Koul
- Feist-Weiller Cancer Center, Shreveport, LA, USA ; Department of Urology, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
65
|
Identification of p38α MAP kinase inhibitors by pharmacophore based virtual screening. J Mol Graph Model 2014; 49:18-24. [DOI: 10.1016/j.jmgm.2014.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
|
66
|
Loss of epidermal p38α signaling prevents UVR-induced inflammation via acute and chronic mechanisms. J Invest Dermatol 2014; 134:2231-2240. [PMID: 24662766 PMCID: PMC4102657 DOI: 10.1038/jid.2014.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 11/21/2022]
Abstract
Ultraviolet B radiation (UVB) is a component of solar radiation primarily responsible for causing damage and cancer in irradiated skin, and disrupting immune homeostasis. The immediate harm and long-term health risks of excessive sunlight exposure are impacting the lives of nearly all people worldwide. Inflammation is a key mechanism underlying UVB’s various detrimental effects. Here we show that activation of the protein kinase p38α is restricted to the epidermis in UVB-exposed skin, and p38α ablation targeted to the epithelial compartment is sufficient to suppress UVB-induced inflammation. Mechanistically, loss of epithelial p38α signaling attenuates the expression of genes required to induce vascular leakage and edema, and also increases the steady-state abundance of epidermal γδ T cells, which are known to promote the repair of damaged epidermis. These effects of p38α deficiency delineate a molecular network operating at the organism-environment interface, and reveal conditions crucial to preventing the pathology resulting from sun-damaged skin.
Collapse
|
67
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
68
|
Liu H, Yanamandala M, Lee TC, Kim JK. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes. PLoS One 2014; 9:e85272. [PMID: 24465521 PMCID: PMC3899003 DOI: 10.1371/journal.pone.0085272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Aims While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2) protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R) by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK), leading to suppression of reactive oxygen species (ROS) post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD), a major mitochondrial ROS scavenging enzyme, via cardiac p38β. Methods and Results We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β). E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays. Conclusion This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.
Collapse
Affiliation(s)
- Han Liu
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Mounica Yanamandala
- School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Tiffany C. Lee
- School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Jin Kyung Kim
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
69
|
Abstract
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders.
Collapse
Affiliation(s)
- Mohammed Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA
| |
Collapse
|
70
|
Yang CB, Pei WJ, Zhao J, Cheng YY, Zheng XH, Rong JH. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. Acta Pharmacol Sin 2014; 35:113-23. [PMID: 24335836 DOI: 10.1038/aps.2013.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/29/2013] [Indexed: 12/13/2022]
Abstract
AIM The purpose of the present study was to investigate the anticancer activity of bornyl caffeate in the human breast cancer cell line MCF-7. METHODS The cell viability was determined using the MTT assay, and apoptosis was initially defined by monitoring the morphology of the cell nuclei and staining an early apoptotic biomarker with Annexin V-FITC. The mitochondrial membrane potential was visualized by JC-1 under fluorescence microscopy, whereas intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. RESULTS Bornyl caffeate induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. Consistently, bornyl caffeate increased Bax and decreased Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and the activation of the mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). Antioxidants attenuated the activation of MAP kinase p38 but barely affected the activation of JNK. Importantly, the cytotoxicity of bornyl caffeate was partially attenuated by scavenging ROS and inhibited by MAP kinases and caspases. CONCLUSION The present study demonstrated that bornyl caffeate induced apoptosis in the cancer cell line MCF-7 via activating the ROS- and JNK-mediated pathways. Thus, bornyl caffeate may be a potential anticancer lead compound.
Collapse
|
71
|
Abdelfadil E, Cheng YH, Bau DT, Ting WJ, Chen LM, Hsu HH, Lin YM, Chen RJ, Tsai FJ, Tsai CH, Huang CY. Thymoquinone induces apoptosis in oral cancer cells through p38β inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:683-96. [PMID: 23711149 DOI: 10.1142/s0192415x1350047x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral cancer is a common malignancy associated with high morbidity and mortality. While p38 MAPK is reported to be involved in different cellular activities such as proliferation and differentiation, reports rarely define the roles of the individual members of the p38 MAPK family in cancer. We used two unique cell lines developed by our lab representing chemically induced oral cancer cells (T28) and non-tumor cells (N28) obtained from tissues surrounding the induced cancer as a model to screen out whether p38 MAPK is involved in the malignant transformation processes. The results suggest an association between p38β not p38α and oral cancer development. Additionally, the anti-cancer activity of thymoquinone (TQ) was screened out and we found evidences suggesting that the anti-tumor activity of TQ may be attributed to the downregulation of p38β MAPK.
Collapse
Affiliation(s)
- Ehab Abdelfadil
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
LIU BIN, WANG JIA, CHENG LAN, LIANG JINGPING. Role of JNK and NF-κB pathways in Porphyromonas gingivalis LPS-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. Mol Med Rep 2013; 8:1594-600. [DOI: 10.3892/mmr.2013.1685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
|
73
|
Lu Q, Harris VA, Sun X, Hou Y, Black SM. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 2013; 8:e70750. [PMID: 23976956 PMCID: PMC3747161 DOI: 10.1371/journal.pone.0070750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD) to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Valerie A. Harris
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yali Hou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M. Black
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
74
|
Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol 2013; 69:1863-74. [PMID: 23929259 DOI: 10.1007/s00228-013-1568-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
CONTEXT Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. BACKGROUND Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. OBJECTIVE This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
75
|
Li HY, Li Y, Liu D, Sun HZ, Liu JG. LPS regulates epithelial-mesenchymal transition in cholangiocarcinoma cell line ICBD via the p38/MAPK signaling pathway. Shijie Huaren Xiaohua Zazhi 2013; 21:2070-2075. [DOI: 10.11569/wcjd.v21.i21.2070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of LPS on epithelial-mesenchymal transition (EMT) of cholangiocarcinoma ICBD cells and to explore the possible mechanisms involved.
METHODS: ICBD cells were randomly divided into four groups: a control group, a LPS (final concentration, 10 μg/mL) group, a LPS + siRNA group, and a LPS + SB203580 group. The expression of epithelial cell surface marker E-Cadherin, stromal cell surface marker Vimentin, TLR4 and p38 was examined by real-time RT-PCR and Western blot.
RESULTS: LPS promoted the initiation of EMT of ICBD cells. The expression of TLR4 and p38 significantly increased in the process of EMT of ICBD cells. SiRNA-mediated blockage of TLR4 inhibited the occurrence of EMT and the up-regulation of p38 in ICBD cells. When p38 was blocked by SB-203580, the expression of TLR4 was still up-regulated, but EMT of ICBD cells did not occur compared to the control group.
CONCLUSION: LPS may activate TLR4 and promote EMT of cholangiocarcinoma cells via the p38/MAPK signaling pathway.
Collapse
|
76
|
Induction of p38δ expression plays an essential role in oncogenic ras-induced senescence. Mol Cell Biol 2013; 33:3780-94. [PMID: 23878395 DOI: 10.1128/mcb.00784-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oncogene-induced senescence is a stable proliferative arrest that serves as a tumor-suppressing defense mechanism. p38 mitogen-activated protein kinase (MAPK) has been implicated in oncogene-induced senescence and tumor suppression. However, the specific role of each of the four p38 isoforms in oncogene-induced senescence is not fully understood. Here, we demonstrate that p38δ mediates oncogene-induced senescence through a p53- and p16(INK4A)-independent mechanism. Instead, evidence suggests a link between p38δ and the DNA damage pathways. Moreover, we have discovered a novel mechanism that enhances the expression of p38δ during senescence. In this mechanism, oncogenic ras induces the Raf-1-MEK-extracellular signal-regulated kinase (ERK) pathway, which, in turn, activates the AP-1 and Ets transcription factors that are bound to the p38δ promoter, leading to increased transcription of p38δ. These findings indicate that induction of the prosenescent function of p38δ by oncogenic ras is achieved through 2 mechanisms, transcriptional activation by the Raf-1-MEK-ERK-AP-1/Ets pathway, which increases the cellular concentration of the p38δ protein, and posttranslational modification by MKK3/6, which stimulates the enzymatic activity of p38δ. In addition, these studies identify the AP-1 and Ets transcription factors as novel signaling components in the senescence-inducing pathway.
Collapse
|
77
|
Chang HW, Chung FS, Yang CN. Molecular modeling of p38α mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. J Chem Inf Model 2013; 53:1775-86. [PMID: 23808966 DOI: 10.1021/ci4000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in inflammation and other physiological processes. Because specific inhibitors of p38α and p38β MAPK block the production of the major inflammatory cytokines and other proteins, p38α and p38β MAPK represent promising targets for the treatment of inflammation. In this work, a series of p38α inhibitors based on the structural scaffold of 4-benzoyl-5-aminopyrazole were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for p38 MAPK inhibition. Furthermore, we employed molecular dynamics (MD) simulations and the MM/GBSA method to compare the binding modes and binding free energies of a potent and selective compound interacting with p38α, p38β, p38γ, and p38δ MAPK in detail. Contour maps generated via 3D-QSAR analysis identified several key interactions that were also indicated through MD simulations. The binding free energies calculated via the MM/GBSA method were strongly correlated with experimentally observed biological activities and explained the selective inhibition of p38α and p38β, but not p38γ and p38δ detected here. On the basis of the obtained results, we provide insights regarding the development of novel potent p38α MAPK inhibitors.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Institute of Biotechnology, National University of Kaohsiung, Taiwan
| | | | | |
Collapse
|
78
|
Soni HM, Jain MR, Mehta AA. Mechanism(s) Involved in Carbon Monoxide-releasing Molecule-2-mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart. Indian J Pharm Sci 2013; 74:281-91. [PMID: 23626383 PMCID: PMC3630723 DOI: 10.4103/0250-474x.107047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/01/2022] Open
Abstract
The purpose of the present study was to determine the mechanism(s) involved in carbon monoxide-releasing molecule-2, carbon monoxide-releasing molecule-2-induced cardioprotection. We used the transition metal carbonyl compound carbon monoxide-releasing molecule-2 that can act as carbon monoxide donor in cardiac ischaemia-reperfusion injury model using isolated rat heart preparation. Langendorff's perfused rat hearts when treated with carbon monoxide-releasing molecule-2 (50 μM) for 10 min before global ischaemia exhibited significant reduction in postischaemic levels of myocardial injury markers, creatine kinase and lactate dehydrogenase in coronary effluent. Similarly, pretreatment with carbon monoxide-releasing molecule-2 showed significantly improved postischaemic recovery of heart rate, coronary flow rate, cardiodynamic parameters and reduced infarct size as compared to vehicle control hearts. Perfusion with p38 mitogen-activated protein kinase inhibitor, SB203580, a specific inhibitor of α and β isoform, before and concomitantly with carbon monoxide-releasing molecule-2 treatment abolished carbon monoxide-releasing molecule-2-induced cardioprotection. However, p38 mitogen-activated protein kinase alpha inhibitor, SCIO-469, was unable to inhibit the cardioprotective effect of carbon monoxide-releasing molecule-2. Furthermore, protective effect of carbon monoxide-releasing molecule-2 was significantly inhibited by the protein kinase C inhibitor, chelerythrine, when added before and concomitantly with carbon monoxide-releasing molecule-2. It was also observed that, perfusion with phosphatidylinositol 3-kinase inhibitor, wortmannin, before and concomitantly with carbon monoxide-releasing molecule-2 was not able to inhibit carbon monoxide-releasing molecule-2-induced cardioprotection. Interestingly, we observed that wortmannin perfusion before ischaemia and continued till reperfusion significantly inhibited carbon monoxide-releasing molecule-2-mediated cardioprotection. Our findings suggest that the carbon monoxide-releasing molecule-2 treatment may activate the p38 mitogen-activated protein kinase β and protein kinase C pathways before ischaemia and phosphatidylinositol 3-kinase pathway during reperfusion which may be responsible for the carbon monoxide-releasing molecule-2-mediated cardioprotective effect.
Collapse
Affiliation(s)
- H M Soni
- Department of Pharmacology, L.M. College of Pharmacy, Navarangpura, Ahmedabad-380 009, India ; Zydus Research Centre, Sarkhej-Bavla, NH 8A Moraiya, Ahmedabad-382 210, India
| | | | | |
Collapse
|
79
|
Function of the p38MAPK-HSP27 pathway in rat lung injury induced by acute ischemic kidney injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981235. [PMID: 23586067 PMCID: PMC3622345 DOI: 10.1155/2013/981235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 11/10/2012] [Accepted: 12/05/2012] [Indexed: 11/17/2022]
Abstract
This study aims to observe the changes and the function of p38MAPK-HSP27 signaling pathways in acute lung injury (ALI) induced by acute ischemic kidney injury in rats. Wistar rats were randomly divided into Group A (control group), Group B (acute kidney injury group), and Group C (acute kidney injury +SB203580). The concentration of protein in BALF, neutrophil counts, PI, W/D; the concentration of TNF- α , IL-6, and IL-1 β in plasma and BALF; and the concentrations of MDA and NO in the lung tissue started to increase 2 h after the experiment in Group B, which showed a significant difference compared with those in Groups A and C. The expressions of p-p38MAPK and p-HSP27 in the lung tissue began to increase 2 h after the experiment in Group B, which was different from those in Groups A and C. A significant increase was observed in the F-actin expression in Group B than that in Group A. In Group B, the correlation of cytokine TNF- α , IL-6, and p-p38MAPK in BALF was positive. Acute kidney injury (AKI) induced by bilateral renal arteriovenous clamp closure could activate p38MAPK-HSP27 signaling pathways and induce lung injury, which blocks the p38MAPK-HSP27 signal pathway to reduce the risk of lung injury.
Collapse
|
80
|
Müller R, Daniel C, Hugo C, Amann K, Mielenz D, Endlich K, Braun T, van der Veen B, Heeringa P, Schett G, Zwerina J. The mitogen-activated protein kinase p38α regulates tubular damage in murine anti-glomerular basement membrane nephritis. PLoS One 2013; 8:e56316. [PMID: 23441175 PMCID: PMC3575386 DOI: 10.1371/journal.pone.0056316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/08/2013] [Indexed: 01/08/2023] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) is thought to play a central role in acute and chronic inflammatory responses. Whether p38MAPK plays a pathogenic role in crescentic GN (GN) and which of its four isoforms is preferentially involved in kidney inflammation is not definitely known. We thus examined expression and activation of p38MAPK isoforms during anti-glomerular basement membrane (GBM) nephritis. Therefore, p38α conditional knockout mice (MxCre-p38αΔ/Δ) were used to examine the role of p38α in anti-GBM induced nephritis. Both wild type and MxCre-p38αΔ/Δ mice developed acute renal failure over time. Histological examinations revealed a reduced monocyte influx and less tubular damage in MxCre-p38αΔ/Δ mice, whereas glomerular crescent formation and renal fibrosis was similar. Likewise, the levels of pro- and anti-inflammatory cytokines such as TNF, IL-1 and IL-10 were similar, but IL-8 was even up-regulated in MxCre-p38αΔ/Δ mice. In contrast, we could detect strong down-regulation of chemotactic cytokines such as CCL-2, -5 and -7, in the kidneys of MxCre-p38αΔ/Δ mice. In conclusion, p38α is the primary p38MAPK isoform expressed in anti-GBM nephritis and selectively affects inflammatory cell influx and tubular damage. Full protection from nephritis is however not achieved as renal failure and structural damage still occurs.
Collapse
Affiliation(s)
- Ralf Müller
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Christoph Daniel
- Department of Internal Medicine 4, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Christian Hugo
- Medical Clinic III, Technical University of Dresden, Dresden, Saxony, Germany
| | - Kerstin Amann
- Department of Pathology, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Dirk Mielenz
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Karlhans Endlich
- Institute of Anatomy and Cell Biology, University of Greifswald, Mecklenburg-West Pomerania, Germany
| | - Tobias Braun
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Betty van der Veen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Jochen Zwerina
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
- * E-mail:
| |
Collapse
|
81
|
Jung M, Metzger D. Purkinje-neuron-specific down-regulation of p38 protects motoric function from the repeated use of benzodiazepine. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.46a009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Yang X, Yao J, Luo Y, Han Y, Wang Z, Du L. P38 MAP Kinase Mediates Apoptosis After Genipin Treatment in Non^|^ndash;Small-Cell Lung Cancer H1299 Cells via a Mitochondrial Apoptotic Cascade. J Pharmacol Sci 2013; 121:272-81. [DOI: 10.1254/jphs.12234fp] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
83
|
|
84
|
Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, Miller CA, Heier RF, Byers DE, Brett TJ, Holtzman MJ. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest 2012; 122:4555-68. [PMID: 23187130 PMCID: PMC3533556 DOI: 10.1172/jci64896] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Yael G. Alevy
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anand C. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arthur G. Romero
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dhara A. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer Tucker
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William T. Roswit
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chantel A. Miller
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F. Heier
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E. Byers
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tom J. Brett
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
85
|
A combined 3D QSAR and pharmacophore-based virtual screening for the identification of potent p38 MAP kinase inhibitors: an in silico approach. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0179-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
86
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1062] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|
87
|
Yin Y, She H, Li W, Yang Q, Guo S, Mao Z. Modulation of Neuronal Survival Factor MEF2 by Kinases in Parkinson's Disease. Front Physiol 2012; 3:171. [PMID: 22661957 PMCID: PMC3362091 DOI: 10.3389/fphys.2012.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder due to selective death of neurons in the substantia nigra pars compacta. The cause of cell death remains largely unknown. Myocyte enhancer factor 2 (MEF2) is a group of transcriptional factors required to regulate neuronal development, synaptic plasticity, as well as survival. Recent studies show that MEF2 functions are regulated in multiple subcellular organelles and suggest that dysregulation of MEF2 plays essential roles in the pathogenesis of PD. Many kinases associated with transcription, translation, protein misfolding, autophagy, and cellular energy homeostasis are involved in the neurodegenerative process. Following the first demonstration that mitogen-activated protein kinase p38 (p38 MAPK) directly phosphorylates and activates MEF2 to promote neuronal survival, several other kinase regulators of MEF2s have been identified. These include protein kinase A and extracellular signal regulated kinase 5 as positive MEF2 regulators, and cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β as negative regulators in response to diverse toxic signals relevant to PD. It is clear that MEF2 has emerged as a key point where survival and death signals converge to exert their regulatory effects, and dysregulation of MEF2 function in multiple subcellular organelles may underlie PD pathogenesis. Moreover, several other kinases such as leucine-rich repeat kinase 2 and PTEN-induced putative kinase 1 (PINK1) are of particular interest due to their potential interaction with MEF2.
Collapse
Affiliation(s)
- Yue Yin
- Institute of Plastic Surgery, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
88
|
Namiki K, Matsunaga H, Yoshioka K, Tanaka K, Murata K, Ishida J, Sakairi A, Kim J, Tokuhara N, Shibakawa N, Shimizu M, Wada Y, Tokunaga Y, Shigetomi M, Hagihara M, Kimura S, Sudo T, Fukamizu A, Kasuya Y. Mechanism for p38α-mediated experimental autoimmune encephalomyelitis. J Biol Chem 2012; 287:24228-38. [PMID: 22637476 DOI: 10.1074/jbc.m111.338541] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the mitogen-activated protein kinases, p38, has been found to play a crucial role in various inflammatory responses. In this study, we analyzed the roles of p38α in multiple sclerosis, using an animal model, experimental autoimmune encephalomyelitis (EAE). p38α(+/-) mice (p38α(-/-) showed embryonic lethality) showed less severe neurological signs than WT mice. Adoptive transfer of lymph node cells (LNC) from sensitized WT mice with MOG(35-55) to naive WT-induced EAE was much more severe compared with the case using LNC from sensitized p38α(+/-) mice. Comprehensive analysis of cytokines from MOG(35-55)-challenged LNC by Western blot array revealed that production of IL-17 was significantly reduced by a single copy disruption of the p38α gene or a p38 inhibitor. Likewise, by a luciferase reporter assay, an electrophoresis mobility shift assay, and characterization of the relationship between p38 activity and IL-17 mRNA expression, we confirmed that p38 positively regulates transcription of the Il17 gene. Furthermore, oral administration of a highly specific p38α inhibitor (UR-5269) to WT mice at the onset of EAE markedly suppressed the progression of EAE compared with a vehicle group. These results suggest that p38α participates in the pathogenesis of EAE through IL-17 induction.
Collapse
Affiliation(s)
- Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Isoproterenol induced hypertrophy and associated signaling pathways are modulated by somatostatin in H9c2 cells. Int J Cardiol 2012; 167:1012-22. [PMID: 22465343 DOI: 10.1016/j.ijcard.2012.03.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/06/2012] [Accepted: 03/03/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Somatostatin (SST), a growth hormone inhibitory peptide plays key role in regulation of cell proliferation via modulation of mitogen activated protein kinases (MAPKs) and cell survival pathway. In cardiac physiology, β-Adrenergic receptors (β-ARs) play crucial role in regulation of downstream signaling pathways in receptor specific manner. The aim of the current study was to delineate the mechanistic insight for the role of SST on β-AR mediated signaling which promotes hypertrophy and apoptosis in rat fetal cardiomyocytes (H9c2 cells). Accordingly, SST dependent changes in signaling molecules including second messenger cAMP, PKA/CREB as well as MAPKs including ERK and p38 which are key mediators of hypertrophy and apoptosis were analyzed. METHODS AND RESULTS In the present study, we determined receptor specific effects on intracellular cAMP levels, signaling by western blot analysis and apoptosis by using JC-1 and Hoechst-33258 staining. Here, we present the data which indicates that SST inhibits isoproterenol induced hypertrophy and apoptosis in H9c2 cells. Importantly, SST inhibits β-ARs agonist induced cAMP activation and SST mediated inhibition of cAMP was enhanced in presence of β-ARs antagonist. SST enhances β2AR agonist formoterol mediated effects on PKA, CREB and ERK1/2 phosphorylations whereas it inhibits isoproterenol mediated ERK1/2 and p38 signaling in concentration dependent manner. CONCLUSIONS Taken together, these results presented here provide a novel insight for the potential role of SST in regulation of β-AR mediated effects on hypertrophy and modulation of hypertrophy promoting signaling in H9c2 cells.
Collapse
|
90
|
Mouchlis VD, Melagraki G, Mavromoustakos T, Kollias G, Afantitis A. Molecular Modeling on Pyrimidine-Urea Inhibitors of TNF-α Production: An Integrated Approach Using a Combination of Molecular Docking, Classification Techniques, and 3D-QSAR CoMSIA. J Chem Inf Model 2012; 52:711-23. [DOI: 10.1021/ci200579f] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Georgia Melagraki
- Department
of Chemoinformatics, NovaMechanics, Ltd., Nicosia, Cyprus
| | - Thomas Mavromoustakos
- Laboratory
of Organic Chemistry,
Department of Chemistry, University of Athens, Athens 15771, Greece
| | - George Kollias
- Institute
of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Antreas Afantitis
- Department
of Chemoinformatics, NovaMechanics, Ltd., Nicosia, Cyprus
- Institute
of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| |
Collapse
|
91
|
Ul-Haq Z, Khan W, Zia SR, Iqbal S. Structure-based 3D-QSAR models and dynamics analysis of novel N-benzyl pyridinone as p38α MAP kinase inhibitors for anticytokine activity. J Mol Graph Model 2012; 36:48-61. [PMID: 22534481 DOI: 10.1016/j.jmgm.2012.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
A novel series of anticytokine N-benzyl pyridinone derivatives that targets p38α MAP kinase has been analyzed by utilizing a combination of molecular modeling techniques. Statistically significant structure-based 3D-QSAR models were generated for both CoMFA and CoMSIA, and validated through acceptable predictive ability to support both internal and external set of compounds. Structural changes within the protein key backbone residues (Met109 and Gly110), DFG loop position, and side chain movements (Lys53 and Asn114) as resulted by different substituents on these inhibitors were also examined by molecular dynamics simulation. The protocol applied in this study could be helpful to rationalize potent compounds with better inhibitory activity and selectivity profiles against p38α MAP kinase.
Collapse
Affiliation(s)
- Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center, for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| | | | | | | |
Collapse
|
92
|
Matsumoto T, Kinoshita T, Matsuzaka H, Nakai R, Kirii Y, Yokota K, Tada T. Crystal structure of non-phosphorylated MAP2K6 in a putative auto-inhibition state. J Biochem 2012; 151:541-9. [DOI: 10.1093/jb/mvs023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
93
|
Ambure PS, Gangwal RP, Sangamwar AT. 3D-QSAR and molecular docking analysis of biphenyl amide derivatives as p38α mitogen-activated protein kinase inhibitors. Mol Divers 2012; 16:377-88. [DOI: 10.1007/s11030-011-9353-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
|
94
|
Abstract
p38 MAP kinase is a key enzyme in the proinflammatory response and a large number of compounds have been studied as potential therapeutic drugs. This review summarizes the bioanalytical methods used for the analysis of p38 MAP kinase inhibitors, with a special focus on sample preparation and chromatographic analysis. Biological sample extraction techniques utilized included protein precipitation, liquid–liquid extraction and SPE. Applications include determinations of compounds in a variety of biological fluids and tissues. Extracted samples are typically separated by reverse-phase LC and quantitated either by UV or MS/MS detection. The benefits and limitations of each sample preparation strategy are discussed. The importance of chromatographic separation to avoid matrix effect and interference from endogenous compounds or drug-related biotransformation products are also discussed herein.
Collapse
|
95
|
Tang J, Chen X, Tu W, Guo Y, Zhao Z, Xue Q, Lin C, Xiao J, Sun X, Tao T, Gu M, Liu Y. Propofol inhibits the activation of p38 through up-regulating the expression of annexin A1 to exert its anti-inflammation effect. PLoS One 2011; 6:e27890. [PMID: 22164217 PMCID: PMC3229486 DOI: 10.1371/journal.pone.0027890] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/27/2011] [Indexed: 11/30/2022] Open
Abstract
Inflammatory response is a kind of nonspecific immune response, with the central link of vascular response, which is mainly manifested by changes in neutrophils and vascular endothelial cells. In recent years, the in vivo and in vitro role of intravenous anesthetic propofol in inhibiting inflammatory response has been attracting more and more attention, but the anti-inflammatory mechanisms of propofol for mononuclear cells still remain undefined. In this study, proteomics analysis was applied to investigate protein expression profile changes in serum mononuclear cells following intervention of rats with endotoxemia using propofol. After two-dimensional electrophoresis and mass spectrometric identification, it has been found that the protein Annexin A1 was up-regulated in the propofol intervention group. Annexin A1 is a glucocorticoid-dependent anti-inflammatory protein. After detection using ELISA and Western blot assays, it has also been found that propofol can not only promote the expression of Annexin A1, but also inhibit the phosphorylation level of p38 and release of inflammatory factors (IL-1β, IL-6 and TNF-α) in rats with endotoxemia. In order to further determine the role of up-regulated expression of Annexin A1 in anti-inflammation of propofol, this gene was silenced in vitro in human THP-1 cells, to detect the phosphorylation status of p38 and release of inflammatory factors. The results show that Annexin A1 can negatively regulate phosphorylation of p38 and release of IL-1β, IL-6 and TNF-α in THP-1 cells following propofol intervention and lipopolysaccharide (LPS) stimulation. Our results clearly indicate that propofol can up-regulate Annexin A1 to inhibit the phosphorylation level of p38 and release of IL-1β, IL-6 and TNF-α, so as to inhibit inflammatory response. Therefore, it can be speculated that Annexin A1 might be the key signaling protein in the in vivo and in vitro anti-inflammatory mechanisms of propofol.
Collapse
Affiliation(s)
- Jing Tang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xi Chen
- Department of Anesthesia, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, People's Republic of China
| | - Weifeng Tu
- Department of Anesthesia, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, People's Republic of China
| | - Yuanbo Guo
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhenlong Zhao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiong Xue
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunshui Lin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jinfang Xiao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Tao Tao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- * E-mail: (MG); (TT); (YL)
| | - Miaoning Gu
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- * E-mail: (MG); (TT); (YL)
| | - Youtan Liu
- Department of Anesthesia, Shenzhen Hospital, The University of Hong Kong, Shenzhen, People's Republic of China
- * E-mail: (MG); (TT); (YL)
| |
Collapse
|
96
|
Cai J, Huang Y, Wei S, Huang X, Ye F, Fu J, Qin Q. Characterization of p38 MAPKs from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1129-1136. [PMID: 22005516 DOI: 10.1016/j.fsi.2011.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are broadly expressed signaling molecules that involves in the regulation of cellular responsible for various extracellular stimuli. In this study, three p38 MAPK genes (Ec-p38a, p38b and p38β) were cloned from grouper, Epinephelus coioides and their characteristics were investigated in vitro. Although Ec-p38a, p38b and p38β showed high homologies to other fish p38a MPAK, p38b MAPK and p38β MAPK, respectively, they all contained the conserved structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW). Phylogenetic analysis indicated that Ec-p38a, p38b and p38β are more closely related to those from fish than mammals. The tissue distribution patterns of Ec-p38a, p38b and p38β were different, and Ec-p38β was up-regulated most obviously in head kidney after Singapore grouper iridovirus (SGIV) infection. Overexpression of Ec-p38β in FHM cells delayed the occurrence of CPE induced by SGIV infection. Further analysis indicated that overexpression of Ec-p38β inhibited viral gene transcription and protein synthesis, as well as SGIV induced typical apoptosis in fish cells. Taken together, our data indicated that Ec-p38β played a crucial role in regulating apoptosis and virus replication during iridovirus infection.
Collapse
Affiliation(s)
- Jia Cai
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | |
Collapse
|
97
|
New Insights into the p38γ and p38δ MAPK Pathways. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:520289. [PMID: 22175015 PMCID: PMC3235882 DOI: 10.1155/2012/520289] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/13/2011] [Indexed: 01/19/2023]
Abstract
The mammalian p38 mitogen-activated protein kinases (MAPKs) family is composed of four members (p38α, p38β, p38γ, and p38δ), which are very similar in amino acid sequence but differ in their expression patterns. This suggests that they may have specific functions in different organs. In the last years most of the effort has been centred on the study of the function of the p38α isoform, which is widely referred to as p38 in the literature. However, the role that other p38 isoforms play in cellular functions and their implication in some of the pathological conditions have not been precisely defined so far. In this paper we highlight recent advances made in defining the functions of the two less studied alternative p38MAPKs, p38γ and p38δ. We describe that these p38MAPKs show similarities to the classical p38α isoform, although they may play central and distinct role in certain physiological and pathological processes.
Collapse
|
98
|
p38γ mitogen-activated protein kinase contributes to oncogenic properties maintenance and resistance to poly (ADP-ribose)-polymerase-1 inhibition in breast cancer. Neoplasia 2011; 13:472-82. [PMID: 21532888 DOI: 10.1593/neo.101748] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 01/01/2023] Open
Abstract
p38γ MAPK, one of the four members of p38 mitogen-activated protein kinases (MAPKs), has previously been shown to harbor oncogenic functions. However, the biologic function of p38γ MAPK in breast cancer has not been well defined. In this study, we have shown that p38γ MAPK is overexpressed in highly metastatic human and mouse breast cancer cell lines and p38γ MAPK expression is preferentially associated with basal-like and metastatic phenotypes of breast tumor samples. Ectopic expression of p38γ MAPK did not lead to an increase in oncogenic properties in vitro in most tested mammary epithelial cells. However, knockdown of p38γ MAPK expression resulted in a dramatic decrease in cell proliferation, colony formation, cell migration, invasion in vitro and significant retardation of tumorigenesis, and long-distance metastasis to the lungs in vivo. Moreover, knockdown of p38γ MAPK triggered the activation of AKT signaling. Inhibition of this feedback loop with various PI3K/AKT signaling inhibitors facilitated the effect of targeting p38γ MAPK. We further found that overexpression of p38γ MAPK did not promote cell resistance to chemotherapeutic agents doxorubicin and paclitaxel but significantly increased cell resistance to PJ-34, a DNA damage agent poly (ADP-ribose)-polymerase-1 (PARP) inhibitor in vitro and in vivo. Finally, we identified that p38γ MAPK overexpression led to marked cell cycle arrest in G(2)/M phase. Our study for the first time clearly demonstrates that p38γ MAPK is a promising target for the design of targeted therapies for basal-like breast cancer with metastatic characteristics and for overcoming potential resistance against the PARP inhibitor.
Collapse
|
99
|
Duffy JP, Harrington EM, Salituro FG, Cochran JE, Green J, Gao H, Bemis GW, Evindar G, Galullo VP, Ford PJ, Germann UA, Wilson KP, Bellon SF, Chen G, Taslimi P, Jones P, Huang C, Pazhanisamy S, Wang YM, Murcko MA, Su MS. The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor. ACS Med Chem Lett 2011; 2:758-63. [PMID: 24900264 DOI: 10.1021/ml2001455] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/28/2011] [Indexed: 01/24/2023] Open
Abstract
The synthesis of novel, selective, orally active 2,5-disubstituted 6H-pyrimido[1,6-b]pyridazin-6-one p38α inhibitors is described. Application of structural information from enzyme-ligand complexes guided the selection of screening compounds, leading to the identification of a novel class of p38α inhibitors containing a previously unreported bicyclic heterocycle core. Advancing the SAR of this series led to the eventual discovery of 5-(2,6-dichlorophenyl)-2-(2,4-difluorophenylthio)-6H-pyrimido[1,6-b]pyridazin-6-one (VX-745). VX-745 displays excellent enzyme activity and selectivity, has a favorable pharmacokinetic profile, and demonstrates good in vivo activity in models of inflammation.
Collapse
Affiliation(s)
- John P. Duffy
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | | | - John E. Cochran
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Jeremy Green
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Huai Gao
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Guy W. Bemis
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | | | - Pamella J. Ford
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Ursula A. Germann
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | | | | | | | - Peter Jones
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - Cassey Huang
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | - S. Pazhanisamy
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | | - Mark A. Murcko
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, Massachusetts 02139-4242, United States
| | | |
Collapse
|
100
|
Abstract
Activation of mitogen-activated protein kinases (MAPKs) signaling cascade are important pathophysiologic regulators during the development of acute myocardial infarction (AMI). In present study, we designed to monitor the activity of these MAPKs in Iranian patients with AMI comparing with controls. The degree of activation (phosphorylation) of p38 kinase, p44/42 extracellular regulated kinase, and c-Jun N-terminal kinase (JNK1/2) and their corresponding activity levels were analyzed in 258 patients with AMI and 250 normal subjects. The expression of p38α mRNA was determined. These analysis were carried out immediately and 12 h after AMI. Activity of p38 and JNK1/2 MAPKs were significantly increased in patients with AMI than controls immediately after infarction. These activities were reduced during 12 h after AMI. However, there were no statistically differences in activation and activity of p44/42 in the patients and controls. The mRNA expression of p38α was increased in the patients comparing with controls. Results of this study indicate that these MAPKs signaling pathway might be activated by AMI which signal transduction involves kinase phosphorylation and play important roles in their activity. Elevated activity of p38 and JNK1/2 MAPKs suggests that they may potentially play significant roles in AMI.
Collapse
|