51
|
Giordano Attianese GMP, Desvergne B. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. NUCLEAR RECEPTOR SIGNALING 2015; 13:e001. [PMID: 25945080 PMCID: PMC4419664 DOI: 10.1621/nrs.13001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the systemic level, and describing the global and unbiased approaches that combine a systems view with molecular understanding.
Collapse
|
52
|
Bhosle MR, Deshmukh AR, Pal S, Srivastava AK, Mane RA. Synthesis of new thiazolylmethoxyphenyl pyrimidines and antihyperglycemic evaluation of the pyrimidines, analogues isoxazolines and pyrazolines. Bioorg Med Chem Lett 2015; 25:2442-6. [PMID: 25937008 DOI: 10.1016/j.bmcl.2015.03.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
New thiazolylmethoxyphenyl pyrimidines (7a-g) have been conveniently synthesized with better yields by cyclocondensing 3-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-1-(4-substituted phenyl)prop-2-en-1-ones (4a-g) with thiourea in aqueous emulsion of tetradecyltrimethylammonium bromide (TTAB) at 80 °C. Antihyperglycemic activity of the new thiazolylmethoxyphenyl pyrimidines (7a-d), thiazolylmethoxyphenyl pyrazolines (5a-d) and thiazolylmethoxyphenyl isoxazolines (6a-d) has been evaluated in sucrose loaded rat model. Among these compounds; 5a, 5c, 6b, 7c and 7d have displayed noticeable antihyperglycemic activity. Pyrimidines and pyrazolines have displayed better antihyperglycemic activity than the analogues isoxazolines.
Collapse
Affiliation(s)
- Manisha R Bhosle
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India
| | - Amarsinh R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India
| | - Savita Pal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Arvind K Srivastava
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ramrao A Mane
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, Maharashtra, India.
| |
Collapse
|
53
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
54
|
Rutkowski JM, Halberg N, Wang QA, Holland WL, Xia JY, Scherer PE. Differential transendothelial transport of adiponectin complexes. Cardiovasc Diabetol 2014; 13:47. [PMID: 24552349 PMCID: PMC3932731 DOI: 10.1186/1475-2840-13-47] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/12/2014] [Indexed: 12/15/2022] Open
Abstract
Background Adiponectin’s effects on systemic physiology and cell-specific responses are well-defined, but little is known about how this insulin-sensitizing and anti-inflammatory adipokine reaches its target cells. All molecules face active and passive transport limitations, but adiponectin is particularly noteworthy due to the diverse size range and high molecular weights of its oligomers. Additionally, its metabolic target organs possess a range of endothelial permeability. Methods Full-length recombinant murine adiponectin was produced and oligomer fractions isolated by gel filtration. Adiponectin complex sizes were measured by dynamic light scattering to determine Stokes radii. Transendothelial transport of purified oligomers was quantitatively assessed under a number of different conditions in vitro using murine endothelial cells and in vivo using several mouse models of altered endothelial function. Results Adiponectin oligomers exhibit large transport radii that limit transendothelial transport. Oligomerization is a significant determinant of flux across endothelial monolayers in vitro; low molecular weight adiponectin is preferentially transported. In vivo sampled sera from the heart, liver, and tail vein demonstrated significantly different complex distribution of lower molecular weight oligomers. Pharmacological interventions, such as PPARγ agonist treatment, differentially affect adiponectin plasma clearance and tissue uptake. Exercise induces enhanced adiponectin uptake to oxidative skeletal muscles, wherein adiponectin potently lowers ceramide levels. In total, endothelial barriers control adiponectin transport in a cell- and tissue-specific manner. Conclusions Adiponectin oligomer efficacy in a given tissue may therefore be endothelial transport mediated. Targeting endothelial dysfunction in the metabolic syndrome through exercise and pharmaceuticals may afford an effective approach to increasing adiponectin’s beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
55
|
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014; 13:17. [PMID: 24524207 PMCID: PMC3943808 DOI: 10.1186/1475-2891-13-17] [Citation(s) in RCA: 870] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors are expressed in many tissues, including adipocytes, hepatocytes, muscles and endothelial cells; however, the affinity depends on the isoform of PPAR, and different distribution and expression profiles, which ultimately lead to different clinical outcomes. Because they play an important role in lipid and glucose homeostasis, they are called lipid and insulin sensors. Their actions are limited to specific tissue types and thus, reveal a characteristic influence on target cells. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels, while PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid biosynthesis. PPARβ/δ participates in fatty acid oxidation, mostly in skeletal and cardiac muscles, but it also regulates blood glucose and cholesterol levels. Many natural and synthetic ligands influence the expression of these receptors. Synthetic ligands are widely used in the treatment of dyslipidemia (e.g. fibrates--PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones--PPARγ agonists). New generation drugs--PPARα/γ dual agonists--reveal hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action while the overexpression of PPARβ/δ prevents the development of obesity and reduces lipid accumulation in cardiac cells, even during a high-fat diet. Precise data on the expression and function of natural PPAR agonists on glucose and lipid metabolism are still missing, mostly because the same ligand influences several receptors and a number of reports have provided conflicting results. To date, we know that PPARs have the capability to accommodate and bind a variety of natural and synthetic lipophilic acids, such as essential fatty acids, eicosanoids, phytanic acid and palmitoylethanolamide. A current understanding of the effects of PPARs, their molecular mechanisms and the role of these receptors in nutrition and therapeutic treatment are delineated in this paper.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Bromatology and Human Nutrition, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
56
|
|
57
|
Mackenzie LS, Lione L. Harnessing the benefits of PPARβ/δ agonists. Life Sci 2013; 93:963-7. [DOI: 10.1016/j.lfs.2013.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
|
58
|
Bovee TFH, Blokland M, Kersten S, Hamers ARM, Heskamp HH, Essers ML, Nielen MWF, van Ginkel LA. Bioactivity screening and mass spectrometric confirmation for the detection of PPARδ agonists that increase type 1 muscle fibres. Anal Bioanal Chem 2013; 406:705-13. [DOI: 10.1007/s00216-013-7520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
|
59
|
Ma JJ, Monsivais D, Dyson MT, Coon JS, Malpani S, Ono M, Zhao H, Xin H, Pavone ME, Kim JJ, Chakravarti D, Bulun SE. Ligand-activated peroxisome proliferator-activated receptor β/δ modulates human endometrial cancer cell survival. Discov Oncol 2013; 4:358-70. [PMID: 23943160 DOI: 10.1007/s12672-013-0157-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
Endometrial cancer is the fourth most common malignancy among women and is a major cause of morbidity contributing to approximately 8,200 annual deaths in the USA. Despite advances to the understanding of endometrial cancer, novel interventions for the disease are necessary given that many tumors become refractory to therapy. As a strategy to identify novel therapies for endometrial carcinoma, in this study, we examined the contribution of the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) to endometrial cancer cell proliferation and apoptosis. We found that when activated with the highly selective PPARβ/δ agonists, GW0742 and GW501516, PPARβ/δ inhibited the proliferation and markedly induced the apoptosis of three endometrial cancer cell lines. The specificity of the PPARβ/δ-induced effects on cell proliferation and apoptosis was demonstrated using PPARβ/δ-selective antagonists and PPARβ/δ small interfering RNA in combination with PPARβ/δ-selective agonists. Furthermore, we showed that PPARβ/δ activation increased phosphatase and tensin homolog expression, which led to protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) dephosphorylation, and increased β-catenin phosphorylation associated with its degradation. Overall, our data suggest that the antitumorigenic effect of PPARβ/δ activation in endometrial cancer is mediated through the negative regulation of the AKT/GSK3β/β-catenin pathway. These findings warrant further investigation of PPARβ/δ as a therapeutic target in endometrial cancer.
Collapse
Affiliation(s)
- J J Ma
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Suite 3-2306, Chicago, IL, 60611-02914, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Discovery of new PPARγ agonists based on arylopeptoids. Bioorg Med Chem Lett 2013; 23:4162-5. [DOI: 10.1016/j.bmcl.2013.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
|
61
|
Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013; 2013:549627. [PMID: 23781121 PMCID: PMC3678499 DOI: 10.1155/2013/549627] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 04/17/2013] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is estimated to affect more than one in five adults, and its prevalence is growing in the adult and pediatric populations. The most widely recognized metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics commonly manifest a prothrombotic state and a proinflammatory state as well. Peroxisome proliferator-activated receptors (PPARs) may serve as potential therapeutic targets for treating the metabolic syndrome and its related risk factors. The PPARs are transcriptional factors belonging to the ligand-activated nuclear receptor superfamily. So far, three isoforms of PPARs have been identified, namely, PPAR- α, PPAR-β/δ, and PPAR-γ. Various endogenous and exogenous ligands of PPARs have been identified. PPAR- α and PPAR- γ are mainly involved in regulating lipid metabolism, insulin sensitivity, and glucose homeostasis, and their agonists are used in the treatment of hyperlipidemia and T2DM. Whereas PPAR- β / δ function is to regulate lipid metabolism, glucose homeostasis, anti-inflammation, and fatty acid oxidation and its agonists are used in the treatment of metabolic syndrome and cardiovascular diseases. This review mainly focuses on the biological role of PPARs in gene regulation and metabolic diseases, with particular focus on the therapeutic potential of PPAR modulators in the treatment of thrombosis.
Collapse
Affiliation(s)
- Francisco A. Monsalve
- Departamento Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad de Talca, Chile
- Instituto de Químicas y Recursos Naturales, Universidad de Talca, Chile
| | | | | | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad Ciencias de la Salud, Universidad de Talca, Chile
| |
Collapse
|
62
|
Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013; 93:481-523. [PMID: 23589826 PMCID: PMC3768103 DOI: 10.1152/physrev.00008.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders.
Collapse
Affiliation(s)
- Yuuki Imai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
63
|
Mandard S, Patsouris D. Nuclear control of the inflammatory response in mammals by peroxisome proliferator-activated receptors. PPAR Res 2013; 2013:613864. [PMID: 23577023 PMCID: PMC3614066 DOI: 10.1155/2013/613864] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/14/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that play pivotal roles in the regulation of a very large number of biological processes including inflammation. Using specific examples, this paper focuses on the interplay between PPARs and innate immunity/inflammation and, when possible, compares it among species. We focus on recent discoveries establishing how inflammation and PPARs interact in the context of obesity-induced inflammation and type 2 diabetes, mostly in mouse and humans. We illustrate that PPAR γ ability to alleviate obesity-associated inflammation raises an interesting pharmacologic potential. In the light of recent findings, the protective role of PPAR α and PPAR β / δ against the hepatic inflammatory response is also addressed. While PPARs agonists are well-established agents that can treat numerous inflammatory issues in rodents and humans, surprisingly very little has been described in other species. We therefore also review the implication of PPARs in inflammatory bowel disease; acute-phase response; and central, cardiac, and endothelial inflammation and compare it along different species (mainly mouse, rat, human, and pig). In the light of the data available in the literature, there is no doubt that more studies concerning the impact of PPAR ligands in livestock should be undertaken because it may finally raise unconsidered health and sanitary benefits.
Collapse
Affiliation(s)
- Stéphane Mandard
- Centre de Recherche INSERM-UMR866 “Lipides, Nutrition, Cancer” Faculté de Médecine, Université de Bourgogne 7, Boulevard Jeanne d'Arc, 21079 Dijon Cedex, France
| | - David Patsouris
- Laboratoire CarMeN, UMR INSERM U1060/INRA 1235, Université Lyon 1, Faculté de Médecine Lyon Sud, 165 Chemin du Grand Revoyet, 69921 Oullins, France
- Department of Chemical Physiology, The Scripps Research Institute, MB-24, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
64
|
Shiue YL, Chen LR, Tsai CJ, Yeh CY, Huang CT. Emerging roles of peroxisome proliferator-activated receptors in the pituitary gland in female reproduction. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.gmbhs.2013.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
65
|
Xia ZN, Lin YX, Guo LX, Yang FQ, Xu P, Zhang YL, Liu JH. Development of a cell-based high-throughput peroxisome proliferator-activated receptors (PPARs) screening model and its application for evaluation of the extracts from Rhizoma Coptis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2013; 15:225-234. [PMID: 23418674 DOI: 10.1080/10286020.2012.761977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To date, peroxisome proliferator-activated receptors (PPARs) are becoming the new therapeutic targets for the treatment of metabolic diseases, such as Type 2 diabetes, obesity, and cardiovascular disease. In this study, a cell-based high-throughput PPARs (PPARα/β/γ) model was developed for the screening of PPARs agonists. The screening conditions were evaluated through analyzing the expression value of luciferase. Finally, 24 h of drug acting time, 5 times of the dilution factor of luciferase zymolyte, and about 2 × 10(4) cells/ well on HeLa cells in 96-well plates were used, respectively. Furthermore, the quality of high-throughput screening (HTS) in stability and reliability was evaluated by the Z'-factor. Additionally, different extracts of Rhizoma Coptis and berberine were tested by the developed method. The results suggested that both the EtOAc extract and berberine were able to activate PPARα/β/γ, and Rhizoma Coptis contains potential natural agonists of PPARs besides berberine. In conclusion, the developed HTS assay is a simple, rapid, stable, and specific method for the screening of PPARs natural agonists.
Collapse
Affiliation(s)
- Zhi-Ning Xia
- College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Bojic LA, Sawyez CG, Telford DE, Edwards JY, Hegele RA, Huff MW. Activation of peroxisome proliferator-activated receptor δ inhibits human macrophage foam cell formation and the inflammatory response induced by very low-density lipoprotein. Arterioscler Thromb Vasc Biol 2012; 32:2919-28. [PMID: 23023367 DOI: 10.1161/atvbaha.112.255208] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hypertriglyceridemia is an important risk factor for cardiovascular disease. Elevated plasma very low-density lipoprotein (VLDL) puts insulin-resistant patients at risk for atherosclerosis. VLDL readily induces macrophage lipid accumulation and inflammatory responses, for which targeted therapeutic strategies remain elusive. We examined the ability of VLDL to induce macrophage foam cells and the inflammatory response and sought to define the cell signaling cascades involved. We further examined the potential of peroxisome proliferator-activated receptor (PPAR) δ activation to attenuate both VLDL-stimulated lipid accumulation and cytokine expression. METHODS AND RESULTS THP-1 macrophages exposed to VLDL displayed significant triglyceride accumulation, which was attenuated by PPARδ activation. PPARδ agonists stimulated a transcriptional program resulting in inhibition of lipoprotein lipase activity, activation of fatty acid uptake, and enhanced β-oxidation. VLDL-treated macrophages significantly increased the expression of activator protein 1 associated cytokines interleukin-1β, macrophage inflammatory protein 1α, and intercellular adhesion molecule-1. VLDL treatment significantly increased the phosphorylation of both extracellular signal-related kinase 1 and 2 and p38. VLDL reduced AKT phosphorylation as well as its downstream effector forkhead box protein O1, concomitant with increased nuclear forkhead box protein O1. Cells treated with PPARδ agonists were completely resistant to VLDL-induced expression of inflammatory cytokines, mediated by normalization of mitogen-activated protein kinase (MAPK)(erk) and AKT/forkhead box protein O1 signaling. CONCLUSIONS The combined PPARδ-mediated reductions of lipid accumulation and inflammatory cytokine expression suggest a novel macrophage-targeted therapeutic option in treating atherosclerosis.
Collapse
Affiliation(s)
- Lazar A Bojic
- Vascular Biology, Robarts Research Institute, Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
67
|
Park JH, Lee KS, Lim HJ, Kim H, Kwak HJ, Park HY. The PPARδ ligand L-165041 inhibits VEGF-induced angiogenesis, but the antiangiogenic effect is not related to PPARδ. J Cell Biochem 2012; 113:1947-54. [PMID: 22234939 DOI: 10.1002/jcb.24063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis.
Collapse
Affiliation(s)
- Jin-Hee Park
- Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, National Institute of Health, Korea
| | | | | | | | | | | |
Collapse
|
68
|
Tan Y, Muise ES, Dai H, Raubertas R, Wong KK, Thompson GM, Wood HB, Meinke PT, Lum PY, Thompson JR, Berger JP. Novel transcriptome profiling analyses demonstrate that selective peroxisome proliferator-activated receptor γ (PPARγ) modulators display attenuated and selective gene regulatory activity in comparison with PPARγ full agonists. Mol Pharmacol 2012; 82:68-79. [PMID: 22496518 DOI: 10.1124/mol.111.076679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expression-based scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Informatics and Analysis, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Han HO, Koh JS, Kim SH, Park OK, Kim KH, Jeon SK, Hur GC, Yim HJ, Kim GT. Design and Synthesis of Oxime Ethers of β-Oxo-γ-phenylbutanoic Acids as PPAR α and -γ Dual Agonists. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.6.1979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Jana M, Pahan K. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β. Neurochem Res 2012; 37:1718-29. [PMID: 22528839 DOI: 10.1007/s11064-012-0781-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 12/27/2022]
Abstract
Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug, in primary human microglia. Bacterial lipopolysachharides (LPS) induced the expression of various proinflammatory molecules and upregulated the expression of microglial surface marker CD11b in human microglia. However, gemfibrozil markedly suppressed proinflammatory molecules and CD11b in LPS-stimulated microglia. Human microglia expressed PPAR-β and -γ, but not PPAR-α. Interestingly, either antisense knockdown of PPAR-β or antagonism of PPAR-β by a specific chemical antagonist abrogated gemfibrozil-mediated inhibition of microglial activation. On the other hand, blocking of PPAR-α and -γ had no effect on gemfibrozil-mediated anti-inflammatory effect in microglia. These results highlight the fact that gemfibrozil regulates microglial activation by inhibiting inflammatory gene expression in a PPAR-β dependent pathway and further reinforce its therapeutic application in several neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St., Suite 320, Chicago, IL 60612, USA
| | | |
Collapse
|
71
|
Ham J, Hwang H, Kim E, Kim JA, Cho SJ, Ko J, Lee W, Lee J, Holla H, Banerjee J, Kim S, Yang I, Lee HJ, Shin K, Choi H, Nam SJ, Tak J, Hahn D, Oh T, Won DH, Lee TG, Choi J, Park MS, Seok C, Chin J, Kang H. Discovery, design and synthesis of Y-shaped peroxisome proliferator-activated receptor δ agonists as potent anti-obesity agents in vivo. Eur J Med Chem 2012; 53:190-202. [PMID: 22534184 DOI: 10.1016/j.ejmech.2012.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
We have discovered and demonstrated the in vitro and in vivo PPARδ-selective activity of novel Y-shaped agonists. These compounds activated hPPARδ with EC(50) values between 1 and 523 nM. Surprisingly, compounds 10a, 11d, 11e and 11f were the most potent and most selective hPPARδ agonists with 10(4)-fold selectivity over the other two subtypes, namely, hPPARα and hPPARγ. The PPARδ ligands 10a, 11e and 11f showed good bioavailability and in vivo efficacy.
Collapse
Affiliation(s)
- Jungyeob Ham
- Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul 151-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Peters JM, Foreman JE, Gonzalez FJ. Dissecting the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in colon, breast, and lung carcinogenesis. Cancer Metastasis Rev 2012; 30:619-40. [PMID: 22037942 DOI: 10.1007/s10555-011-9320-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a promising drug target since its agonists increase serum high-density lipoprotein; decrease low-density lipoprotein, triglycerides, and insulin associated with metabolic syndrome; improve insulin sensitivity; and decrease high fat diet-induced obesity. PPARβ/δ agonists also promote terminal differentiation and elicit anti-inflammatory activities in many cell types. However, it remains to be determined whether PPARβ/δ agonists can be developed as therapeutics because there are reports showing either pro- or anti-carcinogenic effects of PPARβ/δ in cancer models. This review examines studies reporting the role of PPARβ/δ in colon, breast, and lung cancers. The prevailing evidence would suggest that targeting PPARβ/δ is not only safe but could have anti-carcinogenic protective effects.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
73
|
Choi JM, Bothwell AL. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells 2012; 33:217-22. [PMID: 22382683 PMCID: PMC3887706 DOI: 10.1007/s10059-012-2297-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/22/2012] [Accepted: 02/09/2012] [Indexed: 01/12/2023] Open
Abstract
Members of the nuclear receptor superfamily function as transcription factors involved in innate and adaptive immunity as well as lipid metabolism. These highly conserved proteins participate in ligand-dependent or -independent regulatory mechanisms that affect gene expression. Peroxisome proliferator-activated receptors (PPARs), which include PPARα, PPARβ/δ, and PPARΓ, are a group of nuclear receptor proteins that play diverse roles in cellular differentiation, development, and metabolism. Each PPAR subfamily is activated by different endogenous and synthetic ligands. Recent studies using specific ligand treatments and cell type-specific PPAR knockout mice have revealed important roles for these proteins in T-cell-related autoimmune diseases. Moreover, PPARs have been shown to regulate T-cell survival, activation, and CD4(+) T helper cell differentiation into the Th1, Th2, Th17, and Treg lineages. Here, we review the studies that provide insight into the important regulatory roles of PPARs in T-cell activation, survival, proliferation, differentiation, and autoimmune disease.
Collapse
Affiliation(s)
- Je-Min Choi
- Department of Life Science, Research Institute for Natural Sciences, Hanyang Universtiy, Seoul 133-791,
Korea
- Hanyang Biomedical Research Institute, Hanyang Universtiy, Seoul 133-791,
Korea
| | | |
Collapse
|
74
|
Salvadó L, Serrano-Marco L, Barroso E, Palomer X, Vázquez-Carrera M. Targeting PPARβ/δ for the treatment of type 2 diabetes mellitus. Expert Opin Ther Targets 2012; 16:209-23. [DOI: 10.1517/14728222.2012.658370] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
75
|
Peters JM, Morales JL, Gonzalez FJ. Modulation of gastrointestinal inflammation and colorectal tumorigenesis by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). ACTA ACUST UNITED AC 2011; 8:e85-e93. [PMID: 22611424 DOI: 10.1016/j.ddmec.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Critical physiological roles of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) include the regulation glucose and lipid homeostasis, cellular differentiation, and modulation of inflammation. The potential for targeting PPARβ/δ for the prevention and treatment of metabolic diseases or cancer, is compromised because of major inconsistencies in the literature. This is due primarily to uncertainty regarding the effect of PPARβ/δ and its activation on cell proliferation, apoptosis and cell survival. This review summarizes both the confirmed and conflicting mechanisms that have been described for PPARβ/δ and the potential for targeting this nuclear receptor for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA
| | | | | |
Collapse
|
76
|
Liu W, Lau F, Liu K, Wood HB, Zhou G, Chen Y, Li Y, Akiyama TE, Castriota G, Einstein M, Wang C, McCann ME, Doebber TW, Wu M, Chang CH, McNamara L, McKeever B, Mosley RT, Berger JP, Meinke PT. Benzimidazolones: a new class of selective peroxisome proliferator-activated receptor γ (PPARγ) modulators. J Med Chem 2011; 54:8541-54. [PMID: 22070604 DOI: 10.1021/jm201061j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of benzimidazolone carboxylic acids and oxazolidinediones were designed and synthesized in search of selective PPARγ modulators (SPPARγMs) as potential therapeutic agents for the treatment of type II diabetes mellitus (T2DM) with improved safety profiles relative to rosiglitazone and pioglitazone, the currently marketed PPARγ full agonist drugs. Structure-activity relationships of these potent and highly selective SPPARγMs were studied with a focus on their unique profiles as partial agonists or modulators. A variety of methods, such as X-ray crystallographic analysis, PPARγ transactivation coactivator profiling, gene expression profiling, and mutagenesis studies, were employed to reveal the differential interactions of these new analogues with PPARγ receptor in comparison to full agonists. In rodent models of T2DM, benzimidazolone analogues such as (5R)-5-(3-{[3-(5-methoxybenzisoxazol-3-yl)benzimidazol-1-yl]methyl}phenyl)-5-methyloxazolidinedione (51) demonstrated efficacy equivalent to that of rosiglitazone. Side effects, such as fluid retention and heart weight gain associated with PPARγ full agonists, were diminished with 51 in comparison to rosiglitazone based on studies in two independent animal models.
Collapse
Affiliation(s)
- Weiguo Liu
- Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Changes of peroxisome proliferator-activated receptor-γ on crushed rat sciatic nerves and differentiated primary Schwann cells. J Mol Neurosci 2011; 47:380-8. [PMID: 22094441 DOI: 10.1007/s12031-011-9662-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 09/30/2011] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has been found to play an essential role in cell proliferation, but whether it was involved in Schwann cells differentiation has never been studied. We have found in sciatic nerve injury that expression of PPAR-γ decreases mainly in Schwann cells, and it was also increased in differentiated Schwann cells. Further, activated PPAR-γ by the endogenous ligand 15 d-PGJ(2) increased expressions of PPAR-γ level and Schwann cell differentiation, and this effect may be protected by its antagonist GDW9662. These results indicate that PPAR-γ could promote Schwann cell differentiation, which plays an important role in peripheral nerve injury and regeneration.
Collapse
|
78
|
Haus P, Korbus M, Schröder M, Meyer-Almes FJ. Identification of Selective Class II Histone Deacetylase Inhibitors Using a Novel Dual-Parameter Binding Assay Based on Fluorescence Anisotropy and Lifetime. ACTA ACUST UNITED AC 2011; 16:1206-16. [DOI: 10.1177/1087057111424605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone deacetylases (HDACs) are important epigenetic factors regulating a variety of vital cellular functions such as cell cycle progression, differentiation, cell migration, and apoptosis. Consequently, HDACs have emerged as promising targets for cancer therapy. The drugability of HDACs has been shown by the discovery of several structural classes of inhibitors (HDACis), particularly by the recent approval of two HDACis, vorinostat (ZOLINZA) and romidepsin (Istodax), for the treatment of cutaneous T-cell lymphoma by the US Food and Drug Administration. The outstanding potential of HDACis, with a defined isoform selectivity profile as drugs against a plurality of diseases, vindicates increased effort in developing high-throughput capable assays for screening campaigns. In this study, a dual-competition assay exploiting changes in fluorescence anisotropy and lifetime was used to screen the LOPAC (Sigma-Aldrich, St Louis, MO) library against the bacterial histone deacetylase homologue HDAH from Bordetella, which shares 35% identity with the second deacetylase domain of HDAC6. The binding assay proved to be highly suitable for high-throughput screening campaigns. Several LOPAC compounds have been identified to inhibit HDAH in the lower micromolar range. Most interestingly, some of the hit compounds turned out to be weak but selective inhibitors of human class IIa and IIb HDACs.
Collapse
Affiliation(s)
- Patricia Haus
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| | - Michael Korbus
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| | - Michael Schröder
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Darmstadt, Germany
| |
Collapse
|
79
|
Toth PM, Naruhn S, Pape VFS, Dörr SMA, Klebe G, Müller R, Diederich WE. Development of improved PPARβ/δ inhibitors. ChemMedChem 2011; 7:159-70. [PMID: 22025402 DOI: 10.1002/cmdc.201100408] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 11/08/2022]
Abstract
GSK0660 (1) is the first peroxisome proliferator-activated receptor (PPAR) β/δ-selective inhibitory ligand described in the literature. Based on its structure, we designed and synthesized a series of modified compounds to establish preliminary structure-activity relationships. Most beneficial for increased binding affinity towards the PPARβ/δ ligand binding domain was the replacement of the 4'-aminophenyl substituent by medium-length n-alkyl chains, such as n-butyl or iso-pentyl. These compounds show activity down to the one-digit nanomolar range, thus possessing up to a tenfold higher binding affinity compared with GSK0660. Additionally, the subtype-specific inhibition of PPARβ/δ was confirmed in a cell-based assay making these compounds invaluable tools for the further exploration of the functions of PPARβ/δ.
Collapse
Affiliation(s)
- Philipp M Toth
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Saraf N, Sharma PK, Mondal SC, Garg VK, Singh AK. Role of PPARg2 transcription factor in thiazolidinedione-induced insulin sensitization. ACTA ACUST UNITED AC 2011; 64:161-71. [PMID: 22221092 DOI: 10.1111/j.2042-7158.2011.01366.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Adipose tissue is the key regulator of energy balance, playing an active role in lipid storage and metabolism and may be a dynamic buffer to control fatty acid flux. Peroxisome proliferator-activated receptor gamma isoform-2 (PPARg2), an isoform of the nuclear hormone receptor superfamily, has been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance, type-2 diabetes and dyslipidaemia. The PPARg2 isoform is highly present in adipose tissue where it functions as a thrifty phenotype, which promotes adipocyte differentiation and triglyceride storage. Thiazolidinediones, antidiabetic drugs, induce insulin sensitivity by controlling adipokines. The thiazolidinediones bind with PPARg2 in adipocytes and exert an agonist effect by enhancing adipogenesis and fatty acid uptake. Thiazolidinediones stimulate PPARg2, by which they down-regulate tumour necrosis factor-α, leptin, interleukin-6 and plasminogen and also enhance insulin sensitivity. The aim of this work is to define role of PPARg2 transcription factor in thiazolidinedione-induced insulin sensitization. KEY FINDINGS The PPARg2 alters the transcription of the target gene. This altered gene transcription results in the up-regulation of insulin-sensitizing factors and down-regulation of insulin-resistant factors. The variant Pro12Ala of the PPARg2 gene is an important modulator in metabolic control in the body. Thiazolidinediones stimulate PPARg2 transcription factor by which PPARg2 binds to responsive elements located in the promoter regions of many genes and modulates their transcriptive activity. There is a strong mutual relationship between receptor binding and agonism, which is evidence of the insulin-sensitizing target of thiazolidinediones in PPARg2. This evidently increases the biological potency of the glucose-lowering effect of thiazolidinediones in vivo as well as their antidiabetic activity. CONCLUSIONS PPARg2 transcription factor plays an important role in treatment of type-2 diabetes with thiazolidindiones. The variant Pro12Ala of the PPARg2 gene promotes the activity of thiazolidinediones in minimizing insulin resistance. Transcriptional activity of Pro12Ala variant improves the activity of insulin. Thus thiazolidinediones promote the phosphorylation of PPARg2 to induce insulin sensitivity.
Collapse
Affiliation(s)
- Neha Saraf
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut (UP), India.
| | | | | | | | | |
Collapse
|
81
|
Vacca M, Degirolamo C, Mariani-Costantini R, Palasciano G, Moschetta A. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:562-87. [PMID: 21755605 DOI: 10.1002/wsbm.137] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MS) is a cluster of different diseases, namely central obesity, hypertension, hyperglycemia, and dyslipidemia, together with a pro-thrombotic and pro-inflammatory state. These metabolic abnormalities are often associated with an increased risk for cardiovascular disease (CVD) and cancer. Dietary and lifestyle modifications are currently believed more effective than pharmacological therapies in the management of MS patients. Nevertheless, the relatively low grade of compliance of patients to these recommendations, as well as the failure of current therapies, highlights the need for the discovery of new pharmacological and nutraceutic approaches. A deeper knowledge of the patho-physiological events that initiate and support the MS is mandatory. Lipid-sensing nuclear receptors (NRs) are the master transcriptional regulators of lipid and carbohydrate metabolism and inflammatory responses, thus standing as suitable targets. This review focuses on the physiological relevance of the NRs (peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor) in the control of whole-body homeostasis, with a special emphasis on lipid and glucose metabolism, and on the relationships between metabolic unbalances, systemic inflammation, and the onset of CVD. Future perspectives and possible clinical applications are also presented.
Collapse
Affiliation(s)
- Michele Vacca
- Clinica Medica Augusto Murri, Aldo Moro University of Bari, and Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | | | | | | | | |
Collapse
|
82
|
Windisch HS, Kathöver R, Pörtner HO, Frickenhaus S, Lucassen M. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1453-66. [PMID: 21865546 DOI: 10.1152/ajpregu.00158.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout (Pachycara brachycephalum) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.
Collapse
|
83
|
Unique mode of lipogenic activation in rat preputial sebocytes. J Nutr Metab 2011; 2011:163631. [PMID: 21808727 PMCID: PMC3144693 DOI: 10.1155/2011/163631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/27/2011] [Indexed: 02/02/2023] Open
Abstract
Lipoprotein delivery of fatty acids and cholesterol is linked with peroxisome proliferator-activated receptor (PPAR) activation in adipocytes and macrophages. We postulated that similar interactions exist in sebaceous epithelial cells (sebocytes) in which PPAR activation induces differentiation. High-density lipoprotein (HDL) and very low-density lipoprotein (VLDL) markedly enhanced sebocyte differentiation above that found with PPAR agonists and were more potent than explicable by their lipid content. The PPARγ antagonist GW5393 reduced sebocyte differentiation to all PPAR isoform agonists, HDL and VLDL, suggesting that the lipoprotein effect on differentiation occurs partially through activation of PPARγ. Furthermore, we found that sebocytes expressed a unique pattern of lipogenic genes. Our results demonstrate that HDL and VLDL are the most potent inducers of sebocyte differentiation tested to date, and these actions are partially inhibited by PPAR antagonists. This suggests that substrates provided by lipoproteins are targeted to sebocytes and affect their own disposition via PPAR activation.
Collapse
|
84
|
Liu A, Yang J, Zhao X, Jiao X, Zhao W, Ma Q, Tang Z, Dai R. Induction of P450 3A1/2 and 2C6 by gemfibrozil in Sprague-Dawley rats. Pharmacol Rep 2011; 63:157-64. [PMID: 21441623 DOI: 10.1016/s1734-1140(11)70410-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/30/2010] [Indexed: 10/25/2022]
Abstract
Fibrates are a group of peroxisome proliferator-activated receptor α agonists used in the treatment of dyslipidemia; however, they have been reported to cause species-related hepatocarcinogenesis and clinical myotoxicity. Gemfibrozil is one of the most commonly used fibrates, and it shows the highest risk for myotoxicity among the fibrates. The inhibitory drug-drug interaction mechanism associated with gemfibrozil has been explored recently, and the induction of human P450 3A4 and 2C8 has been reported. In this study, in vivo induction of rat P450 by gemfibrozil was studied in Sprague-Dawley rats. After the rats were dosed with gemfibrozil by oral gavage, microsomes were prepared. The metabolic activities of P450 3A1/2, 2C6, and 2D2 were assayed using probe substrates, and the systemic concentration of gemfibrozil during its administration was determined. P450 3A1/2 and 2C6 activities were induced 32-77% in the rats by gemfibrozil when the exposure concentration was in the clinical range. These data indicate that the inducibility of homologous P450 isoforms by gemfibrozil is similar in Sprague-Dawley rats and in humans. Inductive drug-drug interactions and inhibitory actions are involved in the co-administration of gemfibrozil with other drugs, which suggests the relevance for a fibrate-toxicology investigation.
Collapse
Affiliation(s)
- Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Peroxisome proliferator activated receptors and lipoprotein metabolism. PPAR Res 2011; 2008:132960. [PMID: 18288277 PMCID: PMC2220040 DOI: 10.1155/2008/132960] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 09/03/2007] [Indexed: 12/24/2022] Open
Abstract
Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs). Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARalpha is the molecular target for the fibrate class of drugs. Activation of PPARalpha in mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL)-cholesterol levels are increased upon PPARalpha activation in humans. PPARgamma is the molecular target for the thiazolidinedione class of drugs. Activation of PPARgamma in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to PPARalpha, activation of PPARbeta/delta leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper, a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels.
Collapse
|
86
|
Vidović D, Busby SA, Griffin PR, Schürer SC. A combined ligand- and structure-based virtual screening protocol identifies submicromolar PPARγ partial agonists. ChemMedChem 2011; 6:94-103. [PMID: 21162086 DOI: 10.1002/cmdc.201000428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is involved in expression of genes that control glucose and lipid metabolism. PPARγ is the molecular target of the thiazolidinedione (TZD) class of antidiabetic drugs. However, despite their clinical use these drugs are associated with numerous adverse effects, which are related to their full activation of PPARγ transcriptional responses. PPARγ partial agonists are the focus of development efforts towards second-generation PPARγ modulators with favorable pharmacology, potent insulin sensitization without the severe full agonists' adverse effects. In order to identify novel PPARγ partial agonist lead compounds, we developed a virtual screening protocol based on three-dimensional ligand-shape similarity and docking. Prioritization gave 235 compounds for experimental screening from the National Institutes of Health (NIH) Molecular Libraries Small Molecule Repository (MLSMR)-a chemical library containing 340 000 compounds. Seven novel potent partial agonists were confirmed in cell-based transactivation and competitive binding assays. Our results illustrate a well-designed virtual screening campaign successfully identifying novel lead compounds as potential entry points for the development of antidiabetic drugs.
Collapse
Affiliation(s)
- Dušica Vidović
- Center for Computational Science, University of Miami, FL 33136, USA
| | | | | | | |
Collapse
|
87
|
Sakuma S, Endo T, Kanda T, Nakamura H, Yamasaki S, Yamakawa T. Biological evaluation of novel benzisoxazole derivatives as PPARδ agonists. Bioorg Med Chem 2011; 19:3255-64. [DOI: 10.1016/j.bmc.2011.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/19/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
|
88
|
Liang YJ, Chen SA, Jian JH. Peroxisome proliferator-activated receptor δ downregulates the expression of the receptor for advanced glycation end products and pro-inflammatory cytokines in the kidney of streptozotocin-induced diabetic mice. Eur J Pharm Sci 2011; 43:65-70. [PMID: 21458563 DOI: 10.1016/j.ejps.2011.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/21/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
Activation of peroxisome proliferator-activated receptor δ (PPARδ) plays board beneficial effects in treating metabolic syndrome. The aim of this study is to examine whether PPARδ alters the expression of the receptor for advanced glycation end products (RAGE) and downstream pro-inflammatory cytokines in diabetic nephropathy. Streptozotocin-induced diabetic mice (STZ mice) were injected with a PPARδ agonist, L-165041 (5 μM/kg, intraperitoneal) once daily for 10 days and high glucose-treated cultured HEK cells were also used. After L-165041 treatment, serum TNFα, IL-6 and IL-1 levels were significantly decreased in STZ mice. RAGE mRNA and protein expression were both decreased by L-165041 in kidney tissues of STZ mice. The high glucose incubation increased NF-κB, RAGE and IL-6 expressions in HEK293 cells. These effects were inhibited by L-165041 and specific RAGE siRNA transfection. This study demonstrated that PPARδ may play a beneficial role in preventing diabetic nephropathy. Its downstream signaling may include RAGE and NF-κB pathway. Target on PPARδ will provide new meaningful therapies to patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan, ROC.
| | | | | |
Collapse
|
89
|
PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1007-22. [PMID: 21382489 PMCID: PMC3117990 DOI: 10.1016/j.bbadis.2011.02.014] [Citation(s) in RCA: 636] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 01/03/2023]
Abstract
Cells are constantly exposed to a large variety of lipids. Traditionally, these molecules were thought to serve as simple energy storing molecules. More recently it has been realized that they can also initiate and regulate signaling events that will decisively influence development, cellular differentiation, metabolism and related functions through the regulation of gene expression. Multicellular organisms dedicate a large family of nuclear receptors to these tasks. These proteins combine the defining features of both transcription factors and receptor molecules, and therefore have the unique ability of being able to bind lipid signaling molecules and transduce the appropriate signals derived from lipid environment to the level of gene expression. Intriguingly, the members of a subfamily of the nuclear receptors, the peroxisome proliferator-activated receptors (PPARs) are able to sense and interpret fatty acid signals derived from dietary lipids, pathogenic lipoproteins or essential fatty acid metabolites. Not surprisingly, Peroxisome proliferator-activated receptors were found to be key regulators of lipid and carbohydrate metabolism. Unexpectedly, later studies revealed that Peroxisome proliferator-activated receptors are also able to modulate inflammatory responses. Here we summarize our understanding on how these transcription factors/receptors connect lipid metabolism to inflammation and some of the novel regulatory mechanisms by which they contribute to homeostasis and certain pathological conditions. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
90
|
Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 2011; 120 Suppl 1:S49-75. [PMID: 21059794 PMCID: PMC3145385 DOI: 10.1093/toxsci/kfq338] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/01/2010] [Indexed: 02/07/2023] Open
Abstract
To commemorate the 50th anniversary of the Society of Toxicology, this special edition article reviews the history and current scope of xenobiotic metabolism and transport, with special emphasis on the discoveries and impact of selected "xenobiotic receptors." This overall research realm has witnessed dynamic development in the past 50 years, and several of the key milestone events that mark the impressive progress in these areas of toxicological sciences are highlighted. From the initial observations regarding aspects of drug metabolism dating from the mid- to late 1800's, the area of biotransformation research witnessed seminal discoveries in the mid-1900's and onward that are remarkable in retrospect, including the discovery and characterization of the phase I monooxygenases, the cytochrome P450s. Further research uncovered many aspects of the biochemistry of xenobiotic metabolism, expanding to phase II conjugation and phase III xenobiotic transport. This led to hallmark developments involving integration of genomic technologies to elucidate the basis for interindividual differences in response to xenobiotic exposures and discovery of nuclear and soluble receptor families that selectively "sense" the chemical milieu of the mammalian cell and orchestrate compensatory changes in gene expression programming to accommodate complex xenobiotic exposures. This review will briefly summarize these developments and investigate the expanding roles of xenobiotic receptor biology in the underlying basis of toxicological response to chemical agents.
Collapse
Affiliation(s)
- Curtis J Omiecinski
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
91
|
Liu A, Yang J, Gonzalez FJ, Cheng GQ, Dai R. Biphasic regulation of intracellular calcium by gemfibrozil contributes to inhibiting L6 myoblast differentiation: implications for clinical myotoxicity. Chem Res Toxicol 2011; 24:229-37. [PMID: 21175127 PMCID: PMC6631347 DOI: 10.1021/tx100312h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.
Collapse
Affiliation(s)
- Aiming Liu
- South China University of Technology, Guangzhou 510641, China
- Medical School of Ningbo University, Ningbo 315211, China
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo 315100, China
| | - Frank J. Gonzalez
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gary Q. Cheng
- South China Center for Innovative Pharmaceuticals, Guangzhou 510006, China
| | - Renke Dai
- South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
92
|
Uemura T, Hirai S, Mizoguchi N, Goto T, Lee JY, Taketani K, Nakano Y, Shono J, Hoshino S, Tsuge N, Narukami T, Takahashi N, Kawada T. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Mol Nutr Food Res 2011; 54:1596-608. [PMID: 20540147 DOI: 10.1002/mnfr.200900609] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In obesity, adipocyte hypertrophy and chronic inflammation in adipose tissues cause insulin resistance and type-2 diabetes. Trigonella foenum-graecum (fenugreek) can ameliorate hyperglycemia and diabetes. However, the effects of fenugreek on adipocyte size and inflammation in adipose tissues have not been demonstrated. In this study, we determined the effects of fenugreek on adipocyte size and inflammation in adipose tissues in diabetic obese KK-Ay mice, and identified the active substance in fenugreek. Treatment of KK-Ay mice with a high fat diet supplemented with 2% fenugreek ameliorated diabetes. Moreover, fenugreek miniaturized the adipocytes and increased the mRNA expression levels of differentiation-related genes in adipose tissues. Fenugreek also inhibited macrophage infiltration into adipose tissues and decreased the mRNA expression levels of inflammatory genes. In addition, we identified diosgenin, a major aglycone of saponins in fenugreek to promote adipocyte differentiation and to inhibit expressions of several molecular candidates associated with inflammation in 3T3-L1 cells. These results suggest that fenugreek ameliorated diabetes by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues, and its effects are mediated by diosgenin. Fenugreek containing diosgenin may be useful for ameliorating the glucose metabolic disorder associated with obesity.
Collapse
Affiliation(s)
- Taku Uemura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Choi SS, Cha BY, Iida K, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT. Artepillin C, as a PPARγ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochem Pharmacol 2011; 81:925-33. [PMID: 21219874 DOI: 10.1016/j.bcp.2011.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 01/01/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ plays an important role in adipocyte differentiation. Its ligands, including thiazolidinediones, improve insulin sensitivity in type 2 diabetes. We investigated the effects of artepillin C, an ingredient of Baccharis dracunculifolia, on adipogenesis and glucose uptake using 3T3-L1 cells. In PPARγ ligand-binding assays, artepillin C exhibited binding affinity toward PPARγ. Artepillin C dose-dependently enhanced adipocyte differentiation of 3T3-L1 cells. As a result of the artepillin C-induced adipocyte differentiation, the gene expression of PPARγ and its target genes, such as aP2, adiponectin and glucose transporter (GLUT) 4, was increased. These increases were abolished by cotreatment with GW9662, a PPARγ antagonist. In mature 3T3-L1 adipocytes, artepillin C significantly enhanced the basal and insulin-stimulated glucose uptake. These effects were decreased by cotreatment with a PI3K inhibitor. Although artepillin C had no effects on the insulin signaling cascade, artepillin C enhanced the expression and plasma membrane translocation of GLUT1 and GLUT4 in mature adipocytes. In conclusion, these findings suggest that artepillin C promotes adipocyte differentiation and glucose uptake in part by direct binding to PPARγ, which could be the basis of the pharmacological benefits of green propolis intake in reducing the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Sil Choi
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Sakuma S, Endo T, Kanda T, Nakamura H, Yamasaki S, Yamakawa T. Synthesis of a novel human PPARδ selective agonist and its stimulatory effect on oligodendrocyte differentiation. Bioorg Med Chem Lett 2010; 21:240-4. [PMID: 21112784 DOI: 10.1016/j.bmcl.2010.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 11/27/2022]
Abstract
We successfully synthesized a novel peroxisome proliferator-activated receptor (PPAR)δ selective agonist, namely, compound 20, with a characteristic benzisoxazole ring. Compound 20 exhibited potent human PPARδ transactivation activity and high δ selectivity. Further, it stimulated differentiation of primary oligodendrocyte precursor cells in vitro, indicating that it may be an effective drug in the treatment of demyelinating disorders such as multiple sclerosis.
Collapse
Affiliation(s)
- Shogo Sakuma
- Discovery Research Laboratories, Nippon Chemiphar Co Ltd, 1-22, Hikokawado, Misato, Saitama 341-0005, Japan.
| | | | | | | | | | | |
Collapse
|
95
|
The Role of Peroxisome Proliferator-Activated Receptor beta/delta on the Inflammatory Basis of Metabolic Disease. PPAR Res 2010; 2010. [PMID: 20706688 PMCID: PMC2913795 DOI: 10.1155/2010/368467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/28/2010] [Indexed: 01/04/2023] Open
Abstract
The pathophysiology underlying several metabolic diseases, such as obesity, type 2 diabetes mellitus, and atherosclerosis, involves a state of chronic low-level inflammation. Evidence is now emerging that the nuclear receptor Peroxisome Proliferator-Activated Receptor (PPAR)β/δ ameliorates these pathologies partly through its anti-inflammatory effects. PPARβ/δ activation prevents the production of inflammatory cytokines by adipocytes, and it is involved in the acquisition of the anti-inflammatory phenotype of macrophages infiltrated in adipose tissue. Furthermore, PPARβ/δ ligands prevent fatty acid-induced inflammation in skeletal muscle cells, avoid the development of cardiac hypertrophy, and suppress macrophage-derived inflammation in atherosclerosis. These data are promising and suggest that PPARβ/δ ligands may become a therapeutic option for preventing the inflammatory basis of metabolic diseases.
Collapse
|
96
|
Kim HJ, Kim MY, Hwang JS, Kim HJ, Lee JH, Chang KC, Kim JH, Han CW, Kim JH, Seo HG. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra. Cell Mol Life Sci 2010; 67:2119-30. [PMID: 20221783 PMCID: PMC11115654 DOI: 10.1007/s00018-010-0328-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/07/2010] [Accepted: 02/19/2010] [Indexed: 11/26/2022]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- H. J. Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - M. Y. Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - J. S. Hwang
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - H. J. Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - J. H. Lee
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - K. C. Chang
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| | - J. -H. Kim
- Department of Animal Biotechnology, Kon-Kuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 Korea
| | - C. W. Han
- Department of Oriental Internal Medicine, College of Oriental Medicine, Kyung-Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701 Korea
| | - J.-H. Kim
- Department of Biomedical Science, CHA Stem Cell Institute, College of Life Science, CHA University, Pochon-si, Gyeonggi-do, 487-010 Korea
| | - H. G. Seo
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, 92 Chilam-Dong, Jinju, 660-751 Korea
| |
Collapse
|
97
|
Lalloyer F, Staels B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 2010; 30:894-9. [PMID: 20393155 DOI: 10.1161/atvbaha.108.179689] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several decades ago, fibrates were approved for the treatment of dyslipidemia, whereas thiazolidinediones were screened in animal models to improve glucose homeostasis and were subsequently developed for the treatment of type 2 diabetes mellitus. Relatively recently, these drugs were found to act via peroxisome proliferator-activated receptors, nuclear receptors that control lipid metabolism and glucose homeostasis. In this historical perspective, we discuss the history of discovery of the peroxisome proliferator-activated receptors, from the clinical development of their agonists to the subsequent discovery of these receptors and their mechanisms of action, to finally evoke possibilities of targeted pharmacology for future development of selective peroxisome proliferator-activated receptor modulators.
Collapse
|
98
|
Christodoulides C, Vidal-Puig A. PPARs and adipocyte function. Mol Cell Endocrinol 2010; 318:61-8. [PMID: 19772894 DOI: 10.1016/j.mce.2009.09.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/11/2022]
Abstract
For long viewed as passive lipid storage depots, adipocytes are now recognised as key players in the pathogenesis of insulin resistance and metabolic disease. In parallel, the last two decades of research have seen the emergence of transcription factors of the peroxisome proliferator-activated receptor (PPAR) family as central regulators of lipid and glucose homeostasis and molecular targets for drugs to treat hyper-lipidaemia and type 2 diabetes mellitus. In this review we discuss the characteristics of PPARs and the role of the different isotypes in adipocyte biology.
Collapse
|
99
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
100
|
Hein GJ, Bernasconi AM, Montanaro MA, Pellon-Maison M, Finarelli G, Chicco A, Lombardo YB, Brenner RR. Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsaturated fatty acids. Am J Physiol Endocrinol Metab 2010; 298:E429-39. [PMID: 19952344 DOI: 10.1152/ajpendo.00513.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A sucrose-rich diet (SRD), compared with a starch diet, induces time-dependent metabolic disorders and insulin resistance with hypertriglyceridemia, similar to type 2 diabetes. In this study, we examined the effect of SRD, after 8 mo, on nuclear receptors peroxisome proliferator-activated receptor-alpha (PPARalpha), and liver X receptor-alpha (LXRalpha), stearoyl-CoA desaturase-1 (SCD-1), and Delta6 and Delta5 desaturases mRNA and activity, hepatic enzymes involved in lipid metabolism, and fatty acid (FA) composition as well as the reversal produced by cod liver oil. SRD induced triglyceride increase in plasma and liver, increasing the anabolic FA synthase, malic enzyme, and glucose-6-phosphate dehydrogenase, but not the prooxidative enzymes FA oxidase and carnitine palmitoyltransferase I, and correspondingly decreased PPARalpha and increased LXRalpha expressions. Results suggest a contribution of both nuclear receptors' interaction on these enzymatic activities. SRD depressed SCD-1 without altering oleic acid proportion and increased Delta6 and Delta5 desaturases and the proportion of n-6 arachidonic acid. Therefore, the data do not support that SRD hypertriglyceridemia is produced by increased SCD-1-dependent oleic acid biosynthesis. The administration of 7% cod liver oil for 2 mo depressed LXRalpha, enhancing PPARalpha in control and SRD-fed rats, reversing the activity of the hepatic enzymes involved in lipid metabolism and therefore the hyperlipidemia produced by the SRD. Fish oil increased n-3 PUFA and depressed n-6 PUFA of liver lipids without altering the 18:1/18:0 ratio, suggesting that its effects were produced mainly by competition of dietary n-6 and n-3 FA and not through desaturase activity modification.
Collapse
Affiliation(s)
- Gustavo J Hein
- Departamento de Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | | | | | | | | | |
Collapse
|