51
|
Shen WG, Xue QY, Wu YD, Hu BS, Zhu J, Zhang Y, Su Q. Melanoma-Associated Antigen Family Protein-D1 Regulation of Tumor Cell Migration, Adhesion to Endothelium, and Actin Structures Reorganization in Response to Hypoxic Stress. ACTA ACUST UNITED AC 2009; 14:21-31. [PMID: 17453828 DOI: 10.1080/15419060701224948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Melanoma-associated antigen family protein-D1 (MAGE-D1) is a recently identified p75 neurotrophin receptor intracellular binding protein and functions as an adaptor that mediates multiple signaling pathways, including Dlx/Msx-mediated transcription. Here, a new regulatory function for MAGE-D1 in tumor cell motility and adhesion to endothelium is described. MAGE-D1 over-expression suppressed HeLa cell and BEL7402 cell migration, invasion, and adhesion to the monolayer of ECV304 cells. We also report that MAGE-D1 over-expression disrupted actin cytoskeleton rearrangement induced by hypoxia and down-regulated hypoxia inducible factor 1-dependent luciferase gene expression. These findings provide new insight into the ability of MAGE-D1 to suppress the motility and adhesion response of tumor cells by interfering with actin cytoskeleton reorganization and hypoxia inducible factor 1-dependent gene expression.
Collapse
Affiliation(s)
- Wei-Gan Shen
- Medical College of Yangzhou University, Yangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
52
|
Kaul R, Murakami M, Lan K, Choudhuri T, Robertson ES. EBNA3C can modulate the activities of the transcription factor Necdin in association with metastasis suppressor protein Nm23-H1. J Virol 2009; 83:4871-83. [PMID: 19116252 PMCID: PMC2682100 DOI: 10.1128/jvi.02286-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies have demonstrated the interaction between the Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) and the metastatic suppressor Nm23-H1 both in vitro and in vivo (C. Subramanian, M. A. Cotter II, and E. S. Robertson, Nat. Med. 7:350-355, 2001). Importantly EBNA3C can reverse the ability of Nm23-H1 to suppress migration of human cells in vitro. EBNA3C contributes to EBV-associated human cancers by regulating transcription of a number of cellular and viral promoters as well as targeting and altering the transcription activities of the metastasis suppressor Nm23-H1. Furthermore, Necdin is a cellular protein which is highly induced in terminally differentiated cells; it contributes to the regulation of cell growth and is also known to interact with viral oncoproteins. In this report, we show that Nm23-H1 and EBNA3C can modulate the biological functions of Necdin in the context of EBV infection and transformation. The levels of Necdin were consistently lower in EBV-positive cells, and EBNA3C could change the subcellular localization of Necdin as well as rescue cells from the antiangiogenic and antiproliferative effects mediated by Necdin. We also show that Necdin directly interacts with Nm23-H1, resulting in modulation of the biochemical function of Nm23-H1 as well as the biological function of Necdin. Both EBNA3C and Nm23-H1 were able to rescue not only Necdin-mediated transcriptional repression of the downstream vascular endothelial growth factor promoter but also Necdin-mediated growth suppression and antiangiogenic effects on cancer cells. The majority of this response was mediated through amino acid residues 191 to 222 of Necdin, which are also known to be important for nuclear matrix targeting. These studies suggest a role for Necdin in the regulation of downstream cellular targets in a hypoxic environment in virus-associated human cancers.
Collapse
Affiliation(s)
- Rajeev Kaul
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
53
|
Liu Y, Wang E. Transcriptional analysis of normal human fibroblast responses to microgravity stress. GENOMICS PROTEOMICS & BIOINFORMATICS 2008; 6:29-41. [PMID: 18558383 PMCID: PMC5054092 DOI: 10.1016/s1672-0229(08)60018-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To understand the molecular mechanism(s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space-flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up-regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the “hub” for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
54
|
Bush JR, Wevrick R. The Prader–Willi syndrome protein necdin interacts with the E1A-like inhibitor of differentiation EID-1 and promotes myoblast differentiation. Differentiation 2008; 76:994-1005. [DOI: 10.1111/j.1432-0436.2008.00281.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
55
|
Sasaki A, Hinck L, Watanabe K. RumMAGE-D the Members: Structure and Function of a New Adaptor Family of MAGE-D Proteins. J Recept Signal Transduct Res 2008; 25:181-98. [PMID: 16194933 DOI: 10.1080/10799890500210511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
MAGE genes were first described as cancer-testis antigens, which are silenced in normal adult tissues but aberrantly expressed in tumor cells. The short peptides, derived from the degradation of MAGE transcripts, are the source of antigens that cause tumor rejection reactions when presented in the context of major histocompatibility complex. The recent discovery of a subset of genes that contain the structurally conserved MAGE homology domain (MHD) has accelerated the investigation into the normal function of MAGE genes. This new type of MAGE gene is normally expressed in embryonal and adult tissue, especially the brain. MAGE-D1, also known as NRAGE or Dlxin-1, functions as an adaptor protein that mediates multiple signaling pathways, including NGFR (p75NTR) and UNC5H1-induced apoptosis and Dlx/Msx-mediated transcription. Loss of a different MAGE family member, Necdin, which works as a cell cycle regulator, may play a role in the pathogenesis of Prader-Willi syndrome, a neurobehavioral disorder. In this article, the authors discuss recent findings concerning the structure and function of new MAGE genes, primarily focusing on MAGE-D1. Because some MAGE-D subfamily proteins share significant homology within the MHD, these recent discoveries on MAGE-D1 may give insight into the function of other MAGE-D proteins.
Collapse
Affiliation(s)
- Aya Sasaki
- Division of the Clinical Pathology, Sapporo Medical University Hospital, Hokkaido, Japan
| | | | | |
Collapse
|
56
|
Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci 2008; 28:8772-84. [PMID: 18753379 DOI: 10.1523/jneurosci.3052-08.2008] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sirtuin1 (Sirt1), a mammalian homolog of yeast Sir2, deacetylates the tumor suppressor protein p53 and attenuates p53-mediated cell death. Necdin, a p53-interacting protein expressed predominantly in postmitotic neurons, is a melanoma antigen family protein that promotes neuronal differentiation and survival. In mammals, the necdin gene (Ndn) is maternally imprinted, and mutant mice carrying mutated paternal Ndn show abnormalities of neuronal development. Here we report that necdin regulates the acetylation status of p53 via Sirt1 to suppress p53-dependent apoptosis in postmitotic neurons. Double-immunostaining analysis demonstrated that necdin colocalizes with Sirt1 in postmitotic neurons of mouse embryonic forebrain in vivo. Coimmunoprecipitation and in vitro binding analyses revealed that necdin interacts with both p53 and Sirt1 to potentiate Sirt1-mediated p53 deacetylation by facilitating their association. Primary cortical neurons prepared from paternal Ndn-deficient mice have high p53 acetylation levels and are sensitive to the DNA-damaging compounds camptothecin and hydrogen peroxide. Moreover, DNA transfection per se increases p53 acetylation and apoptosis in paternal Ndn-deficient neurons, whereas small interfering RNA-mediated p53 knockdown completely blocks these changes. However, Sirt1 knockdown increases both acetylated p53 level and apoptosis in wild-type neurons but fails to affect them in paternal Ndn-deficient neurons. In organotypic forebrain slice cultures treated with hydrogen peroxide, p53 is accumulated and colocalized with necdin and Sirt1 in cortical neurons. These results suggest that necdin downregulates p53 acetylation levels by forming a stable complex with p53 and Sirt1 to protect neurons from DNA damage-induced apoptosis.
Collapse
|
57
|
Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 2008; 17:3740-60. [PMID: 18799476 PMCID: PMC2581427 DOI: 10.1093/hmg/ddn271] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.
Collapse
Affiliation(s)
- Carl T Fulp
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
58
|
Chapman EJ, Kelly G, Knowles MA. Genes involved in differentiation, stem cell renewal, and tumorigenesis are modulated in telomerase-immortalized human urothelial cells. Mol Cancer Res 2008; 6:1154-68. [PMID: 18644980 DOI: 10.1158/1541-7786.mcr-07-2168] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of hTERT, the catalytic subunit of telomerase, immortalizes normal human urothelial cells (NHUC). Expression of a modified hTERT, without the ability to act in telomere maintenance, did not immortalize NHUC, confirming that effects at telomeres are required for urothelial immortalization. Previous studies indicate that inhibition of telomerase has an immediate effect on urothelial carcinoma (UC) cell line viability, before sufficient divisions to account for telomere attrition, implicating non-telomere effects of telomerase in UC. We analyzed the effects of telomerase on gene expression in isogenic mortal and hTERT-transduced NHUC. hTERT expression led to consistent alterations in the expression of genes predicted to be of phenotypic significance in tumorigenesis. A subset of expression changes were detected soon after transduction with hTERT and persisted with continued culture. These genes (NME5, PSCA, TSPYL5, LY75, IGFBP2, IGF2, CEACAM6, XG, NOX5, KAL1, and HPGD) include eight previously identified as polycomb group targets. TERT-NHUC showed overexpression of the polycomb repressor complex (PRC1 and PRC4) components, BMI1 and SIRT1, and down-regulation of multiple PRC targets and genes associated with differentiation. TERT-NHUC at 100 population doublings, but not soon after transduction, showed increased saturation density and an attenuated differentiation response, indicating that these are not acute effects of telomerase expression. Some of the changes in gene expression identified may contribute to tumorigenesis. Expression of NME5 and NDN was down-regulated in UC cell lines and tumors. Our data supports the concept of both telomere-based and non-telomere effects of telomerase and provides further rationale for the use of telomerase inhibitors in UC.
Collapse
Affiliation(s)
- Emma J Chapman
- Cancer Research UK Clinical Centre, St. James's University Hospital, Leeds LS97TF, United Kingdom
| | | | | |
Collapse
|
59
|
Aoyama J, Akazawa Y, Kasahara K, Higashiyama Y, Kikuchi I, Fukumoto Y, Saburi S, Nakayama Y, Fukuda MN, Yamaguchi N. Nuclear localization of magphinins, alternative splicing products of the human trophinin gene. J Cell Biochem 2008; 103:765-77. [PMID: 17559068 DOI: 10.1002/jcb.21446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human magphinin proteins are translation products of differentially spliced transcripts from the 5' region of the human trophinin gene (TRO), whose 3' region encodes trophinin, a unique cell adhesion molecule involved in human embryo implantation. Magphinins belong to the MAGE (melanoma-associated antigen) family, and a previous study of mouse magphinins showed their expression in male and female germ cells, suggesting a role in germ cell development. Here, we characterized the structure and subcellular localization of human magphinins. Confocal microscopy analysis of ectopically expressed magphinins revealed that magphinin-alpha and -beta localize in the cytoplasm, whereas magphinin-gamma lacking the peptide encoded by exon-3 is nuclear. Following Triton X-100 extraction, DNA digestion, and high salt extraction magphinin-gamma remained nuclear, suggesting strong association with the nuclear matrix. A series of magphinin-gamma deletion mutants were generated and assayed for localization, which showed that the N-terminal region of the MAGE homology domain is necessary for nuclear localization. When magphinin-gamma was expressed in NIH3T3 cells, cells underwent G1 arrest. These results suggest that human magphinin-gamma inhibits cell cycle progression through nuclear activity.
Collapse
Affiliation(s)
- Junya Aoyama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Liu GY, Gao SZ, Ge CR, Zhang X. cDNA cloning and tissue expression analyses of the encoding regions for three novel porcine genes- MJD1, CDC42 and NECD. Anim Biotechnol 2008; 19:117-21. [PMID: 18432402 DOI: 10.1080/10495390801896982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cDNAs for Machado-Joseph disease protein 1 homolog (MJD1), cell division control protein 42 homolog precursor(CDC42) and necdin (NECD) genes of pig were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved coding sequence information of the MJD1, CDC42, and NECD genes from mouse and other mammals and the referenced porcine EST sequence information. Tissue expression analysis showed the swine MJD1, CDC42, and NECD genes were obviously differentially expressed in different tissues including muscle, heart, liver, backfat, kidney, lung, small intestine, and large intestine. Our experiment established the primary foundation for further research on these three swine genes.
Collapse
Affiliation(s)
- G Y Liu
- Key Laboratory of Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, People's Republic of China
| | | | | | | |
Collapse
|
61
|
Nishimura I, Sakoda JY, Yoshikawa K. Drosophila MAGE controls neural precursor proliferation in postembryonic neurogenesis. Neuroscience 2008; 154:572-81. [DOI: 10.1016/j.neuroscience.2008.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
62
|
Lui JC, Finkielstain GP, Barnes KM, Baron J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol 2008; 295:R189-96. [PMID: 18448610 DOI: 10.1152/ajpregu.00182.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In mammals, somatic growth is rapid in early postnatal life but decelerates with age and eventually halts, thus determining the adult body size of the species. This growth deceleration, which reflects declining proliferation, occurs simultaneously in multiple organs yet appears not to be coordinated by a systemic mechanism. We, therefore, hypothesized that growth deceleration results from a growth-limiting genetic program that is common to multiple tissues. Here, we identified a set of 11 imprinted genes that show down-regulation of mRNA expression with age in multiple organs. For these genes, Igf2, H19, Plagl1, Mest, Peg3, Dlk1, Gtl2, Grb10, Ndn, Cdkn1c, and SLC38a4, the declines show a temporal pattern similar to the decline in growth rate. All 11 genes have been implicated in the control of cell proliferation or somatic growth. Thus, our findings suggest that the declining expression of these genes contributes to coordinate growth deceleration in multiple tissues. We next hypothesized that the coordinate decline in expression of these imprinted genes is caused by altered methylation and consequent silencing of the expressed allele. Contrary to this hypothesis, the methylation status of the promoter regions of Mest, Peg3, and Plagl1 did not change with age. Our findings suggest that a set of growth-regulating imprinted genes is expressed at high levels in multiple tissues in early postnatal life, contributing to rapid somatic growth, but that these genes are subsequently downregulated in multiple tissues simultaneously, contributing to coordinate growth deceleration and cessation, thus imposing a fundamental limit on adult body size.
Collapse
Affiliation(s)
- Julian C Lui
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
63
|
Imprinted Genes, Postnatal Adaptations and Enduring Effects on Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:41-61. [DOI: 10.1007/978-0-387-77576-0_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
64
|
Deponti D, François S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, Brunelli S. Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. ACTA ACUST UNITED AC 2007; 179:305-19. [PMID: 17954612 PMCID: PMC2064766 DOI: 10.1083/jcb.200701027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cell–derived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration.
Collapse
Affiliation(s)
- Daniela Deponti
- Department of Histology and Medical Embryology, University of Roma-La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Abstract
In contrast with the low frequency of alterations found in the Rb gene, the pRb pathway is inactivated in the vast majority of human tumors. A similar situation takes place in mouse models of cancer, including two-stage skin tumorigenesis. This might be explained if the Rb functions are carried out, in its absence, by other proteins that are also controlled by the same upstream regulators and display similar effectors. The other Rb family members, p107 and or p130, are plausible candidates. The embryonic lethality of pRb-deficient animals, which precludes the analysis of the roles of Rb gene in mouse models, has been avoided using tissue-specific deletion of pRb. In epidermis, pRb deletion leads to altered proliferation and differentiation. However, these deficient mice do not develop spontaneous tumors, and chemical carcinogenesis experiments revealed that the absence of pRb renders fewer and smaller tumors than control animals, but showing increased malignant conversion to squamous cell carcinomas (SCC). Detailed biochemical analyses have indicated that, in the absence of pRb, multiple pathways, including the aberrant p53 activation mediated by E2F/p19(ARF), are activated leading to increased tumor apoptosis. As Rb loss in epidermis is functionally compensated by Rbl1 (p107), this might also suggest that p107 could behave as a tumor suppressor. We summarize here our findings in support of this hypothesis. The pRb-;p107-/- epidermis form spontaneous tumors, and the reduction of p107 levels restores the susceptibility of pRb-mice to chemical skin carcinogenesis experiments. Moreover, Rb-deficient keratinocytes are highly susceptible to Ha-ras-induced transformation, and this susceptibility is enhanced by p107 loss. Further functional studies have indicated that the loss of p107 in the absence of pRb produces the reduction of p53-dependent proapoptotic signals through the modulation of p63 and p73 isoforms. In addition, expression profiling analysis has revealed multiple oncogenic alterations that can contribute to tumor susceptibility in epidermis in the absence of pRb and p107.
Collapse
|
67
|
Friedman ER, Fan CM. Separate necdin domains bind ARNT2 and HIF1alpha and repress transcription. Biochem Biophys Res Commun 2007; 363:113-8. [PMID: 17826745 PMCID: PMC2083645 DOI: 10.1016/j.bbrc.2007.08.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
PWS is caused by the loss of expression of a set of maternally imprinted genes including NECDIN (NDN). NDN is expressed in post-mitotic neurons and plays an essential role in PWS as mouse models lacking only the Ndn gene mimic aspects of this disease. Patients haploid for SIM1 develop a PW-like syndrome. Here, we report that NDN directly interacts with ARNT2, a bHLH-PAS protein and dimer partner for SIM1. We also found that NDN can interact with HIF1alpha. We showed that NDN can repress transcriptional activation mediated by ARNT2:SIM1 as well as ARNT2:HIF1alpha. The N-terminal 115 residues of NDN are sufficient for interaction with the bHLH domains of ARNT2 or HIF1alpha but not for transcriptional repression. Using GAL4-NDN fusion proteins, we determined that NDN possesses multiple repression domains. We thus propose that NDN regulates neuronal function and hypoxic response by regulating the activities of the ARNT2:SIM1 and ARNT2:HIF1alpha dimers, respectively.
Collapse
Affiliation(s)
- Eitan R Friedman
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
68
|
Mehler MF, Mattick JS. Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiol Rev 2007; 87:799-823. [PMID: 17615389 DOI: 10.1152/physrev.00036.2006] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
69
|
Di Certo MG, Corbi N, Bruno T, Iezzi S, De Nicola F, Desantis A, Ciotti MT, Mattei E, Floridi A, Fanciulli M, Passananti C. NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death. J Cell Sci 2007; 120:1852-8. [PMID: 17488777 DOI: 10.1242/jcs.03454] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neurotrophin receptor-interacting MAGE homolog (NRAGE) has been recently identified as a cell-death inducer, involved in molecular events driving cells through apoptotic networks during neuronal development. Recently, we have focused on the functional role of Che-1, also known as apoptosis-antagonizing transcription factor (AATF), a protein involved in cell cycle control and gene transcription. Increasing evidence suggests that Che-1 is involved in apoptotic signalling in neural tissues. In cortical neurons Che-1 exhibits an anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid beta-peptide. Here, we report that Che-1 interacts with NRAGE and that an EGFP-NRAGE fusion protein inhibits nuclear localization of Che-1, by sequestering it within the cytoplasmic compartment. Furthermore, NRAGE overexpression downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. Finally, we propose that Che-1 is a functional antagonist of NRAGE, because its overexpression completely reverts NRAGE-induced cell-death.
Collapse
Affiliation(s)
- Maria Grazia Di Certo
- Department of Experimental Medicine, Via Vetoio, Coppito 2, University of L'Aquila, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wang R, Lu F, Fu H, Wu Y, Yang G, Zhao W, Zhao Z. Transcriptional upregulation of restin by p53. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2007; 50:88-92. [PMID: 17393088 DOI: 10.1007/s11427-007-2039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/15/2005] [Indexed: 10/23/2022]
Abstract
Restin, belonging to the melanoma-associated antigen superfamily, was firstly cloned from the differentiated HL-60 cells when induced by all-trans retinoic acid (ATRA) in our lab. Our previous results showed that restin might be correlated to cell cycle arrest. Due to the importance of p53 in the regulation of cell growth and the relationship between p53 and ATRA, we tried to test the relationship between p53 and restin. Firstly, transfection results showed that p53 was able to upregulate the expression of restin at the transcriptional level when p53 was transfected into eukaryotic cells. Secondly, the bioinformatics analysis revealed that the upstream sequence (about 2 kb) from the first ATG of the ORF of restin gene contained a p53 binding site. In order to confirm that p53 was involved in the transcriptional regulation of restin, we cloned the upstream sequence of restin and constructed the promoter luciferase reporter system. From the luciferase activity, we demonstrated that the promoter of restin gene could be induced by ATRA. Then, another two luciferase reporter plasmids driven by the reporter of restin with no (RPdelta p53-luc) or mutant (mRP-luc) p53 binding site were constructed to see the regulation of restin by p53. Results showed that the transcriptional upregulation of restin gene was not due to the putative p53 binding site on the upstream of restin gene. We proposed that p53 upregulated restin transcription through an indirect way rather than direct interaction with the cis-activating element of the restin promoter.
Collapse
Affiliation(s)
- RuiHua Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | |
Collapse
|
71
|
López-Sánchez N, González-Fernández Z, Niinobe M, Yoshikawa K, Frade JM. Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins. Physiol Genomics 2007; 30:156-71. [PMID: 17374844 DOI: 10.1152/physiolgenomics.00249.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammals, the type II melanoma antigen (Mage) protein family is constituted by at least 10 closely related members that are expressed in different tissues, including the nervous system. These proteins are believed to regulate cell cycle withdrawal, neuronal differentiation, and apoptosis. However, the analysis of their specific function has been complicated by functional redundancy. In accordance with previous studies in teleosts and Drosophila, we present evidence that only one mage gene exists in genomes from protists, fungi, plants, nematodes, insects, and nonmammalian vertebrates. We have identified the chicken mage gene and cloned the cDNA encoding the chick Mage protein (CMage). CMage shares close homology with the type II Mage protein family, and, as previously shown for the type II Mage proteins Necdin and Mage-G1, it can interact with the transcription factor E2F-1. CMage is expressed in specific regions of the developing nervous system including the retinal ganglion cell layer, the ventral horn of the spinal cord, and the dorsal root ganglia, coinciding with the expression of the neurotrophin receptor p75 (p75(NTR)) in these regions. We show that the intracellular domain of p75(NTR) can interact with both CMage and Necdin, thus preventing the binding of the latter proteins to the transcription factor E2F-1, and facilitating the proapoptotic activity of E2F-1 in N1E-115 differentiating neurons. The presence of a single mage gene in the chicken genome, together with the close functional resemblance between CMage and Necdin, makes this species ideal to further analyze signal transduction through type II Mage proteins.
Collapse
|
72
|
Kurita M, Kuwajima T, Nishimura I, Yoshikawa K. Necdin downregulates CDC2 expression to attenuate neuronal apoptosis. J Neurosci 2006; 26:12003-13. [PMID: 17108174 PMCID: PMC6674873 DOI: 10.1523/jneurosci.3002-06.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cell cycle-regulatory transcription factor E2F1 induces apoptosis of postmitotic neurons in developmental and pathological situations. E2F1 transcriptionally activates many proapoptotic genes including the cyclin-dependent protein kinase cell division cycle 2 (Cdc2). Necdin is a potent mitotic suppressor expressed predominantly in postmitotic neurons and interacts with E2F1 to suppress E2F1-mediated gene transcription. The necdin gene NDN is maternally imprinted and expressed only from the paternal allele. Deletion of the paternal NDN is implicated in the pathogenesis of Prader-Willi syndrome, a genomic imprinting-associated neurodevelopmental disorder. Here, we show that paternally expressed necdin represses E2F1-dependent cdc2 gene transcription and attenuates apoptosis of postmitotic neurons. Necdin was abundantly expressed in differentiated cerebellar granule neurons (CGNs). Neuronal activity deprivation elevated the expression of both E2F1 and Cdc2 in primary CGNs prepared from mice at postnatal day 6, whereas the necdin levels remained unchanged. In chromatin immunoprecipitation analysis, endogenous necdin was associated with the cdc2 promoter containing an E2F-binding site in activity-deprived CGNs. After activity deprivation, CGNs underwent apoptosis, which was augmented in those prepared from mice defective in the paternal Ndn allele (Ndn(+m/-p)). The levels of cdc2 mRNA, protein, and kinase activity were significantly higher in Ndn(+m/-p) CGNs than in wild-type CGNs under activity-deprived conditions. Furthermore, the populations of Cdc2-immunoreactive and apoptotic cells were increased in the cerebellum in vivo of Ndn(+m/-p) mice. These results suggest that endogenous necdin attenuates neuronal apoptosis by suppressing the E2F1-Cdc2 system.
Collapse
Affiliation(s)
- Mitsumasa Kurita
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takaaki Kuwajima
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Isao Nishimura
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
73
|
Shen WG, Xue QY, Zhu J, Hu BS, Zhang Y, Wu YD, Su Q. Inhibition of adenovirus-mediated human MAGE-D1 on angiogenesis in vitro and in vivo. Mol Cell Biochem 2006; 300:89-99. [PMID: 17149546 DOI: 10.1007/s11010-006-9373-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
MAGE-D1 is a member of the MAGE family of proteins, and functions as an adaptor that mediates multiple signaling pathways. The current study for the first time provides evidence for a role of MAGE-D1 in the negative regulation of angiogenic activity in vitro and in vivo models. Our findings showed that MAGE-D1 over-expression significantly suppressed the angiogenic key events such as endothelial cell migration and invasion, adhesion on collagen I substrate, and in vitro differentiation into tube-like structures under both normoxic and hypoxic conditions. MAGE-D1 over-expression also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. With further experiments, we revealed that MAGE-D1 over-expression disrupted actin cytoskeleton organization and lamellipodia formation, and down-regulated HIF-1-dependent gene expression in endothelial cells under hypoxic conditions. These findings demonstrate a new function of MAGE-D1 in the regulation of angiogenesis and provide new insight into the ability of MAGE-D1 to suppress the growth and angiogenic response of endothelial cells by interfering with HIF-1-dependent gene expression, and actin cytoskeleton reorganization, suggesting that MAGE-D1 might be a novel inhibitor of angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Wei-Gan Shen
- Medical College of Yangzhou University, 16 Huai Hai Road, Yangzhou 225000, Jiangsu Province, PR China.
| | | | | | | | | | | | | |
Collapse
|
74
|
Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC DEVELOPMENTAL BIOLOGY 2006; 6:56. [PMID: 17116257 PMCID: PMC1687209 DOI: 10.1186/1471-213x-6-56] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/20/2006] [Indexed: 11/29/2022]
Abstract
Background The human NECDIN gene is involved in a neurodevelopmental disorder, Prader-Willi syndrome (PWS). Previously we reported a mouse Necdin knock-out model with similar defects to PWS patients. Despite the putative roles attributed to Necdin, mainly from in vitro studies, its in vivo function remains unclear. In this study, we investigate sensory-motor behaviour in Necdin deficient mice. We reveal cellular defects and analyse their cause. Results We report sensory differences in Necdin deficient mice compared to wild type animals. These differences led us to investigate sensory neuron development in Necdin deficient mouse embryos. First, we describe the expression pattern of Necdin in developing DRGs and report a reduction of one-third in specified sensory neurons in dorsal roots ganglia and show that this neuronal loss is achieved by E13.5, when DRGs sensory neurons are specified. In parallel, we observed an increase of 41% in neuronal apoptosis during the wave of naturally occurring cell death at E12.5. Since it is assumed that Necdin is a P75NTR interactor, we looked at the P75NTR-expressing cell population in Necdin knock-out embryos. Unexpectedly, Necdin loss of function has no effect on p75NTR expressing neurons suggesting no direct genetic interaction between Necdin and P75NTR in this context. Although we exclude a role of Necdin in axonal outgrowth from spinal sensory neurons in early developmental stages; such a role could occur later in neuronal differentiation. Finally we also exclude an anti-proliferative role of Necdin in developing sensory neurons. Conclusion Overall, our data show clearly that, in early development of the nervous system, Necdin is an anti-apoptotic or survival factor.
Collapse
|
75
|
Nishimura I, Shimizu S, Sakoda JY, Yoshikawa K. Expression of Drosophila MAGE gene encoding a necdin homologous protein in postembryonic neurogenesis. Gene Expr Patterns 2006; 7:244-51. [PMID: 17084677 DOI: 10.1016/j.modgep.2006.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/18/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
The MAGE (melanoma antigen) family is characterized by a large conserved domain termed MAGE homology domain. Originally identified MAGE genes encoding tumor rejection antigens are expressed only in cancers and male germ cells. Necdin, which contains the MAGE homology domain, is highly expressed in postmitotic cells such as neurons and skeletal muscle cells. The human necdin gene NDN is transcribed only from the paternal allele through genomic imprinting, and its deficiency is implicated in the pathogenesis of the neurodevelopmental disorder Prader-Willi syndrome. Although over 30 MAGE genes have been identified in humans, fruit fly (Drosophila melanogaster) has only a single MAGE gene that encodes a protein similar to necdin homologous MAGE proteins. In this study, we analyzed the spatiotemporal expression patterns of MAGE mRNA and the encoded protein during fly development. Whole-mount embryo in situ hybridization analysis revealed that MAGE mRNA was highly expressed at the syncytial blastoderm stage and in the ventral and procephalic neurogenic regions of the ectoderm during gastrulation. In contrast, MAGE expression was nearly undetectable in postmitotic neurons of the central nervous system at late embryonic stages. During postembryonic neurogenesis, MAGE was highly expressed in neural stem cells (neuroblasts) and their progeny (ganglion mother cells and postmitotic neurons) at larval and pupal stages. MAGE was also expressed in postmitotic neurons including mushroom body neurons and retinal photoreceptors in adulthood. These results indicate that MAGE expression lasts throughout the postembryonic neurogenesis in Drosophila.
Collapse
Affiliation(s)
- Isao Nishimura
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
76
|
Kawaguchi Y, Nishimagi E, Tochimoto A, Kawamoto M, Katsumata Y, Soejima M, Kanno T, Kamatani N, Hara M. Intracellular IL-1alpha-binding proteins contribute to biological functions of endogenous IL-1alpha in systemic sclerosis fibroblasts. Proc Natl Acad Sci U S A 2006; 103:14501-6. [PMID: 16971486 PMCID: PMC1599989 DOI: 10.1073/pnas.0603545103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aberrant production of precursor IL-1alpha (pre-IL-1alpha) in skin fibroblasts that are derived from systemic sclerosis (SSc) is associated with the induction of IL-6 and procollagen, which contributes to the fibrosis of SSc. However, little is understood about how intracellular pre-IL-1alpha regulates the expression of the other molecules in fibroblasts. We report here that pre-IL-1alpha can form a complex with IL-1alpha-binding proteins that is translocated into the nuclei of fibroblasts. Immunoprecipitation that used anti-human IL-1alpha Ab and (35)S-labeled nuclear extracts of fibroblasts showed three specific bands (approximately equal to 31, 35, and 65 kDa). The 31-kDa molecule was identified as pre-IL-1alpha, and the 35- and 65-kDa molecules might be pre-IL-1alpha-binding proteins. A partial sequencing for the 10 aa from the N-terminals of the molecules showed 100% homology for HAX-1 (HS1-associated protein X-1) and IL-1 receptor type II (IL-1RII). Suppression of the genes of HAX-1 or IL-1RII induced the inhibitory effects of IL-1 signal transduction, including production of IL-6 and procollagen, by fibroblasts. In particular, pre-IL-1alpha was not translocated into the nucleus by an inhibition of HAX-1. These findings reveal that nuclear localization of pre-IL-1alpha depends on the binding to HAX-1 and that biological activities might be elicited by the binding to both HAX-1 and IL-1RII in SSc fibroblasts.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Cell Nucleus/metabolism
- Cells, Cultured
- Collagen Type I/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/pathology
- Gene Expression Regulation
- Humans
- Immunoprecipitation
- Interleukin-1/metabolism
- Mice
- Middle Aged
- Models, Biological
- NIH 3T3 Cells
- Protein Binding
- Protein Precursors/metabolism
- Protein Transport
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1 Type II
- Scleroderma, Systemic/pathology
- Signal Transduction
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Kuwajima T, Nishimura I, Yoshikawa K. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci 2006; 26:5383-92. [PMID: 16707790 PMCID: PMC6675313 DOI: 10.1523/jneurosci.1262-06.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Necdin, a member of the MAGE (melanoma antigen) protein family, is expressed predominantly in terminally differentiated neurons. The necdin gene NDN is maternally imprinted and expressed only from the paternal allele, the deficiency of which is implicated in the pathogenesis of the neurodevelopmental disorder Prader-Willi syndrome. Necdin binds to its homologous MAGE protein MAGE-D1 (also known as NRAGE or Dlxin-1), which interacts with Msx (msh homeobox) and Dlx (distal-less homeobox) family homeodomain transcription factors. Members of the Dlx homeobox gene family are involved in the differentiation and specification of forebrain GABAergic neurons. Here we demonstrate that necdin associates with Dlx homeodomain proteins via MAGE-D1 to promote the differentiation of GABAergic neurons in mouse embryonic forebrain. Immunohistochemical analysis revealed that necdin was coexpressed with Dlx2, Dlx5, or MAGE-D1 in a subpopulation of embryonic forebrain cells. Necdin bound to Dlx2 and Dlx5 via MAGE-D1 and enhanced Dlx2-dependent activation of the Wnt1 (wingless-type MMTV integration site family) promoter. Necdin significantly increased the populations of cells expressing the GABAergic neuron markers calbindin D-28k and glutamic acid decarboxylase when overexpressed by electroporation in cultured forebrain slices. In this assay, Dlx5N, a truncated Dlx5 mutant that competes with Dlx2 to bind MAGE-D1, diminished the effect of necdin on GABAergic neuron differentiation. Furthermore, mutant mice lacking the paternal necdin allele showed a significant reduction in the differentiation of forebrain GABAergic neurons in vivo and in vitro. These results suggest that paternally expressed necdin facilitates the differentiation and specification of GABAergic neurons in cooperation with Dlx homeodomain proteins.
Collapse
|
78
|
Peikert T, Specks U, Farver C, Erzurum SC, Comhair SAA. Melanoma Antigen A4 Is Expressed in Non–Small Cell Lung Cancers and Promotes Apoptosis. Cancer Res 2006; 66:4693-700. [PMID: 16651421 DOI: 10.1158/0008-5472.can-05-3327] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A variety of melanoma antigen A (MAGE-A) genes are commonly detected in non-small cell lung cancers. Their biological function is not well characterized but may involve the regulation of apoptosis and cell cycle progression. We hypothesized that MAGE-A4 is involved in the regulation of apoptosis. To investigate this, expression of MAGE-A was evaluated. MAGE-A4 was expressed in 48% of non-small cell lung carcinomas. Ninety percent of lung carcinomas expressing MAGE-A4 were classified as squamous cell carcinomas and 10% were adenocarcinomas. Tumor-free surrounding lung tissue was negative for MAGE-A4. A molecular clone of MAGE-A4 derived from human lung cancer was stably expressed in human embryonic kidney cells (293 cells) to evaluate effects on cell death. Overexpression of MAGE-A4 increased apoptosis as measured by the apoptotic index (P < 0.0001) and caspase-3 activity (P < 0.002). Exposure to 25 micromol/L etoposide, a chemotherapeutic agent, increased the apoptotic effect (P < 0.0001). Furthermore, we show that MAGE-A4 silencing using a small interfering RNA approach results in decreased caspase-3 activity in the squamous cell lung cancer cell line H1703 by 58% (P = 0.0027) and by 24% (P = 0.028) in 293/MAGE-A4 cells. These findings suggest that MAGE-A4 expression may promote tumor cell death, sensitize malignancies to apoptotic stimuli, such as chemotherapeutic agents, and therefore may represent a tumor suppressor protein.
Collapse
MESH Headings
- Aged
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/genetics
- Apoptosis/physiology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Caspase 3
- Caspases/metabolism
- Cloning, Molecular
- Etoposide/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Transfection
Collapse
Affiliation(s)
- Tobias Peikert
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|
79
|
Fu H, Yang G, Lu F, Wang R, Yao L, Lu Z. Transcriptional up-regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process. Biochem Biophys Res Commun 2006; 343:1009-16. [PMID: 16574066 DOI: 10.1016/j.bbrc.2006.02.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 11/15/2022]
Abstract
RESTIN, a member of the melanoma-associated antigen superfamily, is a nuclear protein induced by atRA (all-trans retinoic acid) in HL60 cells. HeLa cells stably transfected with restin results in G1 cell cycle arrest. How this gene is regulated by atRA in the cell differentiation process is still unclear. In this study, we observed that up-regulation of restin was present during the atRA-induced HL60 cell differentiation process, suggesting the functional relevance between RESTIN and atRA-induced cellular effects. In order to further define the transcriptional regulation of restin by atRA, we analyzed the promoter region of restin. About 2.1kb 5' flanking sequence of this gene was cloned into vector pGL3 and its core promoter region was identified through systemic deletions. Interestingly, restin promoter containing several potential consensus-binding sites of STAT-1alpha was activated by atRA in ER(+) MCF-7 cells but not in ER(-) MDA-MB-231 cells, over-expression of STAT-1alpha in latter rescued the activation effect of restin promoter in response to atRA and IFNgamma. Our evidence supported that STAT-1alpha plays an important role in the atRA-induced transcriptional up-regulation of restin, which was associated with the atRA-induced HL60 cell differentiation and potentially mediated the downstream effects of atRA signal pathway via STAT-1alpha in some cancer cells.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Biochemistry and Molecular Biology, State Key Lab of Cancer Biology, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | |
Collapse
|
80
|
Goldfine AB, Crunkhorn S, Costello M, Gami H, Landaker EJ, Niinobe M, Yoshikawa K, Lo D, Warren A, Jimenez-Chillaron J, Patti ME. Necdin and E2F4 are modulated by rosiglitazone therapy in diabetic human adipose and muscle tissue. Diabetes 2006; 55:640-50. [PMID: 16505226 DOI: 10.2337/diabetes.55.03.06.db05-1015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To identify novel pathways mediating molecular mechanisms of thiazolidinediones (TZDs) in humans, we assessed gene expression in adipose and muscle tissue from six subjects with type 2 diabetes before and after 8 weeks of treatment with rosiglitazone. mRNA was analyzed using Total Gene Expression Analysis (TOGA), an automated restriction-based cDNA display method with quantitative analysis of PCR products. The expression of cell cycle regulatory transcription factors E2F4 and the MAGE protein necdin were similarly altered in all subjects after rosiglitazone treatment. E2F4 expression was decreased by 10-fold in muscle and 2.5-fold in adipose tissue; necdin was identified in adipose tissue only and increased 1.8-fold after TZD treatment. To determine whether changes were related to an effect of the drug or adipogenesis, we evaluated the impact of rosiglitazone and differentiation independently in 3T3-L1 adipocytes. While treatment of differentiated adipocytes with rosiglitazone did not alter E2F4 or necdin, expression of both genes was significantly altered during differentiation. Differentiation was associated with increased cytosolic localization of E2F4. Moreover, necdin overexpression potently inhibited adipocyte differentiation and cell cycle progression. These data suggest that changes in necdin and E2F4 expression after rosiglitazone exposure in humans are associated with altered adipocyte differentiation and may contribute to improved insulin sensitivity in humans treated with TZDs.
Collapse
Affiliation(s)
- Allison B Goldfine
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Kuwako KI, Hosokawa A, Nishimura I, Uetsuki T, Yamada M, Nada S, Okada M, Yoshikawa K. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J Neurosci 2006; 25:7090-9. [PMID: 16049186 PMCID: PMC6724840 DOI: 10.1523/jneurosci.2083-05.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Necdin is a multifunctional signaling protein that stabilizes terminal differentiation of postmitotic neurons. The human necdin gene in chromosome 15q11-q12 is maternally imprinted, paternally transcribed, and not expressed in Prader-Willi syndrome, a human genomic imprinting-associated neurodevelopmental disorder. Although necdin-deficient mice display several abnormal phenotypes reminiscent of this syndrome, little is known about molecular mechanisms that lead to the neurodevelopmental defects. Here, we demonstrate that paternally expressed necdin is required for physiological development of nerve growth factor (NGF)-dependent sensory neurons. Mouse embryos defective in the paternal necdin allele displayed absent necdin expression in the dorsal root ganglia, in which the tropomyosin-related kinase A (TrkA) receptor tyrosine kinase and the p75 neurotrophin receptor were expressed in a normal manner. Necdin interacted with both TrkA and p75 to facilitate the association between these receptors. NGF-induced phosphorylation of TrkA and mitogen-activated protein kinase was significantly diminished in the necdin-null sensory ganglia. Furthermore, the mice lacking the paternal necdin allele displayed augmented apoptosis in the sensory ganglia in vivo and had a reduced population of substance P-containing neurons. These mutant mice showed significantly high tolerance to thermal pain, which is often seen in individuals with Prader-Willi syndrome. These results suggest that paternally expressed necdin facilitates TrkA signaling to promote the survival of NGF-dependent nociceptive neurons.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Moon HE, Ahn MY, Park JA, Min KJ, Kwon YW, Kim KW. Negative regulation of hypoxia inducible factor-1alpha by necdin. FEBS Lett 2005; 579:3797-801. [PMID: 15978586 DOI: 10.1016/j.febslet.2005.05.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/24/2005] [Accepted: 05/26/2005] [Indexed: 11/27/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that mediates cellular and systemic homeostatic responses to reduce O2 availability, such as erythropoiesis, angiogenesis, and glycolysis. Using the yeast two-hybrid screening system, we found that the oxygen dependent degradation (ODD) domain of HIF-1alpha interacts with necdin, a growth suppressor. The interaction of necdin with HIF-1alpha was confirmed using coimmunoprecipitation with the overexpressed HIF-1alpha. Biological effect of necdin on HIF-1alpha showed that necdin reduces the transcriptional activity of HIF-1 under hypoxia. Moreover, necdin decreased the level of the HIF-1alpha protein, but not that of mRNA, implying a possibility of necdin-mediated HIF-1alpha degradation. Furthermore, necdin has an anti-angiogenic activity in the tube formation assay and CAM assay, which might be due to the downregulation of HIF-1alpha. Collectively, these results suggest that necdin can be a novel negative regulator of HIF-1alpha stability via the direct interaction.
Collapse
Affiliation(s)
- Hyo-Eun Moon
- Neurovascular Coordination Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
83
|
Taniura H, Kobayashi M, Yoshikawa K. Functional domains of necdin for protein-protein interaction, nuclear matrix targeting, and cell growth suppression. J Cell Biochem 2005; 94:804-15. [PMID: 15578580 DOI: 10.1002/jcb.20345] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Necdin is a growth suppressor expressed predominantly in postmitotic neurons. The necdin gene is involved in the etiology of the genomic imprinting-associated neurodevelopmental disorder Prader-Willi syndrome and belongs to the MAGE gene family. All the MAGE family proteins contain a large homology domain termed the MAGE homology domain (MHD). We here characterize the regions of necdin required for the protein-protein interaction, nuclear matrix targeting, and cell growth suppression. The region including entire MHD (amino acids 116-280) of necdin was required for its interaction with p53, while the regions amino acids 144-184 and 191-222 within the MHD were required for both the nuclear matrix targeting and the cell growth suppression of osteosarcoma SAOS-2 cells. The amino-terminal proline-rich acidic region (amino acids 60-100) was also necessary for cell growth suppression. Tetracycline-regulatable overexpression of necdin induced growth arrest of SAOS-2 cells in a reversible manner, and the necdin-overexpressing cells showed a large, flattened morphology with double nuclei. In contrast, a necdin mutant lacking amino acids 191-222 did not induce such changes. These findings suggest that different functions of necdin are mediated via its distinct domains.
Collapse
Affiliation(s)
- Hideo Taniura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | |
Collapse
|
84
|
Strachan GD, Kopp AS, Koike MA, Morgan KL, Jordan-Sciutto KL. Chemokine- and neurotrophic factor-induced changes in E2F1 localization and phosphorylation of the retinoblastoma susceptibility gene product (pRb) occur by distinct mechanisms in murine cortical cultures. Exp Neurol 2005; 193:455-68. [PMID: 15869948 DOI: 10.1016/j.expneurol.2004.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 08/10/2004] [Accepted: 08/13/2004] [Indexed: 11/21/2022]
Abstract
The retinoblastoma susceptibility gene product (pRb) and E2F1 have been found to exhibit altered localization and increased staining in several neurodegenerative diseases. We have observed similar localization in primary murine cortical cultures treated with neurotrophic factors (NTF) or chemokines. In untreated cultures, E2F1 exhibited minimal immunostaining using the KH95 antibody, which recognizes the pRb interaction domain. In primary E16 murine cortical cultures, NTF- or chemokine-treated neurons, KH95 E2F1 staining was increased in the cytoplasm. However, an antibody recognizing the amino-terminus of E2F1 (KH20) stained the cytoplasm of both untreated and treated neurons. Taken together these results suggest that the change seen in E2F1 using the KH95 antibody is due to antigen unmasking of a carboxy-terminal epitope in response to NTF and chemokines. When we assessed staining for the hyperphosphorylated, inactive form of pRb (ppRb) in untreated cultures, ppRb was predominantly cytoplasmic. In response to NTF or chemokine treatment, staining for ppRb was observed predominantly in nuclei of neurons indicating a change in subcellular distribution. Immunoblot analysis demonstrated increased levels of ppRb in response to NTF and chemokines. Inhibitors of translation, nuclear export, and phoshpatidylinositol-3-kinase blocked NTF- and chemokine-induced nuclear ppRb localization while having no effect on E2F1 staining. Instead increased cytoplasmic KH95 E2F1 staining was dependent on cytoskeletal destabilization which did not influence ppRb localization. These findings demonstrate that alterations in ppRb distribution and E2F1 antigen availability by NTF and chemokines occur by distinct mechanisms suggesting that E2F1 function may be independent of pRb regulation in post-mitotic neurons.
Collapse
Affiliation(s)
- Gordon D Strachan
- Department of Pathology, University of Pennsylvania, 240 S. 40th St, Room 312 Levy Bldg, Philadelphia, PA 19104-6030, USA
| | | | | | | | | |
Collapse
|
85
|
Tseng YH, Butte AJ, Kokkotou E, Yechoor VK, Taniguchi CM, Kriauciunas KM, Cypess AM, Niinobe M, Yoshikawa K, Patti ME, Kahn CR. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 2005; 7:601-11. [PMID: 15895078 DOI: 10.1038/ncb1259] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/28/2005] [Indexed: 12/15/2022]
Abstract
The insulin/IGF-1 (insulin-like growth factor 1) signalling pathway promotes adipocyte differentiation via complex signalling networks. Here, using microarray analysis of brown preadipocytes that are derived from wild-type and insulin receptor substrate (Irs) knockout animals that exhibit progressively impaired differentiation, we define 374 genes/expressed-sequence tags whose expression in preadipocytes correlates with the ultimate ability of the cells to differentiate. Many of these genes, including preadipocyte factor-1 (Pref-1) and multiple members of the Wnt signalling pathway, are related to early adipogenic events. Necdin is also markedly increased in Irs knockout cells that cannot differentiate, and knockdown of necdin restores brown adipogenesis with downregulation of Pref-1 and Wnt10a expression. Insulin receptor substrate proteins regulate a necdin-E2F4 interaction that represses peroxisome-proliferator-activated receptor gamma (PPARgamma) transcription via a cyclic AMP response element binding protein (CREB)-dependent pathway. Together these define a key signalling network that is involved in brown preadipocyte determination.
Collapse
Affiliation(s)
- Yu-Hua Tseng
- Research Division, Joslin Diabetes Center, Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Wu Y, Lu F, Qi Y, Wang R, Zhang J, Lu Z, Zhao Z. Interaction of Restin with transcription factors. ACTA ACUST UNITED AC 2005; 48:256-62. [PMID: 16092758 DOI: 10.1007/bf03183619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Restin, a member of melanoma-associated antigen superfamily gene, was first cloned from differentiated leukemia cell induced by all trans-retinoic acid, and was able to inhibit cell proliferation, but the molecular mechanism was not clear. Since Restin was localized in cell nucleus, and its homolog member, Necdin (neuronal growth suppressor factor), could interact with transcription factors p53 and E2F1, we proposed that Restin might also function as Necdin through interacting with some transcription factors. In this study, transcription factors p53, AP1, ATFs and E2Fs were cloned and used in the mammalian two-hybrid system to identify their interaction with Restin. The results showed that only ATF3 had a strong interaction with Restin. It is interesting to know that ATF3 was an important transcription factor for G1 cell cycle initiation in physiological stress response. It was possible that the inhibition of cell proliferation by Restin might be related with the inhibition of ATF3 activity.
Collapse
Affiliation(s)
- Yousheng Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Imprinted genes are expressed monoallelically depending on their parental origin. High expression of the majority of imprinted genes tested to date has been demonstrated in extraembryonic tissues; placenta and yolk sac. Several mouse models where specific imprinted genes have been disrupted demonstrate that fetal and placental growth may be regulated by imprinted genes, in which paternally expressed genes enhance, and maternally expressed genes restrain, growth. We review the current information on, and suggest possible functional roles for, imprinted genes in placental development.
Collapse
Affiliation(s)
- P M Coan
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | | | | |
Collapse
|
88
|
Davies W, Isles AR, Wilkinson LS. Imprinted gene expression in the brain. Neurosci Biobehav Rev 2005; 29:421-30. [PMID: 15820547 DOI: 10.1016/j.neubiorev.2004.11.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/28/2022]
Abstract
In normal mammals, autosomal genes are present in duplicate (i.e. two alleles), one inherited from the father, and one from the mother. For the majority of genes both alleles are transcribed (or expressed) equally. However, for a small subset of genes, known as imprinted genes, only one allele is expressed in a parent-of-origin dependent manner (note that the 'imprint' here refers to the epigenetic mechanism through which one allele is silenced, and is completely unrelated to classical 'filial imprinting' manifest at the behavioural level). Thus, for some imprinted genes expression is only (or predominantly) seen from the paternally inherited allele, whilst for the remainder, expression is only observed from the maternally inherited allele. Early work on this class of genes highlighted their importance in gross developmental and growth phenotypes. Recent studies in mouse models and humans have emphasised their contribution to brain function and behaviour. In this article, we review the literature concerning the expression of imprinted genes in the brain. In particular, we attempt to define emerging organisation themes, especially in terms of the direction of imprinting (i.e. maternal or paternal expression). We also emphasise the likely role of imprinted genes in neurodevelopment. We end by pointing out that, so far as discerning the precise functions of imprinted genes in the brain is concerned, there are currently more questions than answers; ranging from the extent to which imprinted genes might contribute to common mental disorders, to wider issues related to how easily the new data on brain may be accommodated within the dominant theory regarding the origins and maintenance of imprinting, which pits the maternal and paternal genomes against each other in an evolutionary battle of the sexes.
Collapse
Affiliation(s)
- William Davies
- Neurobiology and Developmental Genetics Programmes, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
89
|
Laduron S, Deplus R, Zhou S, Kholmanskikh O, Godelaine D, De Smet C, Hayward SD, Fuks F, Boon T, De Plaen E. MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 2004; 32:4340-50. [PMID: 15316101 PMCID: PMC514365 DOI: 10.1093/nar/gkh735] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MAGE-A1 belongs to a family of 12 genes that are active in various types of tumors and silent in normal tissues except in male germ-line cells. The MAGE-encoded antigens recognized by T cells are highly tumor-specific targets for T cell-oriented cancer immunotherapy. The function of MAGE-A1 is currently unknown. To analyze it, we attempted to identify protein partners of MAGE-A1. Using yeast two-hybrid screening, we detected an interaction between MAGE-A1 and Ski Interacting Protein (SKIP). SKIP is a transcriptional regulator that connects DNA-binding proteins to proteins that either activate or repress transcription. We show that MAGE-A1 inhibits the activity of a SKIP-interacting transactivator, namely the intracellular part of Notch1. Deletion analysis indicated that this inhibition requires the binding of MAGE-A1 to SKIP. Moreover, MAGE-A1 was found to actively repress transcription by binding and recruiting histone deacetylase 1 (HDAC1). Our results indicate that by binding to SKIP and by recruiting HDACs, MAGE-A1 can act as a potent transcriptional repressor. MAGE-A1 could therefore participate in the setting of specific gene expression patterns for tumor cell growth or spermatogenesis.
Collapse
Affiliation(s)
- Sandra Laduron
- Ludwig Institute for Cancer Research, Brussels branch, and Cellular Genetics Unit, Université Catholique de Louvain, Brussels B1200, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Kuwajima T, Taniura H, Nishimura I, Yoshikawa K. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells. J Biol Chem 2004; 279:40484-93. [PMID: 15272023 DOI: 10.1074/jbc.m404143200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Necdin is a potent growth suppressor that is expressed predominantly in postmitotic cells such as neurons and skeletal muscle cells. Necdin shows a significant homology to MAGE (melanoma antigen) family proteins, all of which contain a large homology domain. MAGE-D1 (NRAGE, Dlxin-1) interacts with the Dlx/Msx family homeodomain proteins via an interspersed hexapeptide repeat domain distinct from the homology domain. Here we report that necdin associates with the Msx homeodomain proteins via MAGE-D1 to modulate their function. In vitro binding and co-immunoprecipitation analyses revealed that MAGE-D1 directly interacted with necdin via the homology domain and Msx1 (or Msx2) via the repeat domain. A ternary complex of necdin, MAGE-D1, and Msx2 was formed in vitro, and an endogenous complex containing these three proteins was detected in differentiating embryonal carcinoma cells. Co-expression of necdin and MAGE-D1 released Msx-dependent transcriptional repression. C2C12 myoblast cells that were stably transfected with Msx2 cDNA showed a marked reduction in myogenic differentiation, and co-expression of necdin and MAGE-D1 canceled the Msx2-dependent repression. These results suggest that necdin and MAGE-D1 cooperate to modulate the function of Dlx/Msx homeodomain proteins in cellular differentiation.
Collapse
Affiliation(s)
- Takaaki Kuwajima
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
91
|
Abstract
To date, dozens of melanoma-associated antigens (MAGEs) have been identified and classified into 2 subgroups, I and II. Subgroup I consists of antigens which expression is generally restricted to tumor or germ cells, also named as cancer/testis (CT) antigen. Proteins and peptides derived from some of these antigens have been utilized in promising clinical trials of immunotherapies for gastrointestinal carcinoma, esophageal carcinoma, pulmonary carcinoma and so on. Various MAGE family members play important physiological and pathological roles during embryogenesis, germ cell genesis, apoptosis, etc. However, little is known regarding the role of MAGE family members in cell activities. It is reasonable to speculate that the genes for subgroup I MAGEs, which play important roles during embryogenesis, could be later deactivated by a genetic mechanism such as methylation. In the case of tumor formation, these genes are reactivated and the resultant proteins may be recognized and attacked by the immune system. Thus, the subgroup I MAGEs may play important roles in the immune surveillance of certain tumor types. Here, we review the classifications of MAGE family genes and what is known of their biological functions.
Collapse
Affiliation(s)
- Jiang Xiao
- Hepatology Institute, People's Hospital, Peking University, Beijing 100044, China
| | | |
Collapse
|
92
|
Wen CJ, Xue B, Qin WX, Yu M, Zhang MY, Zhao DH, Gao X, Gu JR, Li CJ. hNRAGE, a human neurotrophin receptor interacting MAGE homologue, regulates p53 transcriptional activity and inhibits cell proliferation. FEBS Lett 2004; 564:171-6. [PMID: 15094062 DOI: 10.1016/s0014-5793(04)00353-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/11/2004] [Accepted: 03/17/2004] [Indexed: 10/26/2022]
Abstract
hNRAGE, a neurotrophin receptor p75 interacting MAGE homologue, is cloned from a human placenta cDNA library. hNRAGE can inhibit the colony formation of and arrest cell proliferation at the G1/S and G2/M stages in hNRAGE overexpressing cells. Interestingly, hNRAGE also increases the p53 protein level as well as its phosphorylation (Ser392). Further studies demonstrated that hNRAGE does not affect the proliferation of mouse p53-/- embryonic fibroblasts, suggesting that p53 function is required for hNRAGE induced cell cycle arrest. Moreover, the cell cycle inhibiting protein p21(WAF) is induced by hNRAGE in a p53 dependent manner. The data provide original evidence that hNRAGE arrests cell growth through a p53 dependent pathway.
Collapse
Affiliation(s)
- Chuan-Jun Wen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210097, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Schumacher A, Doerfler W. Influence of in vitro manipulation on the stability of methylation patterns in the Snurf/Snrpn-imprinting region in mouse embryonic stem cells. Nucleic Acids Res 2004; 32:1566-76. [PMID: 15004243 PMCID: PMC390307 DOI: 10.1093/nar/gkh322] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent work on embryonic stem (ES) cells showed that stem cell-derived tissues and embryos, cloned from ES cell nuclei, often fail to maintain epigenetic states of imprinted genes. This deregulation is frequently associated with in vitro manipulations and culture conditions which might affect the cells potential to develop into normal fetuses. Usually, epigenetic instability is reported in differentially methylated regions of mostly growth-related imprinted genes. However, little is known about the epigenetic stability of genes that function late in organogenesis. Hence, we set out to investigate the epigenetic stability of neuronal genes and analyzed DNA methylation patterns in the Snurf/Snrpn imprinted cluster in several cultured mouse ES cell lines. We also determined the effects of in vitro stress factors such as consecutive passaging, trypsination, mechanical handling, single cell cloning, centrifugation, staurosporine-induced neurogenesis and the insertion of viral (foreign) DNA into the host genome. Intriguingly, none of these in vitro manipulations interfered with the stability of the methylation patterns in the analyzed neuronal genes. These data imply that, in contrast to growth-related genes like Igf2, H19, Igf2r or Grb10, the methylation imprints of the analyzed neuronal genes in the Snurf/Snrpn cluster may be particularly stable in manipulated ES cells.
Collapse
Affiliation(s)
- Axel Schumacher
- Institute of Genetics, University of Cologne, Weyertal 121, D-50931 Cologne, Germany.
| | | |
Collapse
|
94
|
Albrecht DE, Froehner SC. DAMAGE, a novel alpha-dystrobrevin-associated MAGE protein in dystrophin complexes. J Biol Chem 2003; 279:7014-23. [PMID: 14623885 DOI: 10.1074/jbc.m312205200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice rendered null for alpha-dystrobrevin, a component of the dystrophin complex, have muscular dystrophy, despite the fact that the sarcolemma remains relatively intact (Grady, R. M., Grange, R. W., Lau, K. S., Maimone, M. M., Nichol, M. C., Stull, J. T., and Sanes, J. R. (1999) Nat. Cell Biol. 1, 215-220) Thus, alpha-dystrobrevin may serve a signaling function that is important for the maintenance of muscle integrity. We have identified a new dystrobrevin-associated protein, DAMAGE, that may play a signaling role in brain, muscle, and peripheral nerve. In humans, DAMAGE is encoded by an intronless gene located at chromosome Xq13.1, a locus that contains genes involved in mental retardation. DAMAGE associates directly with alpha-dystrobrevin, as shown by yeast two-hybrid, and co-immunoprecipitates with the dystrobrevin-syntrophin complex from brain. This co-immunoprecipitation is dependent on the presence of alpha-dystrobrevin but not beta-dystrobrevin. The DAMAGE protein contains a potential nuclear localization signal, 30 12-amino acid repeats, and two MAGE homology domains. The domain structure of DAMAGE is similar to that of NRAGE, a MAGE protein that mediates p75 neurotrophin receptor signaling and neuronal apoptosis (Salehi, A. H., Roux, P. P., Kubu, C. J., Zeindler, C., Bhakar, A., Tannis, L. L., Verdi, J. M., and Barker, P. A. (2000) Neuron 27, 279-288). DAMAGE is highly expressed in brain and is present in the cell bodies and dendrites of hippocampal and Purkinje neurons. In skeletal muscle, DAMAGE is at the postsynaptic membrane and is associated with a subset of myonuclei. DAMAGE is also expressed in peripheral nerve, where it localizes along with other members of the dystrophin complex to the perineurium and myelin. These results expand the role of dystrobrevin and the dystrophin complex in membrane signaling and disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cloning, Molecular
- Cytoskeletal Proteins/chemistry
- Cytoskeletal Proteins/genetics
- DNA/chemistry
- DNA, Complementary/metabolism
- Dystrophin/chemistry
- Dystrophin-Associated Proteins
- Humans
- Immunohistochemistry
- Introns
- Macaca
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Mice
- Microscopy, Confocal
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Muscles/metabolism
- Myelin Sheath/chemistry
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurons/metabolism
- Nuclear Localization Signals
- Peripheral Nervous System/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Tissue Distribution
- Transfection
- Two-Hybrid System Techniques
- X Chromosome
Collapse
Affiliation(s)
- Douglas E Albrecht
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|
95
|
Kuwako KI, Taniura H, Yoshikawa K. Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem 2003; 279:1703-12. [PMID: 14593116 DOI: 10.1074/jbc.m308454200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Necdin is a growth suppressor expressed predominantly in postmitotic neurons and implicated in their terminal differentiation. Necdin shows a moderate homology to the MAGE family proteins, the functional roles of which are largely unknown. Human genes encoding necdin, MAGEL2 (necdin-like 1), and MAGE-G1 (necdin-like 2) are located in proximal chromosome 15q, a region associated with neurodevelopmental disorders such as Prader-Willi syndrome, Angelman syndrome, and autistic disorder. The necdin and MAGEL2 genes are subjected to genomic imprinting and suggested to be involved in the etiology of Prader-Willi syndrome. In this study, we compared biochemical and functional characteristics of murine orthologs of these necdin-related MAGE proteins. The colony formation and bromodeoxyuridine incorporation analyses revealed that necdin and MAGE-G1, but not MAGEL2, induced growth arrest. Necdin and MAGE-G1 interacted with the transcription factor E2F1 via its transactivation domain, repressed E2F1-dependent transcription, and antagonized E2F1-induced apoptosis of N1E-115 neuroblastoma cells. In addition, necdin and MAGE-G1 interacted with the p75 neurotrophin receptor via its distinct intracellular domains. In contrast, MAGEL2 failed to bind to these necdin interactors, suggesting that MAGEL2 has no necdin-like function in developing brain. Overexpression of p75 translocated necdin and MAGE-G1 in the proximity of the plasma membrane and reduced their association with E2F1 to facilitate E2F1-induced death of neuroblastoma cells. These results suggest that necdin and MAGE-G1 target both E2F1 and p75 to regulate cell viability during brain development.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
96
|
Hu B, Wang S, Zhang Y, Feghali CA, Dingman JR, Wright TM. A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci U S A 2003; 100:10008-13. [PMID: 12913118 PMCID: PMC187743 DOI: 10.1073/pnas.1737765100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is growing evidence for the intracellular role of cytokines and growth factors, but the pathways by which these activities occur remain largely obscure. Previous work from our laboratory identified the constitutive, aberrant expression of the 31-kDa IL-1 alpha precursor (pre-IL-1 alpha) in the nuclei of fibroblasts from the lesional skin of patients with systemic sclerosis (SSc). We established that pre-IL-1 alpha expression was associated with increased fibroblast proliferation and collagen production. Further investigation has led to the identification of a mechanism by which nuclear expression of pre-IL-1 alpha affects fibroblast growth and matrix production. By using a yeast two-hybrid method, we found that pre-IL-1 alpha binds necdin, a nuclear protein with growth suppressor activity. We mapped the region of pre-IL-1 alpha responsible for necdin binding and found it to be localized near the N terminus, a region that is present on pre-IL-1 alpha, but not the mature 17-kDa cytokine. Expression studies demonstrated that pre-IL-1 alpha associates with necdin in the nuclei of mammalian cell lines and regulates cell growth and collagen expression. Our results provide the first evidence, to our knowledge, of a nuclear target for pre-IL-1 alpha. Based on these findings, we propose that the constitutively up-regulated expression of pre-IL-1 alpha in the nuclei of SSc fibroblasts up-regulates proliferation and matrix production of SSc fibroblasts through binding necdin, and by counteracting its effects on cell growth and collagen production.
Collapse
Affiliation(s)
- Bo Hu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Biomedical Science Tower South Wing, 7th Floor, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
97
|
Matsuda T, Suzuki H, Oishi I, Kani S, Kuroda Y, Komori T, Sasaki A, Watanabe K, Minami Y. The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution. J Biol Chem 2003; 278:29057-64. [PMID: 12754255 DOI: 10.1074/jbc.m302199200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Ror family receptor tyrosine kinases, Ror1 and Ror2, play crucial roles in developmental morphogenesis. Although the functions of Ror1 and Ror2 are redundant, Ror2 exhibits more specific functions during development. We show that when expressed in mammalian cells, Ror2, but not Ror1, associates with the melanoma-associated antigen (MAGE) family protein, Dlxin-1, which is known to bind to the homeodomain proteins Msx2 and Dlx5 and regulate their transcriptional functions. This association requires the cytoplasmic C-terminal region of Ror2, containing proline-rich and serine/threonine-rich domains, and the C-terminal necdin homology domain of Dlxin-1. Interestingly, the cytoplasmic C-terminal region of Ror2 is missing in patients with brachydactyly type B. Interestingly, transient expression and immunohistochemical analyses reveal that both Dlxin-1 and Msx2 are co-localized in the nuclei in the absence of Ror2. In the presence of Ror2, Dlxin-1 is co-localized with Ror2 at the membranous compartments and Msx2 is retained in the nuclei. It was also found that the majority of cellular Dlxin-1 is retained in the membrane fractions of wild-type but not Ror2-/- mouse embryonic fibroblasts. Furthermore, we show that transcriptional activity of Msx2, irrespective of Ror2 kinase activity, is regulated by ectopic expression of Ror2 using a reporter plasmid containing the WIP element. Thus, Ror2 sequesters Dlxin-1 in membranous compartments, thereby affecting the transcriptional function of Msx2.
Collapse
Affiliation(s)
- Takeru Matsuda
- Department of Genome Sciences, Faculty of Medical Sciences, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Williams ME, Strickland P, Watanabe K, Hinck L. UNC5H1 induces apoptosis via its juxtamembrane region through an interaction with NRAGE. J Biol Chem 2003; 278:17483-90. [PMID: 12598531 DOI: 10.1074/jbc.m300415200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UNC5Hs are axon guidance receptors that mediate netrin-1-dependent chemorepulsion, and dependence receptors that mediate netrin-1-independent apoptosis. Here, we report an interaction between UNC5H1 and NRAGE. Our experiments show that this interaction is responsible for apoptosis induced by UNC5H1, and this level of apoptosis is greater than the amount induced by either UNC5H2 or UNC5H3. We mapped the NRAGE binding domain of UNC5H1 to its ZU-5 domain and show that this region, in addition to an adjacent PEST sequence, is required for UNC5H1-mediated apoptosis. Chimeric UNC5H2 and UNC5H3 receptors, containing the NRAGE binding domain and PEST sequence of UNC5H1, bind NRAGE and cause increased levels of apoptosis. UNC5H1 expression does not induce apoptosis in differentiated PC12 cells, which down-regulate NRAGE, but induces apoptosis in native PC12 cells that endogenously express high levels of NRAGE and in differentiated PC12 cells when NRAGE is overexpressed. Together, these results demonstrate a mechanism for UNC5H1-mediated apoptosis that requires an interaction with the MAGE protein NRAGE.
Collapse
Affiliation(s)
- Megan E Williams
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
99
|
Miller MW, Peter A, Wharton SB, Wyllie AH. Proliferation and death of conditionally immortalized neural cells from murine neocortex: p53 alters the ability of neuron-like cells to re-enter the cell cycle. Brain Res 2003; 965:57-66. [PMID: 12591120 DOI: 10.1016/s0006-8993(02)04119-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons are distinctive in that they are generally considered to be permanently post-mitotic cells. The oncoprotein p53 is a key regulator in neuronal development, notably in cell proliferation and neuronal death. We hypothesize that p53 maintains the post-mitotic characteristic of differentiated neurons. New lines of conditionally immortalized cortical cells were generated to test this hypothesis. Populations of cells were obtained from the neocortices of dual transgenic mice that were null for p53 and expressed a temperature-sensitive SV40 large T antigen. At a permissive temperature (32 degrees C), the cells continued to proliferate and most expressed nestin and proteins associated with glia. At a non-permissive temperature (39 degrees C), the cells expressed cytoskeletal proteins associated with differentiated neurons such as microtubule associated protein 2 and neurofilament 200. Under permissive conditions, both p53(+/-) and p53(-/-) cells exhibited similar cycling behaviors; the length of the cell cycle was 13-15 h and >85% of the cells were actively cycling. In non-permissive conditions, most p53(+/-) cells stopped dividing, whereas the p53(-/-) cells continued to proliferate. The survival of the cells also differed. In the non-permissive conditions, many p53(+/-) cells died following treatment with a neurotoxin (ethanol, 400 mg/dl), whereas the p53(-/-) cells did not. After re-introduction to the permissive conditions, both cell lines expressed neuron-like characteristics, but only the p53(-/-) cells retained their ability to cycle. Therefore, p53-mediated activities appear to be involved in the proliferation, survival, and post-mitotic nature of neuron-like cells.
Collapse
Affiliation(s)
- M W Miller
- Department of Neuroscience and Physiology, S.U.N.Y.-Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
100
|
Jordan-Sciutto KL, Dorsey R, Chalovich EM, Hammond RR, Achim CL. Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol 2003; 62:68-74. [PMID: 12528819 DOI: 10.1093/jnen/62.1.68] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular mechanisms implicated in Parkinson disease (PD) include oxidative stress, inflammatory response, excess dopamine, DNA damage, and loss of trophic support. These stimuli have been observed to induce changes in cell cycle proteins in several cell types. One of the key regulators of cell cycle progression is the retinoblastoma protein (pRb); therefore, we assessed the staining for pRb and its inactive hyperphosphorylated isoform, ppRb, in autopsy tissue from patients with PD. In PD we found abundant pRb staining in neuronal cytoplasm of the substantia nigra, mid-frontal cortex, and hippocampus by immunohistochemistry. In controls, pRb weakly stained nucleoli of neurons in the substantia nigra and exhibited no detectable staining in mid-frontal cortex and hippocampus. Staining for ppRb resulted in a shift from weak cytoplasmic staining in neurons from control cases to strong nuclear staining in PD cases, especially within the substantia nigra, mid-frontal cortex, and hippocampus. In the substantia nigra, ppRb also co-localized to Lewy bodies, which are a pathologic feature of PD. Lewy bodies are also found in diffuse Lewy body disease (DLBD) that do not consistently exhibit changes in pRb or ppRb. These results indicate that there are changes in pRb and its inactive phospho-isoform in neurons responding to neurodegenerative stimuli associated with PD.
Collapse
|