51
|
Hausherr A, Tavares R, Schäffer M, Obermeier A, Miksch C, Mitina O, Ellwart J, Hallek M, Krause G. Inhibition of IL-6-dependent growth of myeloma cells by an acidic peptide repressing the gp130-mediated activation of Src family kinases. Oncogene 2007; 26:4987-98. [PMID: 17310994 DOI: 10.1038/sj.onc.1210306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An acidic domain (AD) of gp130 was previously found to interact with the Src family kinase (SFK) Hck. Here, the influence of myristoylated peptides derived from this AD was assessed in the mouse myeloma cell line, 7TD1. The IL-6-dependent growth of 7TD1 cells was reduced by approximately 75%, if 100 microM of myristoylated 18mer peptide (18AD) was included in the growth medium, but was unaffected by a control peptide with scrambled sequence (18sc). A similar differential inhibition by peptides 18AD and 18sc was observed for the erythropoietin-dependent growth of BaF-EH cells expressing chimeric erythropoietin receptor-gp130 and human Hck and for the human myeloma cell line INA-6. While the peptide 18AD concentration inhibiting 50% was approximately 30 microM in 7TD1 and BaF-EH cells, peptide 18AD did not significantly inhibit growth of IL-6-independent MM1.S myeloma and OKT1 hybridoma cells or of BaF-EH cells supplied with IL-3. Treatment with 100 microM peptide 18AD caused the same degree or 60% of apoptosis induction as IL-6 deprivation in 7TD1 or INA-6 cells, respectively. Co-immunoprecipitation experiments revealed that peptide 18AD interfered with the association of Hck and gp130 in 7TD1 lysates in a concentration-dependent manner. IL-6-treatment of INA-6 cells induced the kinase activities of Fyn, Lyn and Hck, but not Src, and the IL-6-induced SFK activities were inhibited by peptide 18AD. Expression in 7TD1 cells of a kinase-inactive Hck mutant (K269R) elicited a dominant-negative effect on cell number increases providing further evidence that SFKs are required for gp130 signalling in myeloma cells.
Collapse
Affiliation(s)
- A Hausherr
- Clinical Cooperation Group Gene Therapy, GSF National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ayrapetov MK, Wang YH, Lin X, Gu X, Parang K, Sun G. Conformational basis for SH2-Tyr(P)527 binding in Src inactivation. J Biol Chem 2006; 281:23776-84. [PMID: 16790421 DOI: 10.1074/jbc.m604219200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src protein-tyrosine kinase contains a myristoylation motif, a unique region, an Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a C-terminal tail. The C-terminal tail contains a Tyr residue, Tyr527. Phosphorylation of Tyr527 triggers Src inactivation, caused by Tyr(P)527 binding to the SH2 domain. In this study, we demonstrated that a conformational contribution, not affinity, is the predominant force for the intramolecular SH2-Tyr(P)527 binding, and we characterized the structural basis for this conformational contribution. First, a phosphopeptide mimicking the C-terminal tail is an 80-fold weaker ligand than the optimal phosphopeptide, pYEEI, and similar to a phosphopeptide containing three Ala residues following Tyr(P) in binding to the Src SH2 domain. Second, the SH2-Tyr(P)527 binding is largely independent of the amino acid sequence surrounding Tyr(P)527, and only slightly decreased by an inactivating mutation in the SH2 domain. Furthermore, even the unphosphorylated C-terminal tail with the sequence of YEEI suppresses Src activity by binding to the SH2 domain. These experiments demonstrate that very weak affinity is sufficient for the SH2-Tyr(P)527 binding in Src inactivation. Third, the effective intramolecular SH2-Tyr(P)527 binding is attributed to a conformational contribution that requires residues Trp260 and Leu255. Although the SH3 domain is essential for Src inactivation by Tyr(P)527, it does not contribute to the SH2-Tyr(P)527 binding. These findings suggest a conformation-based Src inactivation model, which provides a unifying framework for understanding Src activation by a variety of mechanisms.
Collapse
Affiliation(s)
- Marina K Ayrapetov
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, USA
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
The activated Cdc42 associated kinases (ACKs) are nonreceptor tyrosine kinases that are specific targets of Cdc42. To study the biochemical properties of ACK1, we expressed and purified the enzyme using the baculovirus/Sf9 cell system. This ACK1 construct contains (from N- to C-terminus) the kinase catalytic domain, SH3 domain, and Cdc42-binding CRIB domain. We describe enzyme activity assays based on synthetic peptide substrates. The best such substrate is a peptide derived from the site of ACK1-catalyzed phosphorylation of the Wiskott-Aldrich syndrome protein (WASP). Although the SH3 and CRIB domains of purified ACK1 are able to bind ligands (a polyproline peptide and Cdc42, respectively), the ligands did not stimulate in vitro tyrosine kinase activity. Purified ACK1 undergoes autophosphorylation at Tyr284, and autophosphorylation increases kinase activity.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Physiology and Biophysics, SUNY at Stony Brook, NY, USA
| | | |
Collapse
|
54
|
Guo S, Wahl MI, Witte ON. Mutational analysis of the SH2-kinase linker region of Bruton's tyrosine kinase defines alternative modes of regulation for cytoplasmic tyrosine kinase families. Int Immunol 2005; 18:79-87. [PMID: 16291652 DOI: 10.1093/intimm/dxh351] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) plays critical roles in B cell development and activation. Mutations of Btk cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency in mice. An Src homology domain 2-kinase linker region exists in all Src, Abl, ZAP70/Syk and Btk/Tec non-receptor tyrosine kinase families. Missense mutations in the Btk linker region can cause XLA, supporting an essential role for this protein segment. We investigated the regulatory role of the linker region in Btk function by mutational analysis. XLA-causing mutations L369F and R372G abolished Btk-mediated calcium response without affecting Btk protein stability and kinase activity significantly. Although mutation of a well-conserved tryptophan (W260A) in the linker region of the Src family kinase Hck has been shown to cause a hyperactive kinase, an analogous mutation in Btk (W395A) dramatically decreased Btk kinase activity. Tyrosine phosphorylation in the linker region was previously shown to regulate the function of Abl and ZAP70/Syk kinases. Even though tyrosine phosphorylation was detected on tyrosine 375 in the Btk linker region, no significant alteration was observed in Btk-signaling activity and biological function when this tyrosine was mutated in DT-40 cells or in Y375F knock-in mice. Our data and previous studies suggest that each cytoplasmic tyrosine kinase family has evolved a unique strategy to utilize the linker region to regulate the function of the enzyme.
Collapse
Affiliation(s)
- Shuling Guo
- Department of Microbiology, Immunology and Molecular Genetics, Howard Hughes Medical Institute and University of California, Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
55
|
Breitenlechner CB, Kairies NA, Honold K, Scheiblich S, Koll H, Greiter E, Koch S, Schäfer W, Huber R, Engh RA. Crystal structures of active SRC kinase domain complexes. J Mol Biol 2005; 353:222-31. [PMID: 16168436 DOI: 10.1016/j.jmb.2005.08.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 01/13/2023]
Abstract
c-Src was the first proto-oncoprotein to be identified, and has become the focus of many drug discovery programs. Src structures of a major inactive form have shown how the protein kinase is rigidified by several interdomain interactions; active configurations of Src are generated by release from this "assembled" or "bundled" form. Despite the importance of Src as a drug target, there is relatively little structural information available regarding the presumably more flexible active forms. Here we report three crystal structures of a dimeric active c-Src kinase domain, in an apo and two ligand complexed forms, with resolutions ranging from 2.9A to 1.95A. The structures show how the kinase domain, in the absence of the rigidifying interdomain interactions of the inactivation state, adopts a more open and flexible conformation. The ATP site inhibitor CGP77675 binds to the protein kinase with canonical hinge hydrogen bonds and also to the c-Src specific threonine 340. In contrast to purvalanol B binding in CDK2, purvalanol A binds in c-Src with a conformational change in a more open ATP pocket.
Collapse
|
56
|
Lerner EC, Trible RP, Schiavone AP, Hochrein JM, Engen JR, Smithgall TE. Activation of the Src family kinase Hck without SH3-linker release. J Biol Chem 2005; 280:40832-7. [PMID: 16210316 DOI: 10.1074/jbc.m508782200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family protein-tyrosine kinases are regulated by intramolecular binding of the SH2 domain to the C-terminal tail and association of the SH3 domain with the SH2 kinase-linker. The presence of two regulatory interactions raises the question of whether disruption of both is required for kinase activation. To address this question, we engineered a high affinity linker (HAL) mutant of the Src family member Hck in which an optimal SH3 ligand was substituted for the natural linker. Surface plasmon resonance analysis demonstrated tight intramolecular binding of the modified HAL sequence to SH3. Hck-HAL was then combined with a tail tyrosine mutation (Y501F) and expressed in Rat-2 fibroblasts. Surprisingly, Hck-HAL-Y501F showed strong transforming and kinase activities, demonstrating that intramolecular SH3-linker release is not required for SH2-based kinase activation. In Saccharomyces cerevisiae, which lacks the negative regulatory tail kinase Csk, wild-type Hck was more strongly activated in the presence of an SH3-binding protein (human immunodeficiency virus-1 Nef), indicating persistence of native SH3-linker interaction in an active Hck conformation. Taken together, these data support the existence of multiple active conformations of Src family kinases that may generate unique downstream signals.
Collapse
Affiliation(s)
- Edwina C Lerner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
57
|
Kim HI, Lee ST. An Intramolecular Interaction between SH2-Kinase Linker and Kinase Domain Is Essential for the Catalytic Activity of Protein-tyrosine Kinase-6. J Biol Chem 2005; 280:28973-80. [PMID: 15961400 DOI: 10.1074/jbc.m504568200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinase-6 (PTK6, also known as Brk) is a non-receptor tyrosine kinase that contains SH3, SH2, and catalytic (Kinase) domains. We have identified an intramolecular interaction between the linker (Linker) region connecting the SH2 and Kinase domains and the Kinase domain. Residue Trp-184 within the Linker region is essential for the Linker-Kinase interaction but not for the Linker-SH3 interaction. A recombinant PTK6 Kinase domain connected to the Linker region had catalytic activity in terms of autophosphorylation, phosphorylation of a PTK6 substrate, BKS, and phosphorylation of an oligopeptide substrate, whereas the Kinase domain itself, or one connected to a Linker region containing a W184A substitution, did not. The introduction of the W184A mutation into PTK6 also abrogated autophosphorylation and phosphorylation of another PTK6 substrate, Sam68, as well as phosphorylation of intracellular proteins. It also abolished the ability of PTK6 to promote proliferation and prevent apoptosis of HEK 293 cells, as well as to permit anchorage-independent colony formation. Therefore, unlike Src family members, in which the Linker-Kinase interaction inhibits catalytic activity, in PTK6 this interaction has an essential positive role.
Collapse
Affiliation(s)
- Han Ie Kim
- National Research Laboratory of Cellular Biochemistry, Department of Biochemistry, College of Science, and Protein Network Research Center, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
58
|
Lin X, Ayrapetov MK, Lee S, Parang K, Sun G. Probing the communication between the regulatory and catalytic domains of a protein tyrosine kinase, Csk. Biochemistry 2005; 44:1561-7. [PMID: 15683240 DOI: 10.1021/bi048142j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein tyrosine kinases (PTKs) are important regulators of mammalian cell function and their own activities are tightly regulated. Underlying their tight regulation, all PTKs contain multiple regulatory domains in addition to a catalytic domain. C-terminal Src kinase (Csk) contains a catalytic domain and a regulatory region, consisting of an SH3 and an SH2 domain. In this study, we probed the communication between the regulatory and catalytic domains of Csk. First, kinetic characterization of SH3 and SH2 domain deletion mutants demonstrated that the SH3 and SH2 domains were crucial in maintaining the full activity of Csk, but were not directly involved in Csk recognition of its physiological substrate, Src. Second, highly conserved Trp188, corresponding to a key residue in domain-domain communication in other PTKs, was found to be important for maintaining the active structure of Csk by the presence of the regulatory region, but not required for Csk activation triggered by a phosphopeptide binding to the SH2 domain. Third, structural alignment indicated that the presence of the regulatory domains modulated the conformation of multiple substructures in the catalytic domain, some directly and others remotely. Mutagenic and kinetic studies supported this assignment. This report extended previous studies of Csk domain-domain communication, and provided a foundation for further detailed investigation of this communication.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | |
Collapse
|
59
|
Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. The Crystal Structure of a c-Src Complex in an Active Conformation Suggests Possible Steps in c-Src Activation. Structure 2005; 13:861-71. [PMID: 15939018 DOI: 10.1016/j.str.2005.03.012] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 11/28/2022]
Abstract
The regulation of the activity of Abl and Src family tyrosine kinases is mediated by intramolecular interactions between the SH3, SH2, and kinase (SH1) domains. We have determined the crystal structure of an unphosphorylated form of c-Src in which the SH2 domain is not bound to the C-terminal tail. This results in an open structure where the kinase domain adopts an active conformation and the C terminus binds within a hydrophobic pocket in the C-terminal lobe. NMR binding studies support the hypothesis that an N-terminal myristate could bind in this pocket, as observed for Abl, suggesting that c-Src may also be regulated by myristate binding. In addition, the structure contains a des-methyl analog of the antileukemia drug imatinib (STI571; Gleevec). This structure reveals why the drug shows a low affinity for active kinase conformations, contributing to its excellent kinase selectivity profile.
Collapse
Affiliation(s)
- Sandra W Cowan-Jacob
- Discovery Technologies, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
60
|
|
61
|
Ye H, Choi HJ, Poe J, Smithgall TE. Oligomerization Is Required for HIV-1 Nef-Induced Activation of the Src Family Protein-Tyrosine Kinase, Hck. Biochemistry 2004; 43:15775-84. [PMID: 15595833 DOI: 10.1021/bi048712f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hck is a member of the Src protein-tyrosine kinase family and is expressed strongly in macrophages, an important HIV target cell. Previous studies have shown that Nef, an HIV-1 accessory protein essential for AIDS progression, binds and activates Hck through its SH3 domain. Structural analysis suggests that Nef forms oligomers in vivo, which may bring multiple Hck molecules into close proximity and promote autophosphorylation. Using bimolecular GFP fluorescence complementation, we show for the first time that Nef oligomerizes in living cells and that the oligomers localize to the plasma membrane. To test the role of Nef oligomerization in Hck activation, we fused Nef to the hormone-binding domain of the estrogen receptor (Nef-ER), allowing us to control its dimerization with 4-hydroxytamoxifen (4-HT). In Rat-2 fibroblasts co-expressing Nef-ER and Hck, 4-HT treatment induced Nef-ER dimer and tetramer formation, leading to Hck kinase activation and cellular transformation. The number of transformed foci observed with Nef-ER plus Hck in the presence of 4-HT was markedly greater than that observed with wild-type Nef plus Hck, suggesting that enforced oligomerization enhances activation of Hck by Nef in vivo. Enhanced transformation correlated with increased Hck/Nef complex formation at the plasma membrane. In complementary experiments, we observed that a Nef mutant defective for Hck SH3 domain binding (Nef-PA) suppressed Hck kinase activation and transformation by the wild-type Hck/Nef complex. This effect correlated with the formation of a ternary complex between wild-type Nef, Nef-PA, and Hck, suggesting that Nef-PA suppresses Hck activation by blocking wild-type Nef oligomerization. Finally, Nef-ER induced Hck activation in a 4-HT-dependent manner in the macrophage precursor cell line TF-1, suggesting that oligomerization is essential for signaling through Hck in a cell background relevant to HIV infection. Together, these data demonstrate that Nef oligomerization is critical to the activation of Hck in vivo, and suggest that inhibitors of oligomerization may suppress Nef signaling through Hck in HIV-infected macrophages, slowing disease progression.
Collapse
Affiliation(s)
- Huihui Ye
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
62
|
Abstract
Src family kinases are prototypical modular signaling proteins. Their conserved domain organization includes a myristoylated N-terminal segment followed by SH3, SH2, and tyrosine kinase domains, and a short C-terminal tail. Structural dissection of Src kinases has elucidated the canonical mechanisms of phosphotyrosine recognition by the SH2 domain and proline-motif recognition by the SH3 domain. Crystallographic analysis of nearly intact Src kinases in the autoinhibited state has shown that these protein interaction motifs turn inward and lock the kinase in an inactive conformation via intramolecular interactions. The autoinhibited Src kinase structures reveal a mode of domain assembly used by other tyrosine kinases outside the Src family, including Abl and likely Tec family kinases. Furthermore, they illustrate the underlying regulatory principles that have proven to be general among diverse modular signaling proteins. Although there is considerable structural information available for the autoinhibited conformation of Src kinases, how they may assemble into active signaling complexes with substrates and regulators remains largely unexplored.
Collapse
Affiliation(s)
- Titus J Boggon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA
| | | |
Collapse
|
63
|
Prince T, Matts RL. Definition of Protein Kinase Sequence Motifs That Trigger High Affinity Binding of Hsp90 and Cdc37. J Biol Chem 2004; 279:39975-81. [PMID: 15258137 DOI: 10.1074/jbc.m406882200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, the crystal structure of the Src family tyrosine kinase Lck was used to guide the creation of kinase constructs to determine features recognized by Hsp90 and its "kinase-specific" co-chaperone Cdc37. Two parameters were assayed: the ability and extent to which the constructs bound to Hsp90 and Cdc37, and the ability of the constructs to trigger salt-resistant high affinity complexes with Hsp90 and Cdc37 independent of the presence of molybdate. Although Hsp90 interacted with both the N-terminal and C-terminal lobes (NL and CL, respectively) of the catalytic domains of the kinases, the lobes themselves were not sufficient to trigger the high affinity binding of Hsp90. Only constructs containing a complete N- or C-terminal lobe and part of the adjacent lobe bound to Hsp90 and Cdc37 in salt-stable complexes independent of molybdate. The two minimum constructs that bound Hsp90 and Cdc37 contained the alpha-C-helix and the beta4- and beta5-strands of the NL through to end of the CL and the NL through to the alpha-E-helix and the amino acids that cap the helix. Cdc37 interacted with only the NL and minimally required the alpha-C-helix and beta4- and beta5-strands of this lobe of Lck. The results indicate that the high affinity binding activity of Hsp90 is triggered through its interaction with adjacent subdomain structures of kinase catalytic domains. Furthermore, the alpha-C-helix and part of its adjoining loop connection to the beta4-strand appear to be the primary determinants recognized by Cdc37.
Collapse
Affiliation(s)
- Thomas Prince
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | |
Collapse
|
64
|
Lougheed JC, Chen RH, Mak P, Stout TJ. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem 2004; 279:44039-45. [PMID: 15308621 DOI: 10.1074/jbc.m406703200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ACK1 is a multidomain non-receptor tyrosine kinase that is an effector of the Cdc42 GTPase. Members of the ACK family have a unique domain ordering and are the only tyrosine kinases known to interact with Cdc42. In contrast with many protein kinases, ACK1 has only a modest increase in activity upon phosphorylation. We have solved the crystal structures of the human ACK1 kinase domain in both the unphosphorylated and phosphorylated states. Comparison of these structures reveals that ACK1 adopts an activated conformation independent of phosphorylation. Furthermore, the unphosphorylated activation loop is structured, and its conformation resembles that seen in activated tyrosine kinases. In addition to the apo structure, complexes are also presented with a non-hydrolyzable nucleotide analog (adenosine 5'-(beta,gamma-methylenetriphosphate)) and with the natural product debromohymenialdisine, a general inhibitor of many protein kinases. Analysis of these structures reveals a typical kinase fold, a pre-organization into the activated conformation, and an unusual substrate-binding cleft.
Collapse
Affiliation(s)
- Julie C Lougheed
- Exelixis, Incorporated, South San Francisco, California 94083-0511, USA
| | | | | | | |
Collapse
|
65
|
Kozasa T. The structure of GRK2-G beta gamma complex: intimate association of G-protein signaling modules. Trends Pharmacol Sci 2004; 25:61-3. [PMID: 15106629 DOI: 10.1016/j.tips.2003.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-protein-mediated signaling is the most widely used signaling mechanism in cells and its regulation is crucial for various physiological functions. G-protein-coupled receptor (GPCR) kinases (GRKs) are involved in the desensitization of GPCR signals. Recently, the X-ray crystal structure of GRK2 complexed with G beta gamma was demonstrated and revealed the intimate association of three important signaling modules with G beta gamma to regulate GRK2 activity.
Collapse
Affiliation(s)
- Tohru Kozasa
- Department of Pharmacology, University of Illinois at Chicago, 60612, USA.
| |
Collapse
|
66
|
Abstract
Breast tumor kinase (Brk) is a nonreceptor tyrosine kinase that is overexpressed in a high percentage of breast carcinomas. Brk contains SH3, SH2, and tyrosine kinase catalytic domains in a similar arrangement as Src family kinases. In this study, we explored the roles of the SH3 and SH2 domains in Brk regulation and substrate binding. We introduced a series of mutations into Brk that were predicted to disrupt the intramolecular interactions involving the SH3 and SH2 domains. These mutant forms of Brk displayed higher activity than wild-type Brk when expressed in human embryonic kidney HEK293 cells. These studies also allowed us to pinpoint the intramolecular binding site for the SH3 domain. To examine substrate binding, we compared binding and phosphorylation of Sam68, a physiological substrate of Brk. These experiments showed that the SH3 domain plays a particularly important role in substrate recognition. We confirmed this conclusion using a series of synthetic peptides in which a substrate sequence was coupled to an SH3 or SH2 ligand. The SH3-binding substrate had a significantly lower K(m) than a control, while no difference was observed between an SH2-binding substrate and a control. Taken together, our data suggest that SH3 interactions will govern phosphorylation of many substrates by Brk.
Collapse
Affiliation(s)
- Haoqun Qiu
- Department of Physiology and Biophysics, Basic Science Tower, T-6, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
67
|
Tendulkar AV, Wangikar PP, Sohoni MA, Samant VV, Mone CY. Parameterization and Classification of the Protein Universe via Geometric Techniques. J Mol Biol 2003; 334:157-72. [PMID: 14596807 DOI: 10.1016/j.jmb.2003.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a scheme for the classification of 3487 non-redundant protein structures into 1207 non-hierarchical clusters by using recurring structural patterns of three to six amino acids as keys of classification. This results in several signature patterns, which seem to decide membership of a protein in a functional category. The patterns provide clues to the key residues involved in functional sites as well as in protein-protein interaction. The discovered patterns include a "glutamate double bridge" of superoxide dismutase, the functional interface of the serine protease and inhibitor, interface of homo/hetero dimers, and functional sites of several enzyme families. We use geometric invariants to decide superimposability of structural patterns. This allows the parameterization of patterns and discovery of recurring patterns via clustering. The geometric invariant-based approach eliminates the computationally explosive step of pair-wise comparison of structures. The results provide a vast resource for the biologists for experimental validation of the proposed functional sites, and for the design of synthetic enzymes, inhibitors and drugs.
Collapse
Affiliation(s)
- Ashish V Tendulkar
- Kanwal Rekhi School of Information Technology, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | | | | | | | |
Collapse
|
68
|
Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem 2003; 278:47713-23. [PMID: 14506255 DOI: 10.1074/jbc.m306716200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ACK1 (activated Cdc42-associated kinase 1) is a nonreceptor tyrosine kinase and the only tyrosine kinase known to interact with Cdc42. To characterize the enzymatic properties of ACK, we have expressed and purified active ACK using the baculovirus/Sf9 cell system. This ACK1 construct contains (from N to C terminus) the kinase catalytic domain, SH3 domain, and Cdc42-binding Cdc42/Rac interactive binding (CRIB) domain. We characterized the substrate specificity of ACK1 using synthetic peptides, and we show that the specificity of the ACK1 catalytic domain most closely resembles that of Abl. Purified ACK1 undergoes autophosphorylation, and autophosphorylation enhances kinase activity. We identified Tyr284 in the activation loop of ACK1 as the primary autophosphorylation site using mass spectrometry. When expressed in COS-7 cells, the Y284F mutant ACK1 showed dramatically reduced levels of tyrosine phosphorylation. Although the SH3 and CRIB domains of purified ACK1 are able to bind ligands (a polyproline peptide and Cdc42, respectively), the addition of ligands did not stimulate tyrosine kinase activity. To characterize potential interacting partners for ACK1, we screened several SH2 and SH3 domains for their ability to bind to full-length ACK1 or to the catalytic-SH3-CRIB construct. ACK1 interacts most strongly with the SH3 domains of Src family kinases (Src or Hck) via its C-terminal proline-rich domain. Co-expression of Hck with kinase-inactive ACK1(K158R) in mammalian cells resulted in tyrosine phosphorylation of ACK1, suggesting that ACK1 is a substrate for Hck. Our data suggest that Hck is a novel binding partner for ACK1 that can regulate ACK1 activity by phosphorylation.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794-8661, USA
| | | |
Collapse
|
69
|
Abstract
Cytoplasmic tyrosine kinases do not occur as isolated catalytic domains. Instead, each kinase family possesses a characteristic array of additional domains that are appended to the catalytic domain. The combination and the arrangement of these modular domains are important in kinase regulation and function. This Account describes how the noncatalytic regions of Src family tyrosine kinases are involved in enzyme regulation, substrate selection, and multisite phosphorylation.
Collapse
|
70
|
Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJG. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 2003; 300:1256-62. [PMID: 12764189 DOI: 10.1126/science.1082348] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
- David T Lodowski
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
72
|
George RA, Heringa J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng Des Sel 2002; 15:871-9. [PMID: 12538906 DOI: 10.1093/protein/15.11.871] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent advances in protein engineering have come from creating multi-functional chimeric proteins containing modules from various proteins. These modules are typically joined via an oligopeptide linker, the correct design of which is crucial for the desired function of the chimeric protein. Here we analyse the properties of naturally occurring inter-domain linkers with the aim to design linkers for domain fusion. Two main types of linker were identified; helical and non-helical. Helical linkers are thought to act as rigid spacers separating two domains. Non-helical linkers are rich in prolines, which also leads to structural rigidity and isolation of the linker from the attached domains. This means that both linker types are likely to act as a scaffold to prevent unfavourable interactions between folding domains. Based on these results we have constructed a linker database intended for the rational design of linkers for domain fusion, which can be accessed via the Internet at http://mathbio.nimr.mrc.ac.uk.
Collapse
Affiliation(s)
- Richard A George
- Division of Mathematical Biology, National Institute for Medical Research, The Ridgeway, Mill Hill NW7 1AA, UK
| | | |
Collapse
|
73
|
Wang D, Esselman WJ, Cole PA. Substrate conformational restriction and CD45-catalyzed dephosphorylation of tail tyrosine-phosphorylated Src protein. J Biol Chem 2002; 277:40428-33. [PMID: 12181320 DOI: 10.1074/jbc.m206467200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrolysis of the tail phosphotyrosine in Src family members is catalyzed by the protein-tyrosine phosphatase CD45, activating Src family-related signaling pathways. Using purified recombinant phospho-Src (P-Src) (amino acid residues 83-533) and purified recombinant CD45 catalytic (cytoplasmic) domain (amino acid residues 565-1268), we have analyzed the kinetic behavior of dephosphorylation. A time course of phosphatase activity showed the presence of a burst phase. By varying the concentration of P-Src, it was shown that the amplitude of this burst phase increased linearly with respect to P-Src concentration. Approximately 2% of P-Src was shown to be rapidly dephosphorylated followed by a slower linear phase. A P-Src protein substrate containing a functional point mutation in the Src homology domain 2 (SH2) led to more rapid dephosphorylation catalyzed by CD45, and this reaction showed only a single linear kinetic phase. These results were interpreted in terms of a model in which P-Src exists in a relatively slow dynamic equilibrium between "closed" and "open" conformational forms. Combined mutations in the SH2 and SH3 domain or the addition of an SH3 domain ligand peptide enhanced the accessibility of P-Src to CD45 by biasing P-Src to a more open form. Consistent with this model, a phosphotyrosine peptide that behaved as an SH2 domain binding ligand showed approximately 100-fold greater affinity for unphosphorylated Src versus P-Src. Surprisingly, P-Src possessing combined SH3 and SH2 functional inactivating point mutations was dephosphorylated by CD45 more slowly compared with P-Src completely lacking SH3 and SH2 domains. Additional data suggest that the SH3 and SH2 domains can inhibit accessibility of the P-Src tail to CD45 by interactions other than direct phosphotyrosine binding by the SH2 domain. Taken together, these results suggest how activation of Src family member signaling pathways by CD45 may be influenced by the presence or absence of ligand interactions remote from the tail.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
74
|
Qiu H, Miller WT. Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. J Biol Chem 2002; 277:34634-41. [PMID: 12121988 DOI: 10.1074/jbc.m203877200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brk (breast tumor kinase) is a nonreceptor tyrosine kinase that is most closely related to the Frk family of kinases, and more distantly to Src family kinases. Brk was originally identified in a screen for tyrosine kinases that are overexpressed in human metastatic breast tumors. To shed light on the activity and regulation of Brk and related tyrosine kinases, we expressed and purified Brk using the Sf9/baculovirus system. We characterized the substrate specificity of Brk using synthetic peptides, and we show that the kinetic parameters K(m) and k(cat) both play a role in specificity. We carried out mass spectrometry experiments to show that Brk autophosphorylates within the predicted kinase activation loop and at additional sites in the N terminus. Autophosphorylation increases enzyme activity of wild-type Brk but not of a Y342A mutant form of Brk. We also carried out experiments to address the possible involvement of the Src homology (SH) 2 and SH3 domains of Brk in enzyme regulation. Mutation of a C-terminal tyrosine (Tyr-447) increases enzyme activity and SH2 domain accessibility, consistent with a role for this residue in autoinhibition. A proline-rich peptide activates Brk, suggesting that the SH3 domain is also involved in maintaining an inactive form of Brk. These biochemical results for Brk may aid in the understanding of other tyrosine kinases in the Frk family.
Collapse
Affiliation(s)
- Haoqun Qiu
- Department of Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
75
|
Picard C, Gilles A, Pontarotti P, Olive D, Collette Y. Cutting edge: recruitment of the ancestral fyn gene during emergence of the adaptive immune system. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2595-8. [PMID: 11884421 DOI: 10.4049/jimmunol.168.6.2595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptive immune system (AIS) is characterized by the MHC molecules and the rearranging Ag receptors, and was established in a common ancestor of jawed vertebrates. Fyn, a Src-family tyrosine kinases, is important for normal development and function of T lymphocytes and neuronal cells. Indeed, as the result of an alternative splicing of a distinct exon 7, fyn encodes for two isoforms, FynT in T lymphocytes and FynB in the brain. How this alternative splicing of fyn transcripts has emerged and evolved in relation to the setting of the AIS remains to be established. In this study, we show that exon capture in a vertebrate ancestor by the fynT-like gene has yielded a novel fyn-encoded isoform, fynB. Unexpectedly, the newly established AIS recruited the ancestral Fyn isoform, FynT, whereas the CNS expresses the most recent one, FynB. These results shed new light on the emergence of the AIS.
Collapse
Affiliation(s)
- Christophe Picard
- Institut de Cancérologie et d'Immunologie de Marseille, Marseille, France
| | | | | | | | | |
Collapse
|
76
|
Lim WA. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr Opin Struct Biol 2002; 12:61-8. [PMID: 11839491 DOI: 10.1016/s0959-440x(02)00290-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Many eukaryotic signal transduction proteins have component-based architectures: they are built from combinations of protein interaction domains and catalytic domains. Intact, these proteins display the sophisticated allosteric behavior required for cellular regulation; the protein's output activity is tightly repressed under basal conditions, but can be robustly activated by a specific set of input effector ligands. A combination of structural, biophysical and computational studies is beginning to shed light on the fundamental principles governing this type of modular allostery.
Collapse
Affiliation(s)
- Wendell A Lim
- Department of Cellular and Molecular Pharmacology, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0450, USA.
| |
Collapse
|
77
|
Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 2001; 105:115-26. [PMID: 11301007 DOI: 10.1016/s0092-8674(01)00301-4] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of C-terminal tyrosine phosphorylation on molecular motions in the Src kinases Hck and c-Src is investigated by molecular dynamics simulations. The SH2 and SH3 domains of the inactive kinases are seen to be tightly coupled by the connector between them, impeding activation. Dephosphorylation of the tail reduces the coupling between the SH2 and SH3 domains in the simulations, as does replacement of connector residues with glycine. A mutational analysis of c-Src expressed in Schizosaccharomyces pombe demonstrates that replacement of residues in the SH2-SH3 connector with glycine activates c-Src. The SH2-SH3 connector appears to be an inducible "snap lock" that clamps the SH2 and SH3 domains upon tail phosphorylation, but which allows flexibility when the tail is released.
Collapse
Affiliation(s)
- M A Young
- Laboratories of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
78
|
Profit AA, Lee TR, Niu J, Lawrence DS. Molecular rulers: an assessment of distance and spatial relationships of Src tyrosine kinase Sh2 and active site regions. J Biol Chem 2001; 276:9446-51. [PMID: 11118446 DOI: 10.1074/jbc.m009262200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structures of the inactive conformations of Hck and Src, members of the Src protein-tyrosine kinase family, have recently been described. In both cases, the catalytic domain lies on the opposite face of the enzyme from the SH2 and SH3 domains. The active conformation of these enzymes has not yet been described. Given the known role of the SH2 and SH3 domains in promoting substrate binding, enzyme activation likely reorients the relative spatial arrangement between the SH2/SH3 domains and the active site region. We describe herein a series of "molecular rulers" and their use in assessing the topological and spatial relationships of the SH2 and active site regions of the Src protein-tyrosine kinase. These synthetic compounds contain sequences that are active site-directed (-Glu-Glu-Ile-Ile-(F(5))Phe-, where (F(5))Phe is pentafluorophenylalanine) and SH2-directed (-Tyr(P)-Glu-Glu-Ile-Glu-), separated by a sequence of variable length. The most potent bivalent compound, acetyl-Glu-Glu-Leu-Leu-(F(5))Phe-(GABA)(3)-Tyr(P)-Glu-Glu-Ile-Glu-amide (where GABA is gamma-aminobutyric acid), displays a >120-fold enhancement in inhibitory potency relative to the simple monovalent active site-directed species, acetyl-Glu-Glu-Leu-Leu-(F(5))Phe-amide. The short linker length (3 GABA residues) between the active site- and SH2-directed peptide fragments suggests that the corresponding domains on the Src kinase can assume a nearly contiguous spatial arrangement in the active form of the enzyme.
Collapse
Affiliation(s)
- A A Profit
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
79
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occurs in multicellular organisms as a result of intercellular communication during embryogenesis and maintenance of adult tissues. The enzymes that carry out this modification are the protein tyrosine kinases (PTKs), which catalyze the transfer of the phosphate of ATP to tyrosine residues on protein substrates. Phosphorylation of tyrosine residues modulates enzymatic activity and creates binding sites for the recruitment of downstream signaling proteins. Two classes of PTKs are present in cells: the transmembrane receptor PTKs and the nonreceptor PTKs. Because PTKs are critical components of cellular signaling pathways, their catalytic activity is strictly regulated. Over the past several years, high-resolution structural studies of PTKs have provided a molecular basis for understanding the mechanisms by which receptor and nonreceptor PTKs are regulated. This review will highlight the important results that have emerged from these structural studies.
Collapse
Affiliation(s)
- S R Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
80
|
Wang D, Huang XY, Cole PA. Molecular determinants for Csk-catalyzed tyrosine phosphorylation of the Src tail. Biochemistry 2001; 40:2004-10. [PMID: 11329267 DOI: 10.1021/bi002342n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of a critical tail tyrosine residue in Src modulates its three-dimensional structure and protein tyrosine kinase activity. The protein tyrosine kinase Csk is responsible for catalyzing the phosphorylation of this key Src tyrosine residue, but the detailed molecular basis for Src recognition and catalysis is poorly understood. In this study, we investigate this phosphorylation event using purified recombinant Csk and Src proteins and mutants. It was shown that the apparent k(cat) and K(m) values for Csk phosphorylation of catalytically impaired Src (dSrc) are similar to the parameters for Csk-catalyzed phosphorylation of the Src family member Lck. The SH3 (Src homology 3) and SH2 (Src homology 2) domains of dSrc were fully dispensable with respect to rapid phosphorylation, indicating that the catalytic domain and tail of dSrc are sufficient for the high efficiency of dSrc as a substrate. Of the eight Src tail residues examined, only the fully conserved Glu (Y-3 position) and Gln (Y-1 position) investigated by alanine scanning mutagenesis caused large reductions (10--40-fold) in dSrc substrate efficiency. The Y-3 Glu requirement was stringent as conservative replacements with Asp or Gln were no better than Ala whereas replacement of the Y-1 Gln with Ile was readily tolerated. Interestingly, en bloc replacement of the tail with a seven amino acid consensus sequence derived from a peptide library analysis was no better than the wild-type sequence. Surprisingly, the dSrc Y527F protein, although not a Csk substrate, enhanced Csk-catalyzed phosphorylation of dSrc. These results and other data suggest that Src dimerization (or higher order oligomerization) is important for high-efficiency Csk-catalyzed phosphorylation of the Src tail.
Collapse
Affiliation(s)
- D Wang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
81
|
Abstract
Heterotrimeric G proteins transduce signals from cell surface receptors to modulate the activity of cellular effectors. Src, the product of the first characterized proto-oncogene and the first identified protein tyrosine kinase, plays a critical role in the signal transduction of G protein-coupled receptors. However, the mechanism of biochemical regulation of Src by G proteins is not known. Here we demonstrate that Galphas and Galphai, but neither Galphaq, Galpha12 nor Gbetay, directly stimulate the kinase activity of downregulated c-Src. Galphas and Galphai similarly modulate Hck, another member of Src-family tyrosine kinases. Galphas and Galphai bind to the catalytic domain and change the conformation of Src, leading to increased accessibility of the active site to substrates. These data demonstrate that the Src family tyrosine kinases are direct effectors of G proteins.
Collapse
Affiliation(s)
- Y C Ma
- Department of Physiology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
82
|
McPherson RA, Taylor MM, Hershey ED, Sturgill TW. A different function for a critical tryptophan in c-Raf and Hck. Oncogene 2000; 19:3616-22. [PMID: 10951567 DOI: 10.1038/sj.onc.1203678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The similarity of the catalytic domains of Raf and Src family members suggests that functions of homologous residues may be similar in both kinase families. A tryptophan residue, W260, in the WEI region of the Src family kinase Hck has an important role in regulating ATP binding. We tested the hypothesis that the tryptophan, W342, in the WEI region of c-Raf may have a similar role to the W260 of Hck. Mutation of W260 to A in Hck activates kinase activity, but we found that mutation of W342 to A in c-Raf inactivates the kinase activity. Mutating W342 to aspartate (D), lysine (K) or histidine (H) also inactivated c-Raf whether assayed as a purified immunoprecipitate or when recruited to the plasma membrane. A constitutively active c-Raf can be generated by mutating two regulatory tyrosines to aspartate. When placed into this active c-Raf mutant, mutation of W342 to D, K or H enabled phosphorylation and activation of the c-Raf substrate MEK at the plasma membrane but not in an immunoprecipitation assay. We conclude that (1) Tryptophan has a different role in the WEI regions of c-Raf and Hck, (2) W342 is not directly involved in MEK binding as both positive and negative residues at 342 are permissive for MEK activation at the membrane in a constitutively active c-Raf mutant, (3) Factors at the membrane are capable of potentiating activation of c-Raf containing mutated W342 in a hyperactivated c-Raf, but not in a wild type c-Raf and (4) There is a stringent structural requirement for W at residue 342 in c-Raf.
Collapse
Affiliation(s)
- R A McPherson
- Department of Clinical Pharmacology and Howard Hughes Medical Institute, University of Virginia Health Sciences Center, Charlottesville 22908-0577, USA
| | | | | | | |
Collapse
|
83
|
Abstract
Multidomain proteins are common in a variety of cellular processes. Their domains are interconnected through short stretches of amino acid residues referred to as linkers. Recent studies on many systems have provided compelling evidence that linkers are more than simple covalent connectors. They also perform the important task of establishing communication between the different functional modules that exist within such proteins.
Collapse
Affiliation(s)
- R S Gokhale
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.
| | | |
Collapse
|
84
|
Porter M, Schindler T, Kuriyan J, Miller WT. Reciprocal regulation of Hck activity by phosphorylation of Tyr(527) and Tyr(416). Effect of introducing a high affinity intramolecular SH2 ligand. J Biol Chem 2000; 275:2721-6. [PMID: 10644735 DOI: 10.1074/jbc.275.4.2721] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src family tyrosine kinase Hck possesses two phosphorylation sites, Tyr(527) and Tyr(416), that affect the catalytic activity in opposite ways. When phosphorylated, Tyr(527) and residues C-terminal to it are involved in an inhibitory intramolecular interaction with the SH2 domain. However, this sequence does not conform to the sequence of the high affinity SH2 ligand, pYEEI. We mutated this sequence to YEEI and show that this mutant form of Hck cannot be activated by exogenous SH2 ligands. The SH3 domain of Hck is also involved in an inhibitory interaction with the catalytic domain. The SH3 ligand Nef binds to and activates YEEI-Hck mutant in a similar manner to wild-type Hck, indicating that disrupting the SH3 interaction overrides the strengthened SH2 interaction. The other phosphorylation site, Tyr(416), is the autophosphorylation site in the activation loop. Phosphorylation of Tyr(416) is required for Hck activation. We mutated this residue to alanine and characterized its catalytic activity. The Y416A mutant shows a higher K(m) value for peptide and a lower V(max) than autophosphorylated wild-type Hck. We also present evidence for cross-talk between the activation loop and the intramolecular binding of the SH2 and SH3 domains.
Collapse
Affiliation(s)
- M Porter
- Department of Physiology, School of Medicine, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | | | |
Collapse
|
85
|
Affiliation(s)
- C L Abram
- SUGEN, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | | |
Collapse
|
86
|
Briggs SD, Smithgall TE. SH2-kinase linker mutations release Hck tyrosine kinase and transforming activities in Rat-2 fibroblasts. J Biol Chem 1999; 274:26579-83. [PMID: 10473622 DOI: 10.1074/jbc.274.37.26579] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biochemical and structural studies of Src and related kinases demonstrate that two intramolecular interactions suppress kinase activity. These interactions involve binding of the SH2 domain to a phosphotyrosine residue in the C-terminal tail and association of the SH3 domain with a polyproline type II helix formed by amino acids linking the SH2 and kinase domains. Recent studies have shown that high affinity interaction of the SH3 domain of Hck with the human immunodeficiency virus type I Nef protein activates Hck tyrosine kinase and biological activities, suggesting a mechanism that involves disruption of the SH3-linker interaction. To test the role of this interaction in the regulation of Hck kinase activity in living cells, we substituted alanines for prolines 225 and 228 in the linker region and observed that the resulting mutant (Hck-2PA) demonstrated strong transforming activity in a Rat-2 fibroblast focus-forming assay. Hck-2PA also exhibited elevated tyrosine kinase activity in terms of autophosphorylation, endogenous substrate phosphorylation, and in an in vitro kinase assay. The transforming and kinase activities of Hck-2PA were remarkably similar to those observed with a Hck mutant activated by Phe substitution of the conserved tail Tyr residue and with wild-type Hck following co-expression with human immunodeficiency virus Nef. Introduction of the 2PA and tail mutations into a single Hck expression construct did not increase kinase or transforming activity relative to the individual mutations. These data provide new evidence that SH3-linker interaction may represent the dominant mechanism controlling Hck tyrosine kinase activity in vivo.
Collapse
Affiliation(s)
- S D Briggs
- Eppley Institute for Research in Cancer and the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | |
Collapse
|
87
|
Abstract
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.
Collapse
Affiliation(s)
- D Sondhi
- Laboratory of Bioorganic Chemistry, The Rockefeller University, New York 10021, USA
| | | |
Collapse
|
88
|
Schindler T, Sicheri F, Pico A, Gazit A, Levitzki A, Kuriyan J. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol Cell 1999; 3:639-48. [PMID: 10360180 DOI: 10.1016/s1097-2765(00)80357-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The crystal structure of the autoinhibited form of Hck has been determined at 2.0 A resolution, in complex with a specific pyrazolo pyrimidine-type inhibitor, PP1. The activation segment, a key regulatory component of the catalytic domain, is unphosphorylated and is visualized in its entirety. Tyr-416, the site of activating autophosphorylation in the Src family kinases, is positioned such that access to the catalytic machinery is blocked. PP1 is bound at the ATP-binding site of the kinase, and a methylphenyl group on PP1 is inserted into an adjacent hydrophobic pocket. The enlargement of this pocket in autoinhibited Src kinases suggests a route toward the development of inhibitors that are specific for the inactive forms of these proteins.
Collapse
Affiliation(s)
- T Schindler
- Laboratories of Molecular Biophysics, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
89
|
Xu W, Doshi A, Lei M, Eck MJ, Harrison SC. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 1999; 3:629-38. [PMID: 10360179 DOI: 10.1016/s1097-2765(00)80356-1] [Citation(s) in RCA: 657] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Src family kinases are maintained in an assembled, inactive conformation by intramolecular interactions of their SH2 and SH3 domains. Full catalytic activity requires release of these restraints as well as phosphorylation of Tyr-416 in the activation loop. In previous structures of inactive Src kinases, Tyr-416 and flanking residues are disordered. We report here four additional c-Src structures in which this segment adopts an ordered but inhibitory conformation. The ordered activation loop forms an alpha helix that stabilizes the inactive conformation of the kinase domain, blocks the peptide substrate-binding site, and prevents Tyr-416 phosphorylation. Disassembly of the regulatory domains, induced by SH2 or SH3 ligands, or by dephosphorylation of Tyr-527, could lead to exposure and phosphorylation of Tyr-416.
Collapse
Affiliation(s)
- W Xu
- Laboratory of Molecular Medicine, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|