51
|
Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M, Zimmer A, Mallat A, Lotersztajn S. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005; 128:742-55. [PMID: 15765409 DOI: 10.1053/j.gastro.2004.12.050] [Citation(s) in RCA: 347] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hepatic myofibroblasts are central for the development of liver fibrosis associated with chronic liver diseases, and blocking their accumulation may prevent fibrogenesis. Cannabinoids are the active components of marijuana and act via 2 G-protein-coupled receptors, CB1 and CB2. Here, we investigated whether liver fibrogenic cells are a target of cannabinoids. METHODS CB2 receptors were characterized in biopsy specimens of normal human liver and active cirrhosis by immunohistochemistry, and in cultures of hepatic stellate cells and hepatic myofibroblasts by reverse-transcription polymerase chain reaction (RT-PCR), immunocytochemistry, and GTPgammaS assays. Functional studies were performed in cultured hepatic myofibroblasts and activated hepatic stellate cells. Carbon tetrachloride-induced liver fibrosis was studied in mice invalidated for CB2 receptors. RESULTS In liver biopsy specimens from patients with active cirrhosis of various etiologies, CB2 receptors were expressed in nonparenchymal cells located within and at the edge of fibrous septa in smooth muscle alpha-actin-positive cells. In contrast, CB2 receptors were not detected in normal human liver. CB2 receptors were also detected in cultured hepatic myofibroblasts and in activated hepatic stellate cells. Their activation triggered potent antifibrogenic effects, namely, growth inhibition and apoptosis. Growth inhibition involved cyclooxygenase-2, and apoptosis resulted from oxidative stress. Finally, mice invalidated for CB2 receptors developed enhanced liver fibrosis following chronic carbon tetrachloride treatment as compared with wild-type mice. CONCLUSIONS These data constitute the first demonstration that CB2 receptors are highly up-regulated in the cirrhotic liver, predominantly in hepatic fibrogenic cells. Moreover, this study also highlights the antifibrogenic role of CB2 receptors during chronic liver injury.
Collapse
|
52
|
Uhlmann D, Gäbel G, Ludwig S, Armann B, Hess J, Pietsch UC, Tannapfel A, Fiedler M, Kratzsch J, Hass J, Witzigmann H. Effects of ETAReceptor Antagonism on Proinflammatory Gene Expression and Microcirculation Following Hepatic Ischemia/Reperfusion. Microcirculation 2005; 12:405-19. [PMID: 16020389 DOI: 10.1080/10739680590960322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The objective of this study was to investigate the effect of a specific endothelin(A) receptor antagonist (ET(A)-RA) on mRNA expression of genes encoding vasoactive mediators and proinflammatory cytokines and on the microhemodynamics (assessed by measurement of laser Doppler flow and tissue blood gases) following complete vascular exclusion of the porcine liver. STUDY DESIGN Sixteen adult German landrace pigs were subjected to 120 min of warm hepatic ischemia by total vascular exclusion. To avoid portal congestion, a passive porto-femoro/jugular bypass was implanted. The animals were divided into 2 groups: the control group received saline solution and the therapy group was given the selective ET(A)-RA BSF 208075. Hepatic microcirculation was evaluated by p(O(2)) and p(CO(2)) measurement with the Paratrend sensor and by laser Doppler flow measurement. Liver tissue samples were collected 1 h after reperfusion and quantitative mRNA expression for prepro-ET-1, pro-IL-1beta, pro-IL-6, pro-TNF-alpha, eNOS was analyzed using the TaqMan system. Additionally, immunohistochemical analysis using a semiquantitative score for ET-1 was performed. Postischemic liver damage was monitored by measurement of liver enzymes and assessed by histological analysis using a semiquantitative scoring classification. RESULTS Partial oxygen pressure in the hepatic tissue and laser Doppler flow were significantly improved in the therapy group. One hour after reperfusion, quantitative RT-PCR revealed significantly lower expression of prepro-ET-1, eNOS, pro-TNF-alpha, and pro-IL-6 in the therapy group compared to controls. Immunohistochemical analysis demonstrated significantly reduced ET-1 immunostaining after therapy. Furthermore, blockade of ET(A) receptors prevents tissue damage. CONCLUSIONS Treatment with the selective ET(A)-RA BSF 208075 has protective effects on microcirculation after 120 min liver ischemia and reperfusion. The authors were able to show that ET(A)-RA not only affects the expression of vasoactive genes, but also decreases gene expression of proinflammatory cytokines such as TNF-alpha and IL-6.
Collapse
Affiliation(s)
- Dirk Uhlmann
- Department of Abdominal, Transplantation and Vascular Surgery, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Swaney JS, Roth DM, Olson ER, Naugle JE, Meszaros JG, Insel PA. Inhibition of cardiac myofibroblast formation and collagen synthesis by activation and overexpression of adenylyl cyclase. Proc Natl Acad Sci U S A 2004; 102:437-42. [PMID: 15625103 PMCID: PMC544320 DOI: 10.1073/pnas.0408704102] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transformation of fibroblasts to myofibroblasts, characterized by expression of alpha-smooth muscle actin (alpha-SMA) and production of extracellular matrix (ECM) components, is a key event in connective tissue remodeling. Approaches to inhibit this transformation are needed in tissues, such as the heart, where excessive ECM production by cardiac fibroblasts (CFs) causes fibrosis, myocardial stiffening, and cardiac dysfunction. We tested whether adenylyl cyclase (AC) activation (increased cAMP levels) modulates the transformation of adult rat CF to myofibroblasts, as assessed by immunofluorescent microscopy, immunoblotting, and collagen synthesis. A 24-h incubation of CF with TGF-beta or angiotensin II increased alpha-SMA expression, which was inhibited by the AC agonist forskolin and a cAMP analog that activates protein kinase A. Treatment with forskolin blunted serum-, TGF-beta-, and angiotensin II-stimulated collagen synthesis. CFs engineered to overexpress type 6 AC had enhanced forskolin-promoted cAMP formation, greater inhibition by forskolin of TGF-beta-stimulated alpha-SMA expression, and a decrease in the EC(50) of forskolin to reduce serum-stimulated collagen synthesis. The AC stimulatory agonist adrenomedullin inhibited collagen synthesis in CF that overexpressed AC6 but not in controls. Thus, AC stimulation blunts collagen synthesis and, in parallel, the transformation of adult rat CF to myofibroblasts. AC overexpression enhances these effects, "uncovering" an inhibition by adrenomedullin. These findings implicate cAMP as an inhibitor of ECM formation by means of blockade of the transformation of CF to myofibroblasts and suggest that increasing AC expression, thereby enhancing cAMP generation through stimulation of receptors expressed on CF, could provide a means to attenuate and prevent cardiac fibrosis and its sequelae.
Collapse
Affiliation(s)
- James S Swaney
- Department of Pharmacology, Graduate Program in Molecular Pathology, and Veterans Affairs Medical Center of San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
54
|
Thirunavukkarasu C, Watkins S, Harvey SAK, Gandhi CR. Superoxide-induced apoptosis of activated rat hepatic stellate cells. J Hepatol 2004; 41:567-75. [PMID: 15464236 DOI: 10.1016/j.jhep.2004.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 05/19/2004] [Accepted: 06/02/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS During liver injury, reactive oxygen species (ROS) are produced by the resident macrophages (Kupffer cells) and infiltrating blood cells such as neutrophils. ROS cause transformation of desmin-positive quiescent hepatic stellate cells (HSCs) into the proliferating activated phenotype that expresses alpha-smooth muscle actin (alpha-SMA). The highly fibrogenic and contractile activated HSCs (aHSCs) produce various cytokines and growth factors, and play important role in the pathophysiology of chronic liver disease. However, apoptotic aHSCs are also observed during active fibrogenesis in the injured liver. Therefore, we investigated the mechanisms of apoptosis of aHSCs in relation to ROS. METHODS HSCs, isolated from normal rat liver, were activated in culture and effects of superoxide were determined between subcultures 3 and 5. RESULTS Treatment with superoxide caused apoptosis of aHSCs as determined by flow cytometry, TUNEL assay and DNA laddering analysis. The mechanisms of superoxide-induced apoptosis involved release of cytochrome c, increased Bax expression, increased caspase-3 activity, and hydrolysis of polyADP-ribose polymerase. Superoxide also increased the expression of antiapoptotic Bcl-xL and nuclear translocation of NFkappaB. Caspase-3 inhibitor (DEVD-fmk) and antioxidants (N-acetylcysteine, vitamin E and superoxide dismutase) inhibited superoxide-induced apoptosis. CONCLUSIONS Superoxide-induced apoptosis of aHSCs may be a novel mechanism of limiting chronic fibrotic liver injury.
Collapse
Affiliation(s)
- Chinnasamy Thirunavukkarasu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1542 BST, 200 Lothrop street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
55
|
Abstract
Glutamate is the main excitatory neurotransmitter in the mammalian central nervous system which at high extracellular levels leads to neuronal over-stimulation and subsequent excitotoxic neuronal cell death. Both the termination of glutamatergic neurotransmission and the prevention of neurotoxic extracellular glutamate concentrations are predominantly achieved by the uptake of extracellular glutamate into astroglia through the high-affinity glutamate transporters, excitatory amino acid transporter-2/glutamate transporter-1 (EAAT-2/GLT-1) and EAAT-1/glutamate aspartate transporter (GLAST). Although several injury-induced growth factors such as epidermal growth factor (EGF) and transforming growth factor alpha (TGFalpha) potently stimulate the expression of glutamate transporters in cultured astroglia, GLT-1 and/or GLAST expression temporarily decreases during acute brain injuries eventually contributing to secondary neuronal cell death. We now demonstrate that the stimulatory influences of these injury-regulated growth factors are overridden by endothelins (ETs), a family of peptides also upregulated in the injured brain. Exposure of cultured cortical astroglia to ET-1, ET-2, and ET-3 resulted in a major loss of basal glutamate transporter expression after 72 hours and the complete prevention of the known stimulatory influences of dibutyryl cyclic (dbc)AMP, pituitary adenylate cyclase-activating polypeptide (PACAP), EGF, and TGFalpha on both GLT-1 and GLAST expression. With all ET isoforms, the inhibitory effects were detectable with similar low nanomolar concentrations and persisted in endothelin B-receptor deficient astroglia, suggesting that the inhibitory action is equally induced by endothelin A and B receptors. In astroglial cultures maintained with endothelins alone or in combination with PACAP, the inhibitory action was remarkably long-lasting and was still detectable after 7 days. In apparent contrast, glutamate transporter expression partially recovered between days 5 and 7 in cultures maintained with a combination of ETs and the injury-regulated growth factors EGF or TGFalpha. These findings point to ETs as major mediators of injury-dependent down-regulation of glial glutamate transporters and subsequent glutamate-induced brain damage.
Collapse
Affiliation(s)
- Joanna Rozyczka
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Maciej Figiel
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| |
Collapse
|
56
|
Kim JY, Lee SM. Effect of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis. Life Sci 2004; 75:2015-26. [PMID: 15306168 DOI: 10.1016/j.lfs.2004.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 06/15/2004] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effects of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). Rats received either vehicle (n = 10) or ascorbic acid (AA, 100 mg/kg, n = 10) intravenously immediately after the CLP procedure. Serum aminotransferase levels and hepatic lipid peroxides markedly increased 24 h after CLP and this increase was attenuated by AA treatment. The hepatic concentrations of reduced glutathione decreased in CLP animals. This decrease was inhibited by AA. CLP significantly increased the mRNA level of ET-1 (p < 0.01) and ETB receptor (p < 0.01) in livers; an increase that was prevented by AA treatment. There were no significant changes in ETA mRNA expression among any of the experimental groups. There were significant increases in the mRNA expression of nitric oxide synthases (p < 0.01) and heme oxygenase-1 (p < 0.01) in livers from CLP animals. This increase was prevented by AA treatment. The expression of tumor necrosis factor-alpha and cyclooxygenase-2 mRNAs significantly increased 4.9-fold (p < 0.01) and 4.4-fold (p < 0.01) in livers from CLP animals, respectively. This increase was attenuated by AA treatment. Our data suggest that AA reduces oxidative stress and lipid peroxidation, regulates the hepatic vasoregulatory gene expression in polymicrobial sepsis and thus it could reduce hepatic microvascular dysfunction during sepsis.
Collapse
Affiliation(s)
- Joo-Young Kim
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu Suwon-si, Gyeonggi-do 440-746, South Korea
| | | |
Collapse
|
57
|
Kumagai T, Matsukawa N, Kaneko Y, Kusumi Y, Mitsumata M, Uchida K. A lipid peroxidation-derived inflammatory mediator: identification of 4-hydroxy-2-nonenal as a potential inducer of cyclooxygenase-2 in macrophages. J Biol Chem 2004; 279:48389-96. [PMID: 15355999 DOI: 10.1074/jbc.m409935200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cyclooxygenases (COXs) catalyze the conversion of arachidonic acid to eicosanoids, which mediate a variety of biological actions involved in vascular pathophysiology. In the present study, we investigated the role of lipid peroxidation products in the up-regulation of COX-2, an inducible isoform responsible for high levels of prostaglandin production during inflammation and immune responses. COX-2 was found to colocalize with 4-hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived aldehyde, in foamy macrophages within human atheromatous lesions, suggesting that COX-2 expression may be associated with the accumulation of lipid peroxidation products within macrophages. To test the hypothesis that lipid peroxidation products might be involved in the regulation of prostanoid biosynthesis, we conducted a screen of oxidized fatty acid metabolites and found that, among the compounds tested, only HNE showed inducibility of the COX-2 protein in RAW264.7 macrophages. In addition, intraperitoneal administration of HNE resulted in an increase in cell numbers in the peritoneal cavity that was associated with significant increases in the peritoneal and tissue levels of COX-2 in mice. To understand the possible signaling mechanism underlying the inducing effect of HNE on COX-2 up-regulation, we examined the phosphorylation events that may lead to COX-2 induction and found that HNE did not stimulate the induction of nitric oxide synthase and activation of NF-kappaB but significantly activated p38 mitogen-activated protein kinase and its upstream kinase in RAW264.7 macrophages. Tyrosine kinases, such as the epidermal growth factor-like and Src family tyrosine kinases, appeared to mediate the stabilization of COX-2 mRNA via the p38 mitogen-activated protein kinase pathway. These findings suggest that HNE accumulated in macrophages/foam cells may represent an inflammatory mediator that plays a role in stimulation of the inflammatory response and contributes to the progression of atherogenesis.
Collapse
Affiliation(s)
- Takeshi Kumagai
- Graduate School of Bioagricultural Sciences and Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
58
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1947-1949. [DOI: 10.11569/wcjd.v12.i8.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
59
|
Yang ZF, Poon RT, To J, Ho DW, Fan ST. The Potential Role of Hypoxia Inducible Factor 1α in Tumor Progression after Hypoxia and Chemotherapy in Hepatocellular Carcinoma. Cancer Res 2004; 64:5496-503. [PMID: 15289360 DOI: 10.1158/0008-5472.can-03-3311] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the possible molecular basis leading to failure in a treatment that is composed of hypoxia and chemotherapy in a rat orthotopic hepatoma model. Hypoxia was induced by hepatic artery ligation, whereas chemotherapeutic effect was achieved by intraportal injection of cisplatin. High-dose sodium salicylate was administered to achieve transcriptional blockade. Significant prolongation of animal survival was observed in the groups receiving hepatic artery ligation with cisplatin or sodium salicylate. Massive tumor cell necrosis and apoptosis were found in the ligation and all of the combined treatment groups. Up-regulation of hypoxia inducible factor 1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) at both mRNA and protein levels were detected in the groups receiving ligation and ligation with cisplatin, whereas a decreased level of von Hippel-Lindau tumor suppressor protein was identified in the group receiving ligation with cisplatin. Sodium salicylate enhanced expression of von Hippel-Lindau tumor suppressor protein but down-regulated HIF-1alpha and VEGF levels after ligation with or without cisplatin. An increased number of activated hepatic stellate cells in the tumors were observed in the ligation and ligation with cisplatin groups, whereas they were greatly reduced by sodium salicylate. In vitro study revealed that under hypoxic condition, both cisplatin and sodium salicylate could remarkably augment P53 and caspase 3 levels. Cisplatin stimulated HIF-1alpha up-regulation, whereas sodium salicylate suppressed HIF-1alpha expression. In conclusion, tumor progression after hypoxia and chemotherapy might be related to up-regulation of HIF-1alpha and subsequent VEGF production, and transcriptional blockade by sodium salicylate could enhance the therapeutic efficacy of hypoxia and chemotherapy.
Collapse
Affiliation(s)
- Zhen Fan Yang
- Centre for the Study of Liver Disease and Department of Surgery, The University of Hong Kong Medical Center, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
60
|
Hui AY, Dannenberg AJ, Sung JJY, Subbaramaiah K, Du B, Olinga P, Friedman SL. Prostaglandin E2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha 1(I) in hepatic stellate cells. J Hepatol 2004; 41:251-8. [PMID: 15288474 DOI: 10.1016/j.jhep.2004.04.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 03/28/2004] [Accepted: 04/27/2004] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Cyclooxygenase-2 (COX-2) has been implicated in a number of hepatic stellate cell (HSC) functions but its relationship to transforming growth factor-beta 1 (TGF-beta 1)-mediated fibrogenesis is unknown. We assessed the impact of COX-2 inhibition and PGE(2) on the regulation of TGF-beta 1-stimulated matrix synthesis in an immortalized human HSC line, LX-1 and corroborated these findings in primary stellate cells. METHODS Expression of COX-2 was assessed by Western blotting and real time quantitative PCR. The effect of NS398, a selective COX-2 inhibitor, and PGE(2) on TGF-beta 1-mediated fibrogenesis was examined by measuring mRNA levels of collagen alpha1(I). PGE(2) receptor expression was analyzed by RT-PCR. RESULTS Under basal conditions, NS398 suppressed PGE(2) synthesis and induced collagen alpha 1(I) whereas exogenous PGE(2) suppressed expression of collagen alpha1(I). TGF-beta 1 induced COX-2 mRNA, COX-2 protein and PGE(2) biosynthesis. Importantly, TGF-beta 1-mediated induction of collagen alpha 1(I) was markedly suppressed by the addition of exogenous PGE(2). All four major PGE(2) receptors were expressed in LX-1 cells. CONCLUSIONS These results suggest that COX-2-derived PGE(2) inhibits both basal and TGF-beta 1-mediated induction of collagen synthesis by HSC. Based on these findings, it will be important to determine whether inhibiting COX-derived PGE(2) synthesis alters the progression of liver fibrosis in vivo.
Collapse
Affiliation(s)
- Alex Y Hui
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum 2004; 33:155-67. [PMID: 14671726 DOI: 10.1016/s0049-0172(03)00134-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To provide an overview on: 1) the expression of cyclooxygenase (COX)-2 in articular tissues; 2) the role of prostaglandin E2 (PGE2) in these tissue functions; and 3) clinical trials with COX-2-selective nonsteroidal anti-inflammatory drugs (NSAIDs) (coxibs). METHODS MEDLINE search was performed using the key words "cyclooxygenase," "prostaglandin," "osteoarthritis" (OA), and "rheumatoid arthritis" (RA). Selected publications related to clinical trials with coxibs also are included. RESULTS COX-2 is upregulated in inflamed joint tissues and is responsible for elevated PGE2 production. The overexpression of COX-2 is likely induced by proinflammatory mediators such as interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF) alpha. However, the exact molecular mechanisms through which the expression of COX-2 is regulated remain to be elucidated. Several studies suggest that PGE2 is involved in inflammation, apoptosis, angiogenesis, and possibly structural changes that characterize arthritic diseases. NSAIDs are prescribed for the treatment of OA and RA and provide effective relief from symptoms; however, serious gastrointestinal complications occur with their use. The clinical efficacy of NSAIDs is primarily related to the inhibition of COX-2, whereas much of the toxicity is related to COX-1 inhibition. Selective COX-2 inhibitors (coxibs) that spare COX-1 at therapeutic doses are more effective than placebo and as effective as other NSAIDs for relief of symptoms of OA and RA, and have significantly improved gastrointestinal safety and tolerability. However, some studies showed that COX-2-selective inhibitors still have classic NSAID complications. CONCLUSIONS Overexpression of COX-2 protein in articular tissues is a characteristic feature of arthritic diseases. However, the molecular mechanisms involved in the regulation of COX-2 expression and activity are still unclear. Elucidating the mechanisms of COX-2 expression and PGE2 production and action will help identify novel and more selective potential drug targets in the treatment of arthritic diseases.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Quebec, Canada
| | | | | |
Collapse
|
62
|
Bruck R, Schey R, Aeed H, Hochman A, Genina O, Pines M. A protective effect of pyrrolidine dithiocarbamate in a rat model of liver cirrhosis. Liver Int 2004; 24:169-76. [PMID: 15078482 DOI: 10.1111/j.1478-3231.2004.00900.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Nuclear factor kappa B (NF-kappaB) activation, proinflammatory cytokines, and reactive oxygen species have been implicated as mediators of liver injury and fibrogenesis. We have shown recently that pyrrolidine dithiocarbamate (PDTC), an antioxidant and inhibitor of NF-kappaB activation, was protective in a rat model of acute liver failure. The aim of the present study was to examine the efficacy of PDTC in a chronic rat model of thioacetamide (TAA)-induced hepatic fibrosis. METHODS Liver cirrhosis was induced by intraperitoneal injections of TAA (200 mg/kg) twice weekly for 12 weeks. Two groups of rats also received PDTC (either 20 or 60 mg/kg, i.p. for 12 weeks). RESULTS TAA administration induced liver cirrhosis, which was inhibited by PDTC in a dose-dependent manner. The histopathologic score of fibrosis, the spleen weight, and hepatic hydroxyproline were significantly lower in the rats treated with TAA+PDTC compared with TAA only (P<0.001). The hepatic levels of thiobarbituric acid reactive substances and protein carbonyls after 12 weeks of treatment were also lower in the rats treated with TAA+PDTC (P=0.02 and 0.01, respectively), indicating reduced oxidative stress. Immunohistochemical studies and in situ hybridization demonstrated inhibition of stellate cell (alpha smooth muscle actin positive) activation, tissue inhibitor of metalloproteinase-2, and collagen alpha1(I) gene expression in the livers of the PDTC-treated rats. As determined by Northern blot analysis, PDTC had no inhibitory effect on collagen alpha1(I) gene expression in the rat hepatic stellate cells-T6 cells in vitro. CONCLUSIONS PDTC inhibits the development of liver cirrhosis in TAA-treated rats. The mechanism of action is associated with decreased oxidative stress and hepatic necroinflammation.
Collapse
Affiliation(s)
- Rafael Bruck
- Department of Gastroenterology, The E. Wolfson Medical Center, Holon, Israel.
| | | | | | | | | | | |
Collapse
|
63
|
Tanaka N, Sato T, Fujita H, Morita I. Constitutive Expression and Involvement of Cyclooxygenase-2 in Human Megakaryocytopoiesis. Arterioscler Thromb Vasc Biol 2004; 24:607-12. [PMID: 14726416 DOI: 10.1161/01.atv.0000117181.68309.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Cyclooxygenase-1 (COX-1), but not COX-2, is expressed in human platelets, and thromboxane A
2
(TXA
2
) produced via COX-1 induces platelet aggregation. The objectives of this study were to investigate the expression of COX-1 and COX-2 during platelet differentiation and to determine whether these enzymes are involved in the differentiation.
Methods and Results—
CD34
+
progenitor cells isolated from human cord blood were cultured with thrombopoietin and c-kit ligand. The cells differentiated into megakaryocytes (CD34
−
/CD41
+
) after 8 days of culture and into platelets (CD41
+
/prodium iodide
−
) after 14 days of culture. The CD34
+
cells expressed a trace of COX-1 gene and no COX-2 gene. On day 5, COX-2 gene expression was observed and continued throughout the remainder of the culture. COX-1 gene expression increased after 8 days of culture. The treatment of this liquid culture with indomethacin, a dual inhibitor of COX-1 and COX-2, and NS-398, a COX-2–specific inhibitor, suppressed megakaryocyte differentiation. In contrast, at a dose of 10
−7
M, mofezolac, which is a highly selective inhibitor of COX-1, did not affect differentiation. NS-398–induced suppression of megakaryocyte differentiation was partly abrogated by stable analogues of TXA
2
.
Conclusions—
We report here that COX-2 and COX-1 are constitutively expressed in megakaryocytes, and TXA
2
produced by COX-2 plays an important role in megakaryocytopoiesis.
Collapse
Affiliation(s)
- Nobuhito Tanaka
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
64
|
Fujita M, Shannon JM, Morikawa O, Gauldie J, Hara N, Mason RJ. Overexpression of tumor necrosis factor-alpha diminishes pulmonary fibrosis induced by bleomycin or transforming growth factor-beta. Am J Respir Cell Mol Biol 2003; 29:669-76. [PMID: 12816730 DOI: 10.1165/rcmb.2002-0046oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is thought to be important in the development of pulmonary fibrosis. However, surfactant protein-C/TNF-alpha transgenic mice do not spontaneously develop pulmonary fibrosis but instead develop alveolar enlargement and loss of elastic recoil. We hypothesized that overexpression of TNF-alpha in the lung requires an additional insult to produce fibrosis. In this study we evaluated whether TNF-alpha overexpression altered the development of pulmonary fibrosis due to bleomycin or transforming growth factor-beta (TGF-beta). Either 0.2 U bleomycin or saline was administered into left lung of TNF-alpha transgenic mice and their transgene-negative littermates. To overexpress TGF-beta, an adenovirus vector containing either active TGF-beta (AdTGF-beta) or LacZ was administered at a dose of 3 x 108 plaque-forming units per mouse. Fibrosis was assessed histologically and by measurement of hydroxyproline. TNF-alpha transgenic mice tolerated bleomycin or AdTGF-beta, whereas the transgene-negative littermates demonstrated severe pulmonary fibrosis after either agent. An increase in prostaglandin E2 and downregulation of TNF receptor I expression were observed in the TNF-alpha transgenic mice. In addition, recombinant human TNF-alpha attenuated bleomycin-induced pulmonary fibrosis. TNF-alpha has a complex role in the development of pulmonary fibrosis. Endogenous TNF-alpha may be important in the development of fibrosis as indicated in other reports, but overexpression of TNF-alpha or exogenous TNF-alpha limits pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Masaki Fujita
- Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
Cycloocygenases 2 (COX2)-prostanoid pathway plays important and complex roles in the pathogenesis of various liver diseases. Most studies indicated that COX2-prostanoid pathway might suppress hepatic fibrogenesis by decreasing proliferation, migration, and contractility of hepatic stellate cells (HSCs). In animal model, COX2-prostanoid pathway increases portal hypertension, which can be reduced by treatment with COX2 inhibitor. In cirrhosis, COX2-prostanoid pathway may reduce formation of ascites by enhancing free water excretion, and protect gastric mucosa from ulcerative insults. Aberrant expression of COX2 has been well associated with hepatocarcinogenesis. COX2 inhibitors can effectively suppress proliferation of hepatocellular carcinoma (HCC) cells. This provided rationale for further testing COX2 inhibitors as clinical agents for HCC chemoprovention. Further studies will be needed to examine how COX2 inhibitors affect pathogenesis of various liver diseases.
Collapse
Affiliation(s)
- Ke-Qin Hu
- Division of Gastroenterology and Hepatology and Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, CA 92868, USA.
| |
Collapse
|
66
|
Todorov VT, Völkl S, Müller M, Bohla A, Klar J, Kunz-Schughart LA, Hehlgans T, Kurtz A. Tumor necrosis factor-alpha activates NFkappaB to inhibit renin transcription by targeting cAMP-responsive element. J Biol Chem 2003; 279:1458-67. [PMID: 14563845 DOI: 10.1074/jbc.m308697200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha) is known to inhibit renin gene expression in juxtaglomerular cells, which are the main source of renin in vivo. In the present study we aimed to characterize the intracellular mechanisms of TNFalpha signaling to renin gene in the mouse juxtaglomerular cell line As4.1. TNFalpha was found to activate NFkappaB, which is one of the principal intracellular mediators of TNFalpha signal transduction. Constitutive activation of NFkappaB suppressed renin gene transcription, but NFkappaB appeared not to target the NFkappaB binding sites in the renin promoter. Thus, NFkappaB, but not the canonical NFkappaB binding sequences in the renin promoter, seemed to be involved in the suppression of renin transcription by TNFalpha. Deletion/mutation analysis revealed that the effect of TNFalpha on renin gene is transmitted by a cAMP-responsive element (CRE) located at -2697 to -2690. Mobility shift/supershift assays evidenced for the presence of NFkappaB proteins in the complex that binds to mouse renin CRE. Our results strongly suggest that NFkappaB mediates the effect of TNFalpha on renin transcription targeting a CRE in the mouse renin promoter.
Collapse
Affiliation(s)
- Vladimir T Todorov
- Institute of Physiology, Department of Immunology, Regensburg University, Regensburg D-93040, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Liu S, Premont RT, Kontos CD, Huang J, Rockey DC. Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt. J Biol Chem 2003; 278:49929-35. [PMID: 14523027 DOI: 10.1074/jbc.m306930200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endothelin-1 has dual vasoactive effects, mediating vasoconstriction via ETA receptor activation of vascular smooth muscle cells and vasorelaxation via ETB receptor activation of endothelial cells. Although it is commonly accepted that endothelin-1 binding to endothelial cell ETB receptors stimulates nitric oxide (NO) synthesis and subsequent smooth muscle relaxation, the signaling pathways downstream of ETB receptor activation are unknown. Here, using a model in which we have utilized isolated primary endothelial cells, we demonstrate that ET-1 binding to sinusoidal endothelial cell ETB receptors led to increased protein kinase B/Akt phosphorylation, endothelial cell nitric-oxide synthase (eNOS) phosphorylation, and NO synthesis. Furthermore, eNOS activation was not dependent on tyrosine phosphorylation, and pretreatment of endothelial cells with pertussis toxin as well as overexpression of a dominant negative G-protein-coupled receptor kinase construct that sequesters betagamma subunits inhibited Akt phosphorylation and NO synthesis. Taken together, the data elucidate a G-protein-coupled receptor signaling pathway for ETB receptor-mediated NO production and call attention to the absolute requirement for heterotrimeric G-protein betagamma subunits in this cascade.
Collapse
Affiliation(s)
- Songling Liu
- Duke University Liver Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
68
|
Li L, Grenard P, Nhieu JTV, Julien B, Mallat A, Habib A, Lotersztajn S. Heme oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts. Gastroenterology 2003; 125:460-9. [PMID: 12891549 DOI: 10.1016/s0016-5085(03)00906-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic myofibroblasts play a key role in the development of liver fibrosis associated with chronic liver diseases. We have shown that oxidative stress is a messenger of 15-deoxy-delta-12,14-prostaglandin J2 (15-d-PGJ2) in human hepatic myofibroblasts. The aim of the present study was to investigate the role of a stress-inducible protein, heme oxygenase-1 (HO-1), in the action of 15-d-PGJ2. METHODS Expression of HO-1 was characterized in biopsy specimens of normal human liver and active cirrhosis by immunohistochemistry, and in cultured human hepatic myofibroblasts by Northern and Western blot analysis. Functional studies also were performed in cultured human hepatic myofibroblasts. RESULTS Immunohistochemistry showed that in biopsy specimens from normal livers, HO-1 protein expression was restricted to Kupffer cells. Biopsy specimens from cirrhotic patients displayed HO-1 protein both in macrophages and in myofibroblasts within fibrotic septa. HO-1 messenger RNA (mRNA) and protein also were detected in cultured human hepatic myofibroblasts and increased in response to 15-d-PGJ2 in a time- and dose-dependent manner. Induction of HO-1 in human hepatic myofibroblasts mediated 2 major antifibrogenic properties of 15-d-PGJ2, namely, inhibition of proliferation and of procollagen I mRNA expression. These effects were ascribed to bilirubin, one of the products of HO-1-mediated heme degradation. CONCLUSIONS This study shows that HO-1 is expressed in human hepatic myofibroblasts and induced during chronic liver injury. Moreover, these data unravel HO-1 as a major antifibrogenic pathway.
Collapse
Affiliation(s)
- Liying Li
- Unité INSERM 581, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
69
|
Catley MC, Chivers JE, Cambridge LM, Holden N, Slater DM, Staples KJ, Bergmann MW, Loser P, Barnes PJ, Newton R. IL-1beta-dependent activation of NF-kappaB mediates PGE2 release via the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. FEBS Lett 2003; 547:75-9. [PMID: 12860389 DOI: 10.1016/s0014-5793(03)00672-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prostaglandin (PG) E2 release is induced in pulmonary A549 cells by the NF-kappaB-activating stimuli interleukin-1beta (IL-1beta) and phorbol 12-myristate 13-acetate (PMA). Adenoviral over-expression of IkappaBalphaDeltaN, a dominant NF-kappaB inhibitor, prevents NF-kappaB-dependent transcription and was used to qualify the role of NF-kappaB in the release of PGE2. IkappaBalphaDeltaN repressed IL-1beta-induced, but not PMA-induced, cycloxygenase-2 (COX-2) and microsomal prostaglandin E synthase (mPGES) expression. These data conclusively demonstrate a substantial role for NF-kappaB in the co-ordinate induction of COX-2, mPGES and in the corresponding release of PGE2 by IL-1beta. However, other pathways are primarily responsible for PGE2 release induced by PMA.
Collapse
Affiliation(s)
- Matthew C Catley
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College Faculty of Medicine, SW3 6LY, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Chen S, Khan ZA, Cukiernik M, Chakrabarti S. Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab 2003; 284:E1089-97. [PMID: 12582013 DOI: 10.1152/ajpendo.00540.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increased extracellular matrix protein production leading to structural abnormalities is a characteristic feature of chronic diabetic complications. We previously showed that high glucose in endothelial cell culture leads to the upregulation of basement membrane protein fibronectin (FN) via an endothelin (ET)-dependent pathway involving activation of NF-kappaB and activating protein-1 (AP-1). To delineate the mechanisms of basement membrane thickening, we used an animal model of chronic diabetes and evaluated ET-dependent activation of NF-kappaB and AP-1 and subsequent upregulation of FN in three target organs of chronic diabetic complications. After 3 mo of diabetes, retina, renal cortex, and myocardium demonstrated increased FN mRNA and increased ET-1 mRNA expression. Increased FN expression was shown to be dependent on ET receptor-mediated signaling, as the increase was prevented by the dual ET receptor antagonist bosentan. NF-kappaB activation was most pronounced in the retina, followed by kidney and heart. AP-1 activation was also most pronounced in the retina but was similar in both kidney and heart. Bosentan treatment prevented NF-kappaB activation in the retina and heart and AP-1 activation in the retina and kidney. These data indicate that, although ETs are important in increased FN production due to diabetes, the mechanisms with respect to transcription factor activation may vary depending on the microenvironment of the organ.
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
71
|
Zhao WX, Zhao J, Liang CL, Zhao B, Pang RQ, Pan XH. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of hepatic stellate cells in vitro. World J Gastroenterol 2003; 9:1278-81. [PMID: 12800240 PMCID: PMC4611800 DOI: 10.3748/wjg.v9.i6.1278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2002] [Revised: 01/04/2003] [Accepted: 01/08/2003] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of nuclear factor-kappaB (NF-kappaB) inhibitor caffeic acid phenethy1 ester (CAPE) in the proliferation, collagen synthesis and apoptosis of hepatic stellate cells (HSCs) of rats. METHODS The HSCs from rats were isolated and cultured in Dulbecco's Modified Eagle's Medium (DMEM) and treated with CAPE. The proliferation and collagen synthesis of HSCs were determined by (3)H-TdR and (3)H-proline incorporation respectively, and the expression of type I, III procollagen genes was further explored by in situ hybridization. Apoptosis cell indices (AIs) were examined using terminal deoxynucleotidyl transferase- mediated DIG-dUTP nick end labeling (TUNEL). RESULTS In activated HSC in culture, CAPE significantly inhibited (3)H-TdR and (3)H-proline incorporation by HSCs at concentrations of 5 micromol/L and 10 micromol/L respectively. CAPE also reduced the type I procollagen gene expression (P<0.05) at higher concentration. Apoptosis of HSC was induced by CAPE and the AIs were time-and dose-dependently increased from 2.82+/-0.73 % to 7.66+/-1.25 % at 12 h (P<0.01) and from 3.15+/-0.88 % to 10.61+/-2.88 % at 24 h (P<0.01). CONCLUSION CAPE inhibits proliferation and collagen synthesis of HSC at lower concentration and induces HSC apoptosis at higher concentration.
Collapse
Affiliation(s)
- Wen-Xing Zhao
- Medical Laboratory of Kunming General Hospital, Chengdu Command, 212 Daguan Road, Kunming 650032, Yunnan Province, China.
| | | | | | | | | | | |
Collapse
|
72
|
Nakata H, Uemura Y, Kobayashi M, Harada R, Taguchi H. Cyclooxygenase-2 inhibitor NS-398 suppresses cell growth and constitutive production of granulocyte-colony stimulating factor and granulocyte macrophage-colony stimulating factor in lung cancer cells. Cancer Sci 2003; 94:173-80. [PMID: 12708493 PMCID: PMC11160091 DOI: 10.1111/j.1349-7006.2003.tb01415.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Revised: 12/09/2002] [Accepted: 12/13/2002] [Indexed: 01/07/2023] Open
Abstract
We previously established two lung cancer cell lines, OKa-C-1 and MI-4, which constitutively produce abundant granulocyte-colony stimulating factor (G-CSF) and granulocyte macrophage-colony stimulating factor (GM-CSF). Inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1beta stimulated the expression of G-CSF, GM-CSF, and cyclooxygenase (COX)-2 in the two cell lines. It is known that increased COX-2 activity promotes tumor growth and induces G-CSF and GM-CSF expression in non-malignant cells, and that selective COX-2 inhibitors inhibit the growth of some types of malignant cells. Therefore, we hypothesized that inhibition of COX-2 activity might suppress constitutive production of G-CSF or GM-CSF in addition to reducing the growth of malignant cells. We confirmed that the selective COX-2 inhibitor, NS-398 suppressed the constitutive production of G-CSF and GM-CSF, and the cell growth in both OKa-C-1 and MI-4 cell lines. Prostaglandin E2 (PGE2) reversed the inhibitions of G-CSF and GM-CSF expression, as well as cell growth, by NS-398. This result confirms that the effects of NS-398 are based on the inhibition of COX activity. Some studies have indicated that nuclear factor kappa B (NF-kappaB) or MAPK (mitogen-activated protein kinase) activation is related to upregulation of G-CSF, GM-CSF or COX-2 expression in some types of cells. Therefore, we examined if the actions of NS-398 might be mediated by the MAP kinase pathway or NF-kappaB activity in OKa-C-1 and MI-4 cells. We found that NS-398 inhibits G-CSF and GM-CSF production and cell growth through an extracellular signal-regulated kinase kinase (MEK) signaling pathway in these cell lines. The prognosis of non-small cell lung cancer showing G-CSF gene expression is significantly worse. G-CSF overproduction by tumor cells is observed at an advanced clinical stage. Our findings imply that a COX-2 inhibitor might improve the prognosis of patients with lung cancer through the reduction of G-CSF or GM-CSF.
Collapse
Affiliation(s)
- Hideshi Nakata
- Department of Internal Medicine, Kochi Medical School, Kohasu, Okocho, Nankoku, Kochi 783-8505
| | | | | | | | | |
Collapse
|
73
|
Chen S, Mukherjee S, Chakraborty C, Chakrabarti S. High glucose-induced, endothelin-dependent fibronectin synthesis is mediated via NF-kappa B and AP-1. Am J Physiol Cell Physiol 2003; 284:C263-72. [PMID: 12388107 DOI: 10.1152/ajpcell.00192.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human endothelial cells cultured under high glucose (HG) conditions were shown before to upregulate several basement membrane proteins, including fibronectin (FN), thus mimicking effects of diabetes. Using human macrovascular (HUVEC) and microvascular (HMEC) endothelial cell lines, we evaluated in the present study some of the key molecular signaling events involved in HG-induced FN overexpression. This expression was shown to be dependent on endogenous endothelin (ET) receptor-mediated signaling. We also examined the roles played by protein kinase C (PKC) and the transcription factors nuclear factor kappaB (NF-kappaB) and activating protein (AP)-1 with respect to such changes. HG, PKC activators, and ETs (ET-1 and ET-3) that increased FN expression also caused activation of NF-kappaB and AP-1. Inhibitors of both NF-kappaB and AP-1 prevented HG- and ET-induced FN production. ET receptor blockade also prevented these HG- and ET-mediated changes. The results of this study indicate that glucose-induced increased FN production in diabetes may be mediated via ET-dependent NF-kappaB and AP-1 activation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Basement Membrane/drug effects
- Basement Membrane/metabolism
- Basement Membrane/physiopathology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Dose-Response Relationship, Drug
- Endothelin Receptor Antagonists
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Fibronectins/genetics
- Fibronectins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glucose/pharmacology
- Humans
- NF-kappa B/metabolism
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Endothelin/metabolism
- Transcription Factor AP-1/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
74
|
Hellemans K, Michalik L, Dittie A, Knorr A, Rombouts K, De Jong J, Heirman C, Quartier E, Schuit F, Wahli W, Geerts A. Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology 2003; 124:184-201. [PMID: 12512042 DOI: 10.1053/gast.2003.50015] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.
Collapse
Affiliation(s)
- Karine Hellemans
- Laboratory of Molecular Liver Cell Biology, Faculty of Medicine and Pharmacy, Free University of Brussels, Laarbeeklaan 103, 1090 Brussel-Jette, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Cheng J, Imanishi H, Liu W, Iwasaki A, Ueki N, Nakamura H, Hada T. Inhibition of the expression of alpha-smooth muscle actin in human hepatic stellate cell line, LI90, by a selective cyclooxygenase 2 inhibitor, NS-398. Biochem Biophys Res Commun 2002; 297:1128-34. [PMID: 12372403 DOI: 10.1016/s0006-291x(02)02301-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxygenase 2 (COX-2) has been thought to be associated with liver fibrosis whereas it is well known that hepatic stellate cells (HSC) play a central role in the pathogenesis of liver fibrosis. There is little evidence of how COX-2 regulates the activation of human HSC or the mechanism involved. In this study, we investigated the effect of a COX-2 inhibitor, NS-398, on a line of human HSC, LI90. Our findings demonstrated that alpha-smooth muscle actin (alpha-SMA) protein expression was inhibited in a dose-dependent manner by treatment with NS-398. Proliferation cell nuclear antigen (PCNA) expression and cell growth were partially down-regulated. The generation of PGE2, IL-8, IL-6, and hyaluronan in the cultured medium was also inhibited. In conclusion, our findings imply that a selective COX-2 inhibitor might be a potential drug for the chemoprevention and treatment of liver fibrosis by inhibiting the activation of HSC.
Collapse
Affiliation(s)
- Jidong Cheng
- Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, 663, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
76
|
Davaille J, Li L, Mallat A, Lotersztajn S. Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J Biol Chem 2002; 277:37323-30. [PMID: 12138095 DOI: 10.1074/jbc.m202798200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hepatic myofibroblasts (hMFs) are central in the development of liver fibrosis during chronic liver diseases, and their removal by apoptosis contributes to the resolution of liver fibrosis. We previously identified Edg receptors for sphingosine 1-phosphate (S1P) in human hMFs. Here, we investigated the effects of S1P on hMF apoptosis. S1P reduced viability of serum-deprived hMFs by an apoptotic process that was unrelated to the conversion of S1P into sphingosine and ceramide. The apoptotic effects of S1P were receptor-independent because dihydro-S1P, an Edg agonist, had no effect. S1P also stimulated a receptor-dependent survival pathway, revealed by enhanced activation of caspase-3 by S1P in the presence of pertussis toxin. Cell survival relied on two pertussis toxin-sensitive events, activation of ERK and activation of phosphatidylinositol 3-kinase (PI3K)/Akt by S1P. Both pathways were also activated by dihydro-S1P. Blunting either ERK or PI3K enhanced caspase-3 stimulation by S1P, and simultaneous inhibition of both pathways resulted in additive effects on caspase-3 activation. In conclusion, S1P induces apoptosis of human hMFs via a receptor-independent mechanism and stimulates a survival pathway following activation of Edg receptors. The survival pathway arises from the sequential activation of G(i)/G(o) proteins and independent stimulations of ERK and PI3K/Akt. Therefore, blocking Edg receptors may sensitize hepatic myofibroblasts to apoptosis by S1P.
Collapse
|
77
|
Han R, Smith TJ. Cytoplasmic prostaglandin E2 synthase is dominantly expressed in cultured KAT-50 thyrocytes, cells that express constitutive prostaglandin-endoperoxide H synthase-2. Basis for low protaglandin E2 production. J Biol Chem 2002; 277:36897-903. [PMID: 12145315 DOI: 10.1074/jbc.m206949200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent identification and cloning of two glutathione-dependent prostaglandin E(2) synthase (PGES) genes has yielded important insights into the terminal step of PGE(2) synthesis. These enzymes form efficient functional pairs with specific members of the prostaglandin-endoperoxide H synthase (PGHS) family. Microsomal PGES (mPGES) is inducible and works more efficiently with PGHS-2, the inflammatory cyclooxygenase, while the cytoplasmic isoform (cPGES) pairs functionally with PGHS-1, the cyclooxygenase that ordinarily exhibits constitutive expression. KAT-50, a well differentiated thyroid epithelial cell line, expresses high levels of PGHS-2 but surprisingly low levels of PGE(2) when compared with human orbital fibroblasts. Moreover, PGHS-1 protein cannot be detected in KAT-50. We report here that KAT-50 cells express high basal levels of cPGES but mPGES mRNA and protein are undetectable. Thus, KAT-50 cells express the inefficient PGHS-2/cPGES pair, and this results in modest PGE(2) production. The high levels of cPGES and the absence of mPGES expression result from dramatic differences in the activities of their respective gene promoters. When mPGES is expressed in KAT-50 by transiently transfecting the cells, PGE(2) production is up-regulated substantially. These observations indicate that naturally occurring cells can express a suboptimal profile of PGHS and PGES isoforms, resulting in diminished levels of PGE(2) generation.
Collapse
Affiliation(s)
- Rui Han
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | |
Collapse
|
78
|
Said FA, Werts C, Elalamy I, Couetil JP, Jacquemin C, Hatmi M. TNF-alpha, inefficient by itself, potentiates IL-1beta-induced PGHS-2 expression in human pulmonary microvascular endothelial cells: requirement of NF-kappaB and p38 MAPK pathways. Br J Pharmacol 2002; 136:1005-14. [PMID: 12145100 PMCID: PMC1573439 DOI: 10.1038/sj.bjp.0704811] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
1: Prostaglandin H synthase-2 (PGHS-2), is an inducible enzyme involved in various inflammatory responses. We established here that interleukin-1beta (IL-1beta) but not tumour necrosis factor-alpha (TNF-alpha) increased its expression in human pulmonary microvascular endothelial cells (HPMEC). However, associated with IL-1beta, TNF-alpha greatly potentiated this enzyme induction. 2: Although unable to induce PGHS-2 expression by itself, TNF-alpha promoted a similar transcription nuclear factor-kappaB (NF-kappaB) activation to IL-1beta. This effect was more pronounced when cells were co-exposed to both cytokines. HPMEC pre-treatment with MG-132, a proteasome inhibitor, prevented NF-kappaB activation as well as more distal signalling response, indicating that NF-kappaB activation is required but not sufficient for PGHS-2 expression. 3: Both IL-1beta and TNF-alpha failed to activate c-Jun NH2-terminal kinase (JNK). In addition, PD98059, a p42/44 mitogen-activated protein kinase (MAPK) phosphorylation inhibitor, did not decrease PGHS-2 expression. However, SB 203580, a p38 MAPK inhibitor, suppressed PGHS-2 induction by IL-1beta alone or combined with TNF-alpha, demonstrating that p38 MAPK but not p42/44 MAPK or JNK cascades are required for PGHS-2 up-regulation. 4: Finally, TNF-alpha, unlike IL-1beta, was unable to promote p38 MAPK phosphorylation, indicating that the failure of TNF-alpha to induce PGHS-2 expression is linked, at least in part, to its inability to activate p38 MAPK signalling pathway. Altogether, these data enhanced our understanding of PGHS-2 regulation in HPMEC and emphasize the heterogeneity of cellular responses to proinflammatory cytokines.
Collapse
Affiliation(s)
- Fatima Ait Said
- Unité de Pharmacologie Cellulaire, Unité Associée, Institut Pasteur-INSERM U 485, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Catherine Werts
- Unité de Bactériologie Moléculaire et Médicale, Institut Pasteur, Paris, France
| | - Ismaïl Elalamy
- Unité de Pharmacologie Cellulaire, Unité Associée, Institut Pasteur-INSERM U 485, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
- Service d'Hématologie Biologique, Hôtel-Dieu, Paris, France
| | - Jean-Paul Couetil
- Service de Chirurgie Cardio-thoracique, Hôpital Bichat, Paris, France
| | - Claude Jacquemin
- Unité de Pharmacologie Cellulaire, Unité Associée, Institut Pasteur-INSERM U 485, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Mohamed Hatmi
- Unité de Pharmacologie Cellulaire, Unité Associée, Institut Pasteur-INSERM U 485, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
- Author for correspondence:
| |
Collapse
|
79
|
Tanabe T, Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 2002; 68-69:95-114. [PMID: 12432912 DOI: 10.1016/s0090-6980(02)00024-2] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cyclooxygenase (COX, prostaglandin endoperoxide synthase) is a key enzyme in prostaglandin biosynthesis. Two isoforms of COX, COX-1 and COX-2, have been identified by molecular biological methods. The amino acid sequence homology between COX-1 and COX-2 is about 60% for the human enzymes. COX-1 is constitutively expressed in most tissues and cells in animal species. The COX-1 promoter region lacks a canonical TATA or CAAT box and is GC-rich. These features are consistent with those of a housekeeping gene. On the other hand, COX-2 is an inducible enzyme and is induced by various cytokines and mitogenic factors. The induction of COX-2 is suppressed by dexamethasone and PGJ2. There are many consensus cis-elements in the 5'-flanking region to regulate the expression of COX-2. Among them, a CRE, an NF-kappaB site, a NF-IL6 motif and an E-box, regulate transcription independently or synergistically. Most of the transcriptional signaling pathways require activation of the mitogen-activated protein kinase (MAPK) cascade. Moreover, MAPK signaling pathways are involved in regulating COX-2 gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Tadashi Tanabe
- Department of Pharmacology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | |
Collapse
|
80
|
Rossi GP, Seccia TM, Nussdorfer GG. Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:241-72. [PMID: 11580202 DOI: 10.1016/s0074-7696(01)09014-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The endothelium plays a crucial role in the regulation of cardiovascular structure and function by releasing several mediators in response to biochemical and physical stimuli. These mediators are grouped into two classes: (1) endothelium-derived constricting factors (EDCFs) and (2) endothelium-derived relaxing factors (EDRFs), the roles of which are considered to be detrimental and beneficial, respectively. Endothelin-1 (ET-1) and nitric oxide (NO) are the prototypes of EDCFs and EDRFs, respectively, and their effects on the cardiovascular system have been studied in depth. Numerous conditions characterized by an impaired availability of NO have been found to be associated with enhanced synthesis of ET-1, and vice versa, thereby suggesting that these two factors have a reciprocal regulation. Experimental studies have provided evidence that ET-1 may exert a bidirectional effect by either enhancing NO production via ETB receptors located in endothelial cells or blunting it via ETA receptors prevalently located in the vascular smooth muscle cells. Conversely, NO was found to inhibit ET-1 synthesis in different cell types. In vitro and in vivo studies have started to unravel the molecular mechanisms involved in this complex interaction. It has been clarified that several factors affect in opposite directions the transcription of preproET-1 and NO-synthase genes, nuclear factor-KB and peroxisome proliferator-activated receptors playing a key role in these regulatory mechanisms. ET-1 and NO interplay seems to have a great relevance in the physiological regulation of vascular tone and blood pressure, as well as in vascular remodeling. Moreover, an imbalance between ET-1 and NO systems may underly the mechanisms involved in the pathogenesis of systemic and pulmonary hypertension and atherosclerosis.
Collapse
Affiliation(s)
- G P Rossi
- Department of Clinical and Experimental Medicine, University Hospital, University of Padua, Italy
| | | | | |
Collapse
|
81
|
Denda A, Kitayama W, Murata A, Kishida H, Sasaki Y, Kusuoka O, Tsujiuchi T, Tsutsumi M, Nakae D, Takagi H, Konishi Y. Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide. Carcinogenesis 2002; 23:245-56. [PMID: 11872629 DOI: 10.1093/carcin/23.2.245] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression of cyclooxygenase (COX)-2 protein during rat hepatocarcinogenesis associated with fatty change, fibrosis, cirrhosis and oxidative DNA damage, caused by a choline-deficient, L-amino acid-defined (CDAA) diet were investigated in F344 male rats, along with the chemopreventive efficacy of the specific COX-2 inhibitor, nimesulide (NIM). Nimesulide, which was administered in the diet at concentrations of 200, 400, 600 and 800 p.p.m. for 12 weeks, decreased the number and size of preneoplastic enzyme-altered liver foci, levels of oxidative DNA damage, and the grade and incidence of fibrosis in a dose-dependent manner. A preliminary long-term study of 65 weeks also revealed that 800 p.p.m. NIM decreased the multiplicity of neoplastic nodules and hepatocellular carcinomas and prevented the development of cirrhosis. Western blot analysis revealed that COX-2 protein was barely expressed in control livers and increased approximately 2.9-fold in the livers of rats fed on a CDAA diet for 12 weeks and approximately 4.5-5.4-fold in tumors, with a diameter larger than 5 mm, at 80 weeks. Immunohistochemically, COX-2 protein was positive in sinusoidal and stromal cells in fibrotic septa, which were identified by immunoelectron microscopy as Kupffer cells, macrophages, either activated Ito cells or fibroblasts, after exposure to the CDAA diet for 12 weeks, whereas it was only occasionally weakly positive in sinusoidal, probably Kupffer, cells in control livers. In neoplastic nodules in rats fed on a CDAA diet for 30 and 80 weeks, sinusoidal cells and cells with relatively large round nuclei and scanty cytoplasm were strongly positive for COX-2 protein, with the neoplastic hepatocytes in the minority of the nodules, but not the cancer cells, being moderately positive. These results clearly indicate that rat hepatocarcinogenesis, along with fatty change, fibrosis and cirrhosis, is associated with increased expression of COX-2 protein, and point to the chemopreventive efficacy of a selective COX-2 inhibitor against, at least, the early stages of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ayumi Denda
- Department of Oncological Pathology, Cancer Center, Nara Medical Univesity, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Koepp J, Cardozo AM, D'Orléans-Juste P, Rae GA. Influence of indomethacin on effects of endothelin-1 on guinea pig isolated rings of common bile duct and sphincter of Oddi. Eur J Pharmacol 2002; 435:103-11. [PMID: 11790384 DOI: 10.1016/s0014-2999(01)01564-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of endothelin-1 on motility of guinea pig extra-hepatic biliary tract portions were studied. Endothelin-1 (< or =100 nM) failed to contract rings of hepatic, cystic, proximal or distal common bile ducts, or choledochal or papillary halves of sphincter of Oddi. At 100 nM, endothelin-1 or sarafotoxin S6c (selective endothelin ET(B) receptor agonist) inhibited contractions of choledochal (but not papillary) sphincter of Oddi to carbachol (1 microM) by 63+/-5 and 45+/-9%, respectively. In distal common bile duct, indomethacin (5.6 microM) unmasked potent contractile effects of endothelin-1 [EC(50) 7.8 (5.5-11.1) nM; E(MAX) 80+/-6% of response to 80 mM KCl] and enhanced the contractile potency of carbachol (585-fold at EC(50) level), but not cholecystokinin C-terminal octapeptide. Inhibition of cholinergic responsiveness of the choledochal sphincter of Oddi by endothelin-1 was reduced by BQ-123 (1 microM; endothelin ET(A) receptor antagonist; cyclo[DTrp-DAsp-Pro-DVal-Leu]) and abolished by either BQ-123 plus BQ-788 (1 microM; endothelin ET(B) receptor antagonist; N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D-1-methoxycarboyl-D-norleucine) or indomethacin. Thus, eicosanoids of the cyclo-oxygenase pathway (i.e. prostanoids) suppress endothelin-1-induced contractions of distal common bile duct and mediate endothelin ET(A) and ET(B) receptor-dependent inhibition of cholinergic responsiveness of the choledochal portion of the sphincter of Oddi.
Collapse
Affiliation(s)
- Janice Koepp
- Department of Pharmacology, CCB, Biological Sciences Centre, Universidade Federal de Santa Catarina, Rua Ferreira Lima, 82, 88015-420, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
83
|
Kumagai T, Nakamura Y, Osawa T, Uchida K. Role of p38 mitogen-activated protein kinase in the 4-hydroxy-2-nonenal-induced cyclooxygenase-2 expression. Arch Biochem Biophys 2002; 397:240-5. [PMID: 11795877 DOI: 10.1006/abbi.2001.2601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.
Collapse
Affiliation(s)
- Takeshi Kumagai
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
84
|
Kanamaru C, Yasuda H, Takeda M, Ueda N, Suzuki J, Tsuchida T, Mashima H, Ohnishi H, Fujita T. Smad7 is induced by norepinephrine and protects rat hepatocytes from activin A-induced growth inhibition. J Biol Chem 2001; 276:45636-41. [PMID: 11551920 DOI: 10.1074/jbc.m105302200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activin A induces growth arrest of rat hepatocytes in vitro and in vivo. The alpha(1)-adrenergic agonist, norepinephrine (NE), enhances epidermal growth factor-stimulated DNA synthesis and inhibits activin A-induced growth inhibition, but the mechanisms of these actions are unclear. Smad proteins have recently been identified as intracellular signaling mediators of transforming growth factor-beta family members. In the present study, we explored how NE modulates the Smad signaling pathway in rat cultured hepatocytes. We demonstrate that NE inhibits activin A-induced nuclear accumulation of Smad2/3 and that NE rapidly induces inhibitory Smad7 mRNA expression. Infection of Smad7 adenovirus into rat hepatocytes inhibited activin A-induced nuclear accumulation of Smad2/3, enhanced epidermal growth factor-stimulated DNA synthesis, and abolished the growth inhibitory effect of activin A. We also demonstrated that the induction of Smad7 by NE is dependent on nuclear factor-kappa B (NF-kappa B). The amount of active NF-kappa B complex rapidly increased after NE treatment. Preincubation of the cells with an NF-kappa B pathway inhibitor N-tosyl-l-phenylalanine chloromethyl ketone or infection of the cells with an adenovirus expressing an I kappa B super-repressor (Ad5I kappa B) abolished the NE-induced Smad7 expression. These results indicate a mechanism of transmodulation between the Smad and trimeric G protein signaling pathways in rat hepatocytes.
Collapse
Affiliation(s)
- C Kanamaru
- Department of Medicine, University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ye RD. Regulation of nuclear factor κB activation by G‐protein‐coupled receptors. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.6.839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Richard D. Ye
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| |
Collapse
|
86
|
Mangelus M, Galron R, Naor Z, Sokolovsky M. Involvement of nuclear factor-kappaB in endothelin-A-receptor-induced proliferation and inhibition of apoptosis. Cell Mol Neurobiol 2001; 21:657-74. [PMID: 12043840 PMCID: PMC11533835 DOI: 10.1023/a:1015195803445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endothelins have been implicated in the regulation of cell proliferation, differentiation, and apoptosis, but the mechanisms of these complex events are not yet fully understood. Although the nuclear factor-kappaB (NF-kappaB) was shown to play a prominent role in the above processes, its participation in endothelin receptor A (ET(A)R) signaling has not been previously demonstrated. This study provides evidence that NF-kappaB is involved in ET(A)R-induced proliferation and inhibition of apoptosis. Endothelin (ET)-1, ET-3, and sarafotoxin b induce cell proliferation and prevent apoptosis induced by serum deprivation in a Chinese hamster lung (CCL39) cell line that stably expresses ET(A)R (CCL39ET(A)). Activation of ET(A)R resulted in enhanced DNA-binding activity of NF-kappaB and degradation of IkappaB-alpha. Expression of the dominant negative form of IkappaB-alpha (IkappaB deltaN) inhibited the proliferative activities mediated by ET(A)R as well as its anti-apoptotic activities. Treatment of the cells with prostaglandin A1, an inhibitor of IkappaB kinase-beta, reduced ET-1-induced proliferation and its anti-apoptotic effect. These findings indicate that the regulation of cell proliferation and apoptosis by ET(A)R is mediated by the ET(A)R-activated NF-kappaB.
Collapse
Affiliation(s)
- M Mangelus
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
87
|
Abstract
Expanded adipose tissue mass increases the risk for many clinical conditions including diabetes, hypertension, coronary atherosclerotic heart disease, and some forms of cancer. Therefore, it is imperative that we understand the mechanisms by which fat pads expand. The enlargement of fat cells during the development of obesity has been previously hypothesized to be a triggering factor for the proliferation of new fat cells. There is now a preponderance of evidence that adipose tissue is a source of growth factors such as IGF-I, IGF binding proteins, TNF alpha, angiotensin II, and MCSF that are capable of stimulating proliferation. The relative importance of these autocrine/paracrine factors in the normal control of preadipocyte proliferation is unknown. In addition, the proliferative response of preadipocytes to the paracrine milieu is undoubtedly modulated by neural inputs to fat tissue and/or serum factors. Together, these multiple regulatory controls orchestrate overall and region-specific adipose tissue cellularity responses associated with the development of hyperplastic obesity. Both in vivo and in vitro studies are needed to understand the complex, interacting physiological mechanisms by which growth of this important organ is regulated.
Collapse
Affiliation(s)
- D B Hausman
- Department of Foods and Nutrition, 263 Dawson Hall, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
88
|
Chen BC, Lin WW. PKC- and ERK-dependent activation of I kappa B kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br J Pharmacol 2001; 134:1055-65. [PMID: 11682454 PMCID: PMC1573027 DOI: 10.1038/sj.bjp.0704334] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
1. Although accumulating studies have identified I kappa B kinase (IKK) to be essential for controlling NF-kappa B activity in response to several cytokines, the upstream kinases that control IKK activity are still not completely known. We have previously reported that G protein-coupled P2Y(6) receptor activation by UTP potentiates lipopolysaccharide (LPS)-induced I kappa B phosphorylation and degradation, and NF-kappa B activation in J774 macrophages. In this study, we investigated the upstream kinases for IKK activation by UTP and LPS. 2. In murine J774 macrophages, LPS-induced NF-kappa B activation was inhibited by the presence of PDTC, D609, Ro 31-8220, PD 098059 and SB 203580. 3. Accompanying NF-kappa B activation, LPS induced I kappa B degradation and IKK activation were reduced by PDTC, D609, Ro 31-8220 and PD 098059, but not by SB 203580. 4. Although UTP itself slightly induced IKK activation, this response was synergistic with LPS. BAPTA/AM and KN-93 (a calcium/calmodulin-dependent protein kinase (CaMK) inhibitor) attenuated UTP- but not LPS-stimulated IKK activity. Synergistic IKK activation between LPS and thapsigargin was further demonstrated in peritoneal macrophages. 5. LPS and UTP co-stimulation additively increased p65 NF-kappa B phosphorylation. In vitro kinase assays revealed that LPS and UTP induced extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein kinase activation were respectively inhibited by PD098059 and SB 203580. 6. Taken together, we demonstration that Gq protein-coupled P2Y(6) receptor activation can potentiate LPS-stimulated IKK activity. While PKC and ERK participate in IKK activation by LPS and UTP, the phosphatidylinositide-phospholipase C-dependent activation of CaMK plays a major role in UTP potentiation of the LPS response.
Collapse
Affiliation(s)
- Bing-C Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-W Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Author for correspondence:
| |
Collapse
|
89
|
Li L, Tao J, Davaille J, Feral C, Mallat A, Rieusset J, Vidal H, Lotersztajn S. 15-deoxy-Delta 12,14-prostaglandin J2 induces apoptosis of human hepatic myofibroblasts. A pathway involving oxidative stress independently of peroxisome-proliferator-activated receptors. J Biol Chem 2001; 276:38152-8. [PMID: 11477100 DOI: 10.1074/jbc.m101980200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic myofibroblasts (hMFs) play a key role in the development of liver fibrosis associated with chronic liver diseases. Apoptosis of these cells is emerging as a key process in the resolution of liver fibrosis. Here, we examined the effects of cyclopentenone prostaglandins on apoptosis of human hMFs. Cyclopentenone prostaglandins of the J series markedly reduced hMF viability, with 15-deoxy-Delta(12,14)-prostaglandin J2 (15-d-PGJ2) being the most potent. This effect was independent of peroxisome-proliferator-activated receptors (PPARs), because PPARgamma and PPARalpha agonists did not affect hMF cell viability, and PPARgamma, the nuclear receptor for 15-d-PGJ2, was not expressed in hMFs. Moreover, 15-d-PGJ2 did not act via a cell surface G protein-coupled receptor, as shown in guanosine-5'-O-(3-thiotriphosphate) binding assays. Cell death resulted from an apoptotic process, because 15-d-PGJ2-treated hMFs exhibited condensed nuclei, fragmented DNA, and elevated caspase-3 activity. Moreover, the caspase inhibitor Z-Val-Ala-Asp(OCH3)-fluoromethyl ketone blocked the cytotoxic effect of 15-d-PGJ2. The apoptotic effects of 15-d-PGJ2 were reproduced by H2O2 and blocked by the antioxidants N-acetylcysteine (NAC), N-(2-mercapto-propionyl)-glycine (NMPG) and pyrrolidine dithiocarbamate (PDTC). Accordingly, 15-d-PGJ2 generated rapid production of reactive oxygen species in hMFs, via a NAC/NMPG/PDTC-sensitive pathway. In conclusion, 15-d-PGJ2 induces apoptosis of human hMFs via a novel mechanism involving oxidative stress and unrelated to activation of its nuclear receptor PPARgamma. These data underline the antifibrogenic potential of 15-d-PGJ2.
Collapse
Affiliation(s)
- L Li
- Unité INSERM 99, Hôpital Henri Mondor, 94010 Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Wilson SH, Simari RD, Lerman A. The effect of endothelin-1 on nuclear factor kappa B in macrophages. Biochem Biophys Res Commun 2001; 286:968-72. [PMID: 11527395 DOI: 10.1006/bbrc.2001.5485] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nuclear factor kappaB (NF-kappaB) is a transcriptional factor which may be pivotal in the pathogenesis of atherosclerosis. Endothelin-1 (ET-1) is a peptide with proatherogenic properties. We hypothesized that ET-1 may act through activation of NF-kappaB and degradation of IkappaB-alpha, the cytosolic inhibitor of NF-kappaB activation, to create an atherogenic environment. The human monocytic cell line THP-1 was stimulated with ET-1 +/- the ET antagonist, BQ788 and the proteosome inhibitor, PSI. LPS was used as a positive control. Gel shift assays for NF-kappaB activity and Western blot analysis for IkappaB-alpha were performed. Both LPS and ET-1 led to activation of NF-kappaB in nuclear extracts [3.4 +/- 0.45 (LPS) and 2.9 +/- 0.26 (ET-1) fold increase in Arbitrary Densitometric Units (ADU) compared with negative control (P < 0.005 in both cases)]. In the presence of the ETB antagonist, BQ788, NF-kappaB activation was attenuated and not different from control (1.7 +/- 0.24 fold DU compared with negative control; P = NS). In addition, both LPS and ET-1 mediated NF-kappaB activation were attenuated by preincubation with the proteosome inhibitor, PSI (1.3 +/- 0.58 and 1.1 +/- 0.3 fold increase in ADU compared with negative control respectively). Both LPS and ET-1 led to a decrease in the amount of IkappaB-alpha present in the THP-1 cytoplasmic extracts (2.1 +/- 1.5% and 54 +/- 15.7% of ADU vs negative control (P < 0.05). NF-kappaB is activated by ET-1 in human THP-1 monocytes. This data supports a role for the ETs in the development of inflammation in the vessel wall in atherosclerosis.
Collapse
Affiliation(s)
- S H Wilson
- Division of Internal Medicine and Cardiovascular Diseases, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
91
|
Shi CS, Kehrl JH. PYK2 links G(q)alpha and G(13)alpha signaling to NF-kappa B activation. J Biol Chem 2001; 276:31845-50. [PMID: 11435419 DOI: 10.1074/jbc.m101043200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signaling via a variety of G-protein-coupled receptors (GPCRs) leads to activation of nuclear factor (NF)-kappa B. Evidence exists for a signaling pathway initiated by the B2 type bradykinin receptor via G(q) activation, which leads to the sequential stimulation of phosphoinositide 3-kinase (PI3K), the serine/threonine kinase Akt, I kappa B kinases, and finally nuclear factor NF-kappa B-dependent transcription. GPCR-mediated G(q)alpha or G(13)alpha activation also potently stimulates the tyrosine kinase PYK2. In this study we tested whether G(q)alpha- and/or G(13)alpha-induced PYK2 activation contributes to GPCR-mediated NF-kappa B activation. Among the GTPase-deficient forms of G alpha tested, G(13)alpha and G(q)alpha most potently stimulated an NF-kappa B-dependent reporter gene. PYK2 activated the same reporter gene and synergized with either G(q)alpha Q209L (QL) or G(13)alpha Q226L (QL). Placing PYK2 upstream of both PI3K and Akt activation, PYK2 activated Akt through a PI3K-dependent pathway, and either a dominant negative form of Akt or the PI3K inhibitor LY294002 blocked PYK2-stimulated NF-kappa B-dependent transcription. Placing PYK2 downstream of G-protein activation, a kinase-dead form of PYK2, PYK2 (KD), blocked NF-kappa B-dependent transcription triggered by signaling through the muscarinic receptor type 1 and either G(q)alpha QL or G(13)alpha QL. PYK2 (KD) also blocked Akt activation by the same stimuli. These results indicate that PYK2 can link G-protein activation through PI3K, Akt, and I kappa B kinase to NF-kappa B activation.
Collapse
Affiliation(s)
- C S Shi
- BCell Molecular Immunology Section, Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | |
Collapse
|
92
|
Chen J, Raj N, Kim P, Andrejko KM, Deutschman CS. Intrahepatic nuclear factor-kappa B activity and alpha 1-acid glycoprotein transcription do not predict outcome after cecal ligation and puncture in the rat. Crit Care Med 2001; 29:589-96. [PMID: 11373425 DOI: 10.1097/00003246-200103000-00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Sepsis is the leading cause of death in critically ill surgical patients. Septic hepatic dysfunction, an important determinant of outcome, is poorly understood but includes inappropriate transcriptional down-regulation. This may be modulated by proinflammatory cytokines. We hypothesized that intrahepatic changes in tumor necrosis factor (TNF)/interleukin (IL)-1-linked processes, such as the activation of the p50 homodimeric and the p65/p50 heterodimeric isoforms of the transcription factor nuclear factor (NF)-kappaB or transcription of the acute phase reactant alpha1-acid glycoprotein (AGP), would correlate with recovery from sepsis. DESIGN Prospective experimental comparison of sham operation and nonlethal and lethal sepsis in male Sprague-Dawley rats. INTERVENTIONS Nonlethal sepsis was induced by using single-puncture cecal ligation and puncture (CLP). Lethal sepsis was induced via double-puncture CLP. NF-kappaB DNA binding activity was determined by using electrophoretic mobility shift analysis with differentiation of p50/p50 and p50/p65 isoforms by using appropriate antibodies. AGP transcription was assessed with transcription elongation analysis, intrahepatic IL-1beta, and TNF-alpha abundance by using immunohistochemistry, and serum IL-1beta was assessed by using ELISA. MAIN RESULTS Overall NF-kappaB activity increased equivalently over time after both single- and double-puncture CLP, with a peak occurring 3 hrs after intervention. In single-puncture CLP, there was an increase in the binding of the p50 homodimer form over time. After double-puncture CLP, no such change was observed. AGP transcription was increased equivalently in both models. Intrahepatic IL-1beta was detected 16 and 24 hrs after single-puncture CLP and 6 hrs after double-puncture CLP. After double-puncture CLP, intrahepatic TNF-alpha was detected at 6, 16, and 24 hrs. Serum IL-1beta was undetectable after both single- and double-puncture CLP. CONCLUSIONS Although AGP transcription was similar in mild and fulminant sepsis, double-puncture CLP increased the binding activity of the p50 homodimer relative to binding of the p50/p65 NF-kappaB heterodimer. These results imply that transcriptional activity not linked to acute phase responses is an important determinant of outcome in sepsis.
Collapse
Affiliation(s)
- J Chen
- Department of Anesthesia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
93
|
Hull MA, Fenwick SW, Chapple KS, Scott N, Toogood GJ, Lodge JP. Cyclooxygenase-2 expression in colorectal cancer liver metastases. Clin Exp Metastasis 2001; 18:21-7. [PMID: 11206834 DOI: 10.1023/a:1026553605636] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) is up-regulated in 85-90% of primary human colorectal cancers and is a putative target for the chemopreventative activity of non-steroidal anti-inflammatory drugs. However, COX-2 expression by human colorectal cancer liver metastases has been poorly characterized. We studied a consecutive series of 38 patients who underwent liver resection for metastatic disease, for whom long-term (up to 57 months), prospective follow-up data were available. Semi-quantitative immunohistochemistry for COX-2 was performed on 54 metastases from 35 patients, for whom adequate histological material was available. Diffuse cytoplasmic staining for COX-2 protein was detected in cancer cells in 100% of metastases (COX-2 score 1, n = 25; score 2, n = 29). There was no relationship between metastasis size or differentiation grade and the level of COX-2 protein expression. There was no difference in colorectal cancer-free or overall survival between patients with high (score 2) and low (score 1) COX-2 scores (Kaplan-Meier survival analysis and log rank test, both P = 0.97). Multivariate Cox regression analysis identified age, incomplete resection and presence of extra-hepatic disease as independent predictors of disease-free and overall survival following surgery. COX-2 protein was also localized to a subset of stromal fibroblasts and mononuclear cells within metastases as well as hepatocytes from resection specimens. COX-2 protein was expressed by cancer cells in all human colorectal cancer liver metastases which were studied. Investigation of the effect of selective COX-2 inhibition on metastasis growth and metastasis cancer cell proliferation/apoptosis in vivo are warranted.
Collapse
Affiliation(s)
- M A Hull
- Molecular Medicine Unit, University of Leeds, United Kingdom.
| | | | | | | | | | | |
Collapse
|
94
|
Gianoukakis AG, Cao HJ, Jennings TA, Smith TJ. Prostaglandin endoperoxide H synthase expression in human thyroid epithelial cells. Am J Physiol Cell Physiol 2001; 280:C701-8. [PMID: 11171589 DOI: 10.1152/ajpcell.2001.280.3.c701] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
KAT-50, an established human thyrocyte cell line, expresses constitutively high levels of prostaglandin endoperoxide H synthase-2 (PGHS-2), the inflammatory cyclooxygenase. Here, we examine primary human thyrocytes. We find that they, too, express PGHS-2 mRNA and protein under control culture conditions. A substantial fraction of the basal prostaglandin E(2) (PGE(2)) produced by these cells can be inhibited by SC-58125 (5 microM), a PGHS-2-selective inhibitor. Interleukin (IL)-1beta (10 ng/ml) induces PGHS-2 expression and PGE(2) production in primary thyrocytes. The induction of PGHS-2 and PGE(2) synthesis by IL-1beta could be blocked by glucocorticoid treatment. Unlike KAT-50, most of the culture strains also express PGHS-1 protein. Our observations suggest that both cyclooxygenase isoforms may have functional roles in primary human thyroid epithelial cells, and PGHS-2 might predominate under basal and cytokine-activated culture conditions.
Collapse
Affiliation(s)
- A G Gianoukakis
- Division of Endocrinology and Metabolism, Albany Medical College and Samuel S. Stratton Veterans Affairs Medical Center, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
95
|
Lim JW, Kim H, Kim KH. Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. J Transl Med 2001; 81:349-60. [PMID: 11310828 DOI: 10.1038/labinvest.3780243] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcriptional regulator of inducible expression of genes including cyclooxygenase-2 (COX-2), regulating cell proliferation. NF-kappaB is kept silent in the cytoplasm via interaction with the inhibitory protein IkappaBalpha and transmigrated into the nucleus upon activation. However, constitutive NF-kappaB has been found in the nucleus of some cancer cells. We investigated the role of NF-kappaB in COX-2 expression and cell proliferation in human gastric cancer AGS cells. AGS cells were treated with antisense oligodeoxynucleotide (AS ODN) or sense oligodeoxynucleotide (S ODN) for the NF-kappaB subunit p50, or they were transfected with a mutated IkappaBalpha gene (MAD-3 mutant) or a control vector, pcDNA-3. AGS cells were treated with COX-2 inhibitors such as indomethacine and NS-398 or prostaglandin E2. mRNA expression for COX-2, and protein levels for p50, IkappaBalpha, and COX-2 were determined by reverse transcription polymerase chain reaction and Western blot analysis. The NF-kappaB levels were examined by electrophoretic mobility shift assay. Thromboxane B2 (TXB2) and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha) levels were determined by enzyme-linked immunosorbent assay. Cell proliferation was assessed by viable cell counting, [3H] thymidine incorporation, and colony formation. The nuclear level of p50 decreased in AGS cells treated with AS ODN. The IkappaBa mutant was observed in cells transfected with the mutated IkappaBa gene. NF-kappaB was inhibited in cells treated with AS ODN or transfected with the mutated IkappaBalpha gene, compared with the cells treated with S ODN or transfected with control vector. Cell proliferation, mRNA expression and protein level of COX-2, and production of TXB2 and 6-keto-PGF1alpha were inhibited in cells treated with AS ODN or transfected with the mutated IkappaBalpha gene, which had lower NF-kappaB levels than cells treated with S ODN or transfected with control vector. COX-2 inhibitors suppressed cell proliferation and production of TXB2 and 6-keto-PGF1alpha, in a dose-dependant manner. Prostaglandin E2 prevented the inhibition of proliferation in cells treated with AS ODN or transfected with the mutated IkappaBalpha gene. In conclusion, NF-kappaB mediates COX-2 expression, which may be related to cell proliferation, in human gastric cancer cells.
Collapse
Affiliation(s)
- J W Lim
- Department of Pharmacology and Institute of Gastroenterology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul
| | | | | |
Collapse
|
96
|
Abstract
The prostaglandin endoperoxide H synthases-1 and 2 (PGHS-1 and PGHS-2; also cyclooxygenases-1 and 2, COX-1 and COX-2) catalyze the committed step in prostaglandin synthesis. PGHS-1 and 2 are of particular interest because they are the major targets of nonsteroidal anti-inflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2 inhibitors. Inhibition of the PGHSs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of these enzymes relate mechanistically to cyclooxygenase and peroxidase catalysis, and how differences in the structure of PGHS-2 confer on this isozyme differential sensitivity to COX-2 inhibitors. We further examine the evidence for independent signaling by PGHS-1 and PGHS-2, and the complex mechanisms for regulation of PGHS-2 gene expression.
Collapse
Affiliation(s)
- W L Smith
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
97
|
Kniss DA, Rovin B, Fertel RH, Zimmerman PD. Blockade NF-kappaB activation prohibits TNF-alpha-induced cyclooxygenase-2 gene expression in ED27 trophoblast-like cells. Placenta 2001; 22:80-9. [PMID: 11162356 DOI: 10.1053/plac.2000.0591] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Among the many functions of trophoblast cells is the production of prostaglandins (PGs) for governing several fetoplacental vascular functions during gestation and the triggering of events leading to parturition. Recent evidence suggests that pro-inflammatory cytokines such as tumour necrosis factors (TNF-alpha) induce PG formation via cyclooxygenase-2 (COX-2), a highly inducible enzyme whose gene is regulated at least in part by inducible transcription factor NF-kappaB. To examine the mechanism by which COX-2-driven PG biosynthesis occurs in trophoblast cells, we utilized the immortalized trophoblast-like cell line ED(27). These cells exhibit many of the properties of villous or extravillous trophoblasts and produce large amounts of PGs in response to TNF-alpha. We demonstrated that challenge of ED(27)cells with TNF-alpha caused binding of the NF-kappaB complex to its kappaB site followed by increased accumulation of COX-2 transcripts. In addition, the inhibitor of NF-kappaB, IkappaB-alpha, became phosphorylated and was rapidly degraded in cytokine-treated cells; this process was abolished by co-incubation with the proteasome inhibitor, MG-132. Finally, when cells were pre-incubated with MG-132 and then challenged with TNF-alpha, PG formation was attenuated in a concentration-dependent manner. These data indicate that, in ED(27)trophoblast-like cells isolated from the first-trimester placenta, TNF-alpha treatment leads to activation of NF-kappaB and subsequent transcription of the COX-2 gene.
Collapse
Affiliation(s)
- D A Kniss
- Department of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research), The Ohio State University, College of Medicine and Public Health, 1654 Upham Drive, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
98
|
Hernández M, Arriba AFD, Merlos M, Fuentes L, Crespo MS, Nieto ML. Effect of 4-trifluoromethyl derivatives of salicylate on nuclear factor kappaB-dependent transcription in human astrocytoma cells. Br J Pharmacol 2001; 132:547-55. [PMID: 11159705 PMCID: PMC1572571 DOI: 10.1038/sj.bjp.0703820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1. The effect of two derivatives of salicylate, 2-hydroxy-4-trifluoromethylbenzoic acid (HTB) and 2-acetoxy-4-trifluoromethylbenzoic acid (triflusal), on the expression of several proteins displaying pro-inflammatory activities the regulation of which is associated to the transcription factor NF-kappaB, was assayed in the human astrocytoma cell line 1321N1. 2. Tumour necrosis factor-alpha (TNF-alpha) activated NF-kappaB as judged from both the appearance of kappaB-binding activity in the nuclear extracts, the degradation of IkappaB proteins in the cell lysates, and the activation of IkappaB kinases using an immunocomplex kinase assay with glutathione S-transferase (GST)-IkappaB proteins as substrates. 3. HTB up to 3 mM did not inhibit the nuclear translocation of NK-kappaB/Rel proteins as judged from electrophoretic mobility-shift assays; however, HTB inhibited the degradation of IkappaBbeta without significantly affecting the degradation of both IkappaBalpha and IkappaBepsilon. 4. In keeping with their inhibitory effect on IkappaBbeta degradation in the cell lysates, both HTB and triflusal inhibited the phosphorylation of GST-IkappaBbeta elicited by TNF-alpha, without affecting the phosphorylation of GST-IkappaBalpha. 5. The effect of both HTB and triflusal on kappaB-dependent trans-activation was studied by assaying the expression of both cyclo-oxygenase-2 (COX-2) and vascular cell adhesion molecule-1 (VCAM-1). HTB and triflusal inhibited in a dose-dependent manner the expression of COX-2 and VCAM-1 mRNA and the induction of COX-2 protein at therapeutically relevant concentrations. 6. These findings show the complexity of the biochemical mechanisms underlying the activation of NF-kappaB in the different cell types and extend the anti-inflammatory effects of HTB and triflusal to neural cells.
Collapse
Affiliation(s)
- Marita Hernández
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47005-Valladolid, Spain
| | | | - Manel Merlos
- Department of Pharmacology, Uriach Research Center, Barcelona, Spain
| | - Lucía Fuentes
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47005-Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47005-Valladolid, Spain
- Author for correspondence:
| | - María Luisa Nieto
- Instituto de Ciencias del Corazón, Hospital Clínico Universitario, 47005-Valladolid, Spain
| |
Collapse
|
99
|
Slomiany BL, Slomiany A. Nonsteroidal anti-inflammatory drug ingestion interferes with cessation of apoptotic events during oral mucosal ulcer healing. Inflammopharmacology 2000. [DOI: 10.1163/156856000750264429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
100
|
Friedman SL, Maher JJ, Bissell DM. Mechanisms and therapy of hepatic fibrosis: report of the AASLD Single Topic Basic Research Conference. Hepatology 2000; 32:1403-8. [PMID: 11093750 DOI: 10.1053/jhep.2000.20243] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S L Friedman
- Division of Liver Diseases and Dept of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|