51
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Carbonyl Stress in Bacteria: Causes and Consequences. BIOCHEMISTRY (MOSCOW) 2016; 80:1655-71. [PMID: 26878572 DOI: 10.1134/s0006297915130039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pathways of synthesis of the α-reactive carbonyl compound methylglyoxal (MG) in prokaryotes are described in this review. Accumulation of MG leads to development of carbonyl stress. Some pathways of MG formation are similar for both pro- and eukaryotes, but there are reactions specific for prokaryotes, e.g. the methylglyoxal synthase reaction. This reaction and the glyoxalase system constitute an alternative pathway of glucose catabolism - the MG shunt not associated with the synthesis of ATP. In violation of the regulation of metabolism, the cell uses MG shunt as well as other glycolysis shunting pathways and futile cycles enabling stabilization of its energetic status. MG was first examined as a biologically active metabolic factor participating in the formation of phenotypic polymorphism and hyperpersistent potential of bacterial populations. The study of carbonyl stress is interesting for evolutionary biology and can be useful for constructing highly effective producer strains.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
52
|
Shepherd M, Achard MES, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep 2016; 6:35285. [PMID: 27767067 PMCID: PMC5073308 DOI: 10.1038/srep35285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract.
Collapse
Affiliation(s)
- Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Maud E S Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adi Idris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cláudia A Ribeiro
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Louise V Holyoake
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Dimitrios Ladakis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
53
|
Brigelius-Flohé R. Mixed results with mixed disulfides. Arch Biochem Biophys 2016; 595:81-7. [PMID: 27095221 DOI: 10.1016/j.abb.2015.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/03/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022]
Abstract
A period of research with Helmut Sies in the 1980s is recalled. Our experiments aimed at an in-depth understanding of metabolic changes due to oxidative challenges under near-physiological conditions, i.e. perfused organs. A major focus were alterations of the glutathione and the NADPH/NADP(+) system by different kinds of oxidants, in particular formation of glutathione mixed disulfides with proteins. To analyze mixed disulfides, a test was adapted which is widely used until today. The observations in perfused rat livers let us believe that glutathione-6-phosphate dehydrogenase (G6PDH), i.a. might be activated by glutathionylation. Although we did not succeed to verify this hypothesis for the special case of G6PDH, the regulation of enzyme/protein activities by glutathionylation today is an accepted posttranslational mechanism in redox biology in general. Our early experimental approaches are discussed in the context of present knowledge.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
54
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
55
|
Wang J, Sevier CS. Formation and Reversibility of BiP Protein Cysteine Oxidation Facilitate Cell Survival during and post Oxidative Stress. J Biol Chem 2016; 291:7541-57. [PMID: 26865632 DOI: 10.1074/jbc.m115.694810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
Redox fluctuations within cells can be detrimental to cell function. To gain insight into how cells normally buffer against redox changes to maintain cell function, we have focused on elucidating the signaling pathways that serve to sense and respond to oxidative redox stress within the endoplasmic reticulum (ER) using yeast as a model system. Previously, we have shown that a cysteine in the molecular chaperone BiP, a Hsp70 molecular chaperone within the ER, is susceptible to oxidation by peroxide during ER-derived oxidative stress, forming a sulfenic acid (-SOH) moiety. Here, we demonstrate that this same conserved BiP cysteine is susceptible also to glutathione modification (-SSG). Glutathionylated BiP is detected both as a consequence of enhanced levels of cellular peroxide and also as a by-product of increased levels of oxidized glutathione (GSSG). Similar to sulfenylation, we observe glutathionylation decouples BiP ATPase and peptide binding activities, turning BiP from an ATP-dependent foldase into an ATP-independent holdase. We show glutathionylation enhances cell proliferation during oxidative stress, which we suggest relates to modified BiP's increased ability to limit polypeptide aggregation. We propose the susceptibility of BiP to modification with glutathione may serve also to prevent irreversible oxidation of BiP by peroxide.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Carolyn S Sevier
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
56
|
Abstract
The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
57
|
Liu Z, Song G, Zou C, Liu G, Wu W, Yuan T, Liu X. Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells. Free Radic Biol Med 2015; 84:42-53. [PMID: 25817051 DOI: 10.1016/j.freeradbiomed.2015.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Acrylamide (ACR), a potent neurotoxin, can be produced during food processing at high temperature. This study examined the redox-dependent apoptotic and inflammatory responses of ACR in an immortalized mouse microglia cell line BV2. The exposure of BV2 cells to ACR reduced cell viability and induced apoptosis in a concentration-dependent manner. ACR impaired cell energy metabolism by decreasing mitochondrial respiration, anaerobic glycolysis, and lowering expression of the complex I, III, and IV subunits. Mitochondrial dysfunction was associated with a decrease of the mitochondrial membrane potential and the Bcl-2/Bax ratio, thus resulting in activation of the mitochondrion-driven apoptotic signaling. This was accompanied by (a) the modulation of redox-sensitive signaling, suppressed Akt activation and increased JNK and p38 activation, and (b) increased expression of NFκB and downstream inducible nitric oxide synthase (iNOS) and nitric oxide generation, thus supporting indirectly a proinflammatory effect of ACR. Nrf2 expression was also increased but not its translocation to the nucleus. Expectedly, the electrophilic attack of ACR on GSH resulted in substantial loss of GSH with a minor GSSG formation. These changes in the cell׳s redox status elicited by ACR resulted in increased H2O2 formation. The changes in mitochondrial functionality and complex subunit expression caused by ACR were reversed by N-acetyl-L-cysteine (NAC). Likewise, NAC restored the cell׳s redox status by increasing GSH levels with concomitant attenuation of H2O2 generation; these effects resulted in decreased apoptotic cell death and inflammatory responses. ACR-mediated mitochondrial dysfunction along with a more oxidized redox status seems to be critical events leading to activation of the intrinsic apoptotic pathway and inflammatory responses.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Ge Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chen Zou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Gongguan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wanqiang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tian Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
58
|
Olumuyiwa-Akeredolu OOO, Pretorius E. Platelet and red blood cell interactions and their role in rheumatoid arthritis. Rheumatol Int 2015; 35:1955-64. [PMID: 26059943 DOI: 10.1007/s00296-015-3300-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
Abstract
Cytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes. Of late, certain RBC-associated factors with previously obscure roles and cell-derived particles thought to be inconsequential to the other constituents of plasma were found to be active biomolecular players. Several of these have been discovered to be present in or originating from RBCs. Their influences have been shown to involve in membrane dynamics that cause structural and functional changes in both platelets and RBCs. RBC-derived microparticles are emerging entities found to play direct roles in immunomodulation via interactions with other plasma cells. These correlations highlight the direct influences of RBCs on exacerbating RA pathology. This review will attempt to shed more light on how RBCs, in the true inflammatory milieu of RA, are playing an even greater role than previously assumed.
Collapse
Affiliation(s)
- Oore-Ofe O Olumuyiwa-Akeredolu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
59
|
Takeda T, Fukui Y. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium. Biosci Biotechnol Biochem 2015; 79:1579-86. [PMID: 25988618 DOI: 10.1080/09168451.2015.1045826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We explored functional significance of selenium (Se) in Arabidopsis physiology. Se at very low concentrations in cultivation exerted a considerable positive effect on Arabidopsis growth with no indication of oxidative stress, whereas Se at higher concentrations significantly suppressed the growth and brought serious oxidative damage. Respiration, ATP levels, and the activity of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD-GAPDH) were enhanced in Arabidopsis grown in the medium containing 1.0 μM Se. Addition of an inhibitor of glutathione (GSH) synthesis to the medium abolished both of the Se-dependent growth promotion and NAD-GAPDH up-regulation. Assay of NAD-GAPDH purified from seedlings subjected to Se interventions raised the possibility of a direct connection between the activity of this enzyme and Arabidopsis growth. These results reveal that trace amounts of Se accelerate Arabidopsis growth, and suggest that this pro-growth effect of Se arises enhancing mitochondrial performance in a GSH-dependent manner, in which NAD-GAPDH may serve as a key regulator.
Collapse
Affiliation(s)
- Toru Takeda
- a Faculty of Agriculture, Department of Advanced Bioscience , Kinki University , Nara , Japan
| | | |
Collapse
|
60
|
Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12:10-22. [PMID: 25859407 PMCID: PMC4383849 DOI: 10.7497/j.issn.2095-3941.2014.0019] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/26/2014] [Indexed: 02/04/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
Collapse
Affiliation(s)
- Jin-Ying Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fan Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chao-Qun Hong
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao-Jiang Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guang-Ji Zhou
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guo-Jun Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yu-Kun Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
61
|
Chang CF, Diers AR, Hogg N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic Biol Med 2015; 79:324-36. [PMID: 25464273 PMCID: PMC5275750 DOI: 10.1016/j.freeradbiomed.2014.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Anne R Diers
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
62
|
Landino LM, Hagedorn TD, Kennett KL. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase. Cytoskeleton (Hoboken) 2015; 71:707-18. [PMID: 25545749 DOI: 10.1002/cm.21204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/29/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022]
Abstract
While thiol redox reactions are a common mechanism to regulate protein structure and function, protein disulfide bond formation is a marker of oxidative stress that has been linked to neurodegeneration. Both tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contain multiple cysteines that have been identified as targets for oxidation to disulfides, S-nitrosation and S-glutathionylation. We show that GAPDH is one of three prominent brain microtubule-associated proteins (MAPs), in addition to MAP-2 and tau, with reactive cysteines. We detected a threefold to fourfold increase in tubulin cysteine oxidation by hydrogen peroxide in the presence of rabbit muscle GAPDH by 5-iodoacetamidofluorescein labeling and by Western blot detection of higher molecular weight inter-chain tubulin disulfides. In thiol/disulfide exchange experiments, tubulin restored ∼50% of oxidized GAPDH cysteines and the equilibrium favored reduced GAPDH. Further, we report that oxidized GAPDH is repaired by the thioredoxin reductase system (TRS). Restoration of GAPDH activity after reduction by both tubulin and the TRS was time-dependent suggesting conformational changes near the active site cysteine149. The addition of brain MAPs to oxidized tubulin reduced tubulin disulfides and labeling of MAP-2 and of GAPDH decreased. Because the extent of tubulin repair of oxidized GAPDH was dependent on buffer strength, we conclude that electrostatics influence thiol/disulfide exchange between the two proteins. The novel interactions presented herein may protect GAPDH from inhibition under oxidative stress conditions.
Collapse
Affiliation(s)
- Lisa M Landino
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia
| | | | | |
Collapse
|
63
|
Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications. Molecules 2015; 20:1731-50. [PMID: 25608858 PMCID: PMC6272329 DOI: 10.3390/molecules20011731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 12/31/2014] [Accepted: 01/13/2015] [Indexed: 11/16/2022] Open
Abstract
Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications.
Collapse
|
64
|
Liu R, Li YP, Zhang WG, Fu QQ, Liu N, Zhou GH. Activity and expression of nitric oxide synthase in pork skeletal muscles. Meat Sci 2015; 99:25-31. [DOI: 10.1016/j.meatsci.2014.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/03/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
65
|
Shinozaki S, Chang K, Sakai M, Shimizu N, Yamada M, Tanaka T, Nakazawa H, Ichinose F, Yamada Y, Ishigami A, Ito H, Ouchi Y, Starr ME, Saito H, Shimokado K, Stamler JS, Kaneki M. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65. Sci Signal 2014; 7:ra106. [PMID: 25389371 DOI: 10.1126/scisignal.2005375] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson's disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging.
Collapse
Affiliation(s)
- Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA. Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan
| | - Kyungho Chang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA. Department of Anesthesiology and Pain Relief Center, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Sakai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nobuyuki Shimizu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tomokazu Tanaka
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA
| | - Harumasa Nakazawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yoshitsugu Yamada
- Department of Anesthesiology and Pain Relief Center, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akihito Ishigami
- Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hideki Ito
- Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yasuyoshi Ouchi
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan. Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo 105-0001, Japan
| | - Marlene E Starr
- Department of Surgery, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hiroshi Saito
- Department of Surgery, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kentaro Shimokado
- Department of Geriatrics and Vascular Medicine, Tokyo Medical and Dental University Graduate School, Tokyo 113-8519, Japan
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Harrington Discovery Institute, Case Western Reserve University and University Hospital, Cleveland, OH 44106, USA
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
66
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
67
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|
68
|
Kim J, Won JS, Singh AK, Sharma AK, Singh I. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 2014; 20:2514-27. [PMID: 24063605 PMCID: PMC4026100 DOI: 10.1089/ars.2013.5223] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS S-nitrosylation and S-glutathionylation, redox-based modifications of protein thiols, are recently emerging as important signaling mechanisms. In this study, we assessed S-nitrosylation-based regulation of Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway that plays critical roles in immune/inflammatory responses and tumorigenesis. RESULTS Our studies show that STAT3 in stimulated microglia underwent two distinct redox-dependent modifications, S-nitrosylation and S-glutathionylation. STAT3 S-nitrosylation was associated with inducible nitric oxide synthase (iNOS)-produced nitric oxide (NO) and S-nitrosoglutathione (GSNO), whereas S-glutathionylation of STAT3 was associated with cellular oxidative stress. NO produced by iNOS or treatment of microglia with exogenous GSNO inhibited STAT3 activation via inhibiting STAT3 phosphorylation (Tyr(705)). Consequently, the interleukin-6 (IL-6)-induced microglial proliferation and associated gene expressions were also reduced. In cell-free kinase assay using purified JAK2 and STAT3, STAT3 phosphorylation was inhibited by its selective preincubation with GSNO, but not by preincubation of JAK2 with GSNO, indicating that GSNO-mediated mechanisms inhibit STAT3 phosphorylation through S-nitrosylation of STAT3 rather than JAK2. In this study, we identified that Cys(259) was the target Cys residue of GSNO-mediated S-nitrosylation of STAT3. The replacement of Cys(259) residue with Ala abolished the inhibitory role of GSNO in IL-6-induced STAT3 phosphorylation and transactivation, suggesting the role of Cys(259) S-nitrosylation in STAT3 phosphorylation. INNOVATION Microglial proliferation is regulated by NO via S-nitrosylation of STAT3 (Cys(259)) and inhibition of STAT3 (Tyr(705)) phosphorylation. CONCLUSION Our results indicate the regulation of STAT3 by NO-based post-translational modification (S-nitrosylation). These findings have important implications for the development of new therapeutics targeting STAT3 for treating diseases associated with inflammatory/immune responses and abnormal cell proliferation, including cancer.
Collapse
Affiliation(s)
- Jinsu Kim
- 1 Department of Pediatrics, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | |
Collapse
|
69
|
Pan KT, Chen YY, Pu TH, Chao YS, Yang CY, Bomgarden RD, Rogers JC, Meng TC, Khoo KH. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxid Redox Signal 2014; 20:1365-81. [PMID: 24152285 PMCID: PMC3936484 DOI: 10.1089/ars.2013.5326] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 09/07/2013] [Indexed: 11/13/2022]
Abstract
AIMS Distinctive states of redox-dependent cysteine (Cys) modifications are known to regulate signaling homeostasis under various pathophysiological conditions, including myocardial injury or protection in response to ischemic stress. Recent evidence further implicates a dynamic interplay among these modified forms following changes in cellular redox environment. However, a precise delineation of multiplexed Cys modifications in a cellular context remains technically challenging. To this end, we have now developed a mass spectrometry (MS)-based quantitative approach using a set of novel iodoacetyl-based Cys-reactive isobaric tags (irreversible isobaric iodoacetyl Cys-reactive tandem mass tag [iodoTMT]) endowed with unique irreversible Cys-reactivities. RESULTS We have established a sequential iodoTMT-switch procedure coupled with efficient immunoenrichment and advanced shotgun liquid chromatography-MS/MS analysis. This workflow allows us to differentially quantify the multiple redox-modified forms of a Cys site in the original cellular context. In one single analysis, we have identified over 260 Cys sites showing quantitative differences in multiplexed redox modifications from the total lysates of H9c2 cardiomyocytes experiencing hypoxia in the absence and presence of S-nitrosoglutathione (GSNO), indicative of a distinct pattern of individual susceptibility to S-nitrosylation or S-glutathionylation. Among those most significantly affected are proteins functionally implicated in hypoxic damage from which we showed that GSNO would protect. INNOVATION We demonstrate for the first time how quantitative analysis of various Cys-redox modifications occurring in biological samples can be performed precisely and simultaneously at proteomic levels. CONCLUSION We have not only developed a new approach to map global Cys-redoxomic regulation in vivo, but also provided new evidences implicating Cys-redox modifications of key molecules in NO-mediated ischemic cardioprotection.
Collapse
Affiliation(s)
- Kuan-Ting Pan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Pu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Yu-Shu Chao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Yi Yang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | - Tzu-Ching Meng
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
70
|
Kudryavtsev IV, Garnyuk VV, Nadeev AD, Goncharov NV. Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747813050103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
71
|
Yang Y, Jin X, Jiang C. S-glutathionylation of ion channels: insights into the regulation of channel functions, thiol modification crosstalk, and mechanosensing. Antioxid Redox Signal 2014; 20:937-51. [PMID: 23834398 PMCID: PMC3924852 DOI: 10.1089/ars.2013.5483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Ion channels control membrane potential, cellular excitability, and Ca(++) signaling, all of which play essential roles in cellular functions. The regulation of ion channels enables cells to respond to changing environments, and post-translational modification (PTM) is one major regulation mechanism. RECENT ADVANCES Many PTMs (e.g., S-glutathionylation, S-nitrosylation, S-palmitoylation, S-sulfhydration, etc.) targeting the thiol group of cysteine residues have emerged to be essential for ion channels regulation under physiological and pathological conditions. CRITICAL ISSUES Under oxidative stress, S-glutathionylation could be a critical PTM that regulates many molecules. In this review, we discuss S-glutathionylation-mediated structural and functional changes of ion channels. Criteria for testing S-glutathionylation, methods and reagents used in ion channel S-glutathionylation studies, and thiol modification crosstalk, are also covered. Mechanotransduction, and S-glutathionylation of the mechanosensitive KATP channel, are discussed. FUTURE DIRECTIONS Further investigation of the ion channel S-glutathionylation, especially the physiological significance of S-glutathionylation and thiol modification crosstalk, could lead to a better understanding of the thiol modifications in general and the ramifications of such modifications on cellular functions and related diseases.
Collapse
Affiliation(s)
- Yang Yang
- 1 Department of Neurology, Yale University School of Medicine , New Haven, Connecticut
| | | | | |
Collapse
|
72
|
Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TRW, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian WJ. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radic Biol Med 2014; 67:460-70. [PMID: 24333276 PMCID: PMC3945121 DOI: 10.1016/j.freeradbiomed.2013.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
S-Glutathionylation (SSG) is an important regulatory posttranslational modification on protein cysteine (Cys) thiols, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols, and covalent capture of reduced thiols using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was initially validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG modification compared to controls. This approach was extended to identify potential SSG-modified Cys sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment, thus providing a database of proteins and Cys sites susceptible to this modification under oxidative stress. Functional analysis revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of SSG-modified proteins. The analytical strategy also provides a unique approach to determining the major pathways and cellular processes most susceptible to S-glutathionylation under stress conditions.
Collapse
Affiliation(s)
- Dian Su
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jia Guo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kayla E Hatchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Therese R W Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joshua T Aldrich
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sam Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - David G Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| |
Collapse
|
73
|
Abstract
In general protein posttranslation modifications (PTMs) involve the covalent addition of functional groups or molecules to specific amino acid residues in proteins. These modifications include phosphorylation, glycosylation, S-nitrosylation, acetylation, lipidation, among others (Angew Chem Int Ed Engl 44(45):7342-7372, 2005). Although other amino acids can undergo different kinds of oxidative posttranslational modifications (oxPTMs) (Exp Gerontol 36(9):1495-1502, 2001), in this chapter oxPTM will be considered specifically related to Cysteine oxidation, and redox proteomics here is translated as a comprehensive investigation of oxPTMs, in biological systems, using diverse technical approaches. Protein Cysteine residues are not the only amino acid that can be target for oxidative modifications in proteins (Exp Gerontol 36(9):1495-1502, 2001; Biochim Biophys Acta 1814(12):1785-1795, 2011), but certainly it is among the most reactive amino acid (Nature 468(7325):790-795, 2010). Interestingly, it is one of the least abundant amino acid, but it often occurs in the functional sites of proteins (J Mol Biol 404(5):902-916, 2010). In addition, the majority of the Cysteine oxidations are reversible, indicating potential regulatory mechanism of proteins. The global analysis of oxPTMs has been increasingly recognized as an important area of proteomics, because not only maps protein caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS), but also explores protein modulation involving ROS/RNS. Furthermore, the tools and strategies to study this type oxidation are also very abundant and developed, offering high degree of accuracy on the results. As a consequence, the redox proteomics field focuses very much on analyzing Cysteine oxidation in proteins under several experimental conditions and diseases states. Therefore, the identification and localization of oxPTMs within cellular milieu became critical to understand redox regulation of proteins in physiological and pathological conditions, and consequently an important information to develop better strategies for treatment and prevention of diseases associated with oxidative stress.There is a wide range of techniques available to investigate oxPTMs, including gel-based and non-gel-based separation approaches to be combined with sophisticated methods of detection, identification, and quantification of these modifications. The strategies and approaches to study oxPTMs and the respective applications related to physiological and pathological conditions will be discussed in more detail in this chapter.
Collapse
|
74
|
Kim SF. The Nitric Oxide-Mediated Regulation of Prostaglandin Signaling in Medicine. VITAMINS & HORMONES 2014; 96:211-45. [DOI: 10.1016/b978-0-12-800254-4.00009-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
75
|
Grek CL, Zhang J, Manevich Y, Townsend DM, Tew KD. Causes and consequences of cysteine S-glutathionylation. J Biol Chem 2013; 288:26497-504. [PMID: 23861399 DOI: 10.1074/jbc.r113.461368] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational S-glutathionylation occurs through the reversible addition of a proximal donor of glutathione to thiolate anions of cysteines in target proteins, where the modification alters molecular mass, charge, and structure/function and/or prevents degradation from sulfhydryl overoxidation or proteolysis. Catalysis of both the forward (glutathione S-transferase P) and reverse (glutaredoxin) reactions creates a functional cycle that can also regulate certain protein functional clusters, including those involved in redox-dependent cell signaling events. For translational application, S-glutathionylated serum proteins may be useful as biomarkers in individuals (who may also have polymorphic expression of glutathione S-transferase P) exposed to agents that cause oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Christina L Grek
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics and
| | | | | | | | | |
Collapse
|
76
|
Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire SD, Trost P. Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem 2013; 288:22777-89. [PMID: 23749990 DOI: 10.1074/jbc.m113.475467] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrosylation is a reversible post-translational modification of protein cysteines playing a major role in cellular regulation and signaling in many organisms, including plants where it has been implicated in the regulation of immunity and cell death. The extent of nitrosylation of a given cysteine residue is governed by the equilibrium between nitrosylation and denitrosylation reactions. The mechanisms of these reactions remain poorly studied in plants. In this study, we have employed glycolytic GAPDH from Arabidopsis thaliana as a tool to investigate the molecular mechanisms of nitrosylation and denitrosylation using a combination of approaches, including activity assays, the biotin switch technique, site-directed mutagenesis, and mass spectrometry. Arabidopsis GAPDH activity was reversibly inhibited by nitrosylation of catalytic Cys-149 mediated either chemically with a strong NO donor or by trans-nitrosylation with GSNO. GSNO was found to trigger both GAPDH nitrosylation and glutathionylation, although nitrosylation was widely prominent. Arabidopsis GAPDH was found to be denitrosylated by GSH but not by plant cytoplasmic thioredoxins. GSH fully converted nitrosylated GAPDH to the reduced, active enzyme, without forming any glutathionylated GAPDH. Thus, we found that nitrosylation of GAPDH is not a step toward formation of the more stable glutathionylated enzyme. GSH-dependent denitrosylation of GAPC1 was found to be linked to the [GSH]/[GSNO] ratio and to be independent of the [GSH]/[GSSG] ratio. The possible importance of these biochemical properties for the regulation of Arabidopsis GAPDH functions in vivo is discussed.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
78
|
Masterjohn C, Mah E, Park Y, Pei R, Lee J, Manautou JE, Bruno RS. Acute glutathione depletion induces hepatic methylglyoxal accumulation by impairing its detoxification to d-lactate. Exp Biol Med (Maywood) 2013; 238:360-9. [DOI: 10.1177/1535370213477987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Methylglyoxal (MGO) is a dicarbonyl that reacts with amino acids and nucleic acids to form advanced glycation endproducts, which may contribute to diabetes and its cardiovascular complications. MGO detoxification through the glyoxalase (GLO) pathway is glutathione (GSH)-dependent, but no studies have investigated whether acute depletion of GSH regulates MGO accumulation in vivo. We therefore administered a single intraperitoneal injection of the specific GSH biosynthesis inhibitor l-buthionine-( RS)-sulfoximine (BSO; 4 mmol/kg) or phosphate-buffered saline vehicle to six-week-old Sprague Dawley rats ( n = 48) prior to sacrificing at 0, 6, 12 and 48 h ( n = 6/time point/treatment). BSO had no effect ( P > 0.05) on adipose or plasma MGO at any specific time points following treatment. In contrast, hepatic GSH was 68–71% lower ( P < 0.05) at 6–12 h following BSO, and MGO was 27% higher at 12 h. At 12 h, hepatic d-lactate was 13% lower and GLO activity was 52% lower following BSO, which was fully restored by the exogenous addition of GSH. Hepatic GSH was inversely related to hepatic MGO ( r = −0.81; P < 0.01) and positively correlated with hepatic GLO activity ( r = 0.72; P < 0.01), whereas hepatic GLO activity was positively correlated with hepatic d-lactate ( r = 0.63; P < 0.05). BSO had no effect on hepatic malondialdehyde or vitamin E. These findings demonstrate that GSH depletion in vivo increases hepatic MGO accumulation by impairing its GSH-dependent, GLO-mediated detoxification to d-lactate independent of oxidative stress.
Collapse
Affiliation(s)
| | - Eunice Mah
- Department of Human Nutrition, The Ohio State University, Columbus, OH 43210
| | - Youngki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Ruisong Pei
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Jiyoung Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Richard S Bruno
- Department of Human Nutrition, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
79
|
Galkina SI, Fedorova NV, Stadnichuk VI, Sud'ina GF. Membrane tubulovesicular extensions (cytonemes): secretory and adhesive cellular organelles. Cell Adh Migr 2013; 7:174-86. [PMID: 23287580 DOI: 10.4161/cam.23130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review, we summarized data on the formation and structure of the long and highly adhesive membrane tubulovesicular extensions (TVEs, membrane tethers or cytonemes) observed in human neutrophils and other mammalian cells, protozoan parasites and bacteria. We determined that TVEs are membrane protrusions characterized by a uniform diameter (130-250 nm for eukaryotic cells and 60-90 nm for bacteria) along the entire length, an outstanding length and high rate of development and a high degree of flexibility and capacity for shedding from the cells. This review represents TVEs as protrusions of the cellular secretory process, serving as intercellular adhesive organelles in eukaryotic cells and bacteria. An analysis of the physical and chemical approaches to induce TVEs formation revealed that disrupting the actin cytoskeleton and inhibiting glucose metabolism or vacuolar-type ATPase induces TVE formation in eukaryotic cells. Nitric oxide is represented as a physiological regulator of TVE formation.
Collapse
Affiliation(s)
- Svetlana I Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
80
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
81
|
Armeni T, Ercolani L, Urbanelli L, Magini A, Magherini F, Pugnaloni A, Piva F, Modesti A, Emiliani C, Principato G. Cellular redox imbalance and changes of protein S-glutathionylation patterns are associated with senescence induced by oncogenic H-ras. PLoS One 2012; 7:e52151. [PMID: 23284910 PMCID: PMC3527427 DOI: 10.1371/journal.pone.0052151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/09/2012] [Indexed: 12/31/2022] Open
Abstract
H-Ras oncogene requires deregulation of additional oncogenes or inactivation of tumor suppressor proteins to increase cell proliferation rate and transform cells. In fact, the expression of the constitutively activated H-RasV12 induces cell growth arrest and premature senescence, which act like barriers in pre-neoplastic lesions. In our experimental model, human fibroblasts transfected with H-RasV12 show a dramatic modification of morphology. H-RasV12 expressing cells also show premature senescence followed by cell death, induced by autophagy and apoptosis. In this context, we provide evidence that in H-RasV12 expressing cells, the premature senescence is associated with cellular redox imbalance as well as with altered post-translation protein modification. In particular, redox imbalance is due to a strong reduction of total antioxidant capacity, and significant decrease of glutathione level. As the reversible addition of glutathione to cysteinyl residues of proteins is an important post-translational regulative modification, we investigated S-glutathionylation in cells expressing active H-Ras. In this contest we observed different S-glutathionylation patterns in control and H-RasV12 expressing cells. Particularly, the GAPDH enzyme showed S-glutathionylation increase and significant enzyme activity depletion in H-Ras V12 cells. In conclusion, we proposed that antioxidant defense reduction, glutathione depletion and subsequent modification of S-glutathionylation of target proteins contribute to arrest cell growth, leading to death of fibroblasts expressing constitutively active H-Ras oncogene, thus acting as oncogenic barriers that obstacle the progression of cell transformation.
Collapse
Affiliation(s)
- Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
83
|
Stacey MM, Cuddihy SL, Hampton MB, Winterbourn CC. Protein thiol oxidation and formation of S-glutathionylated cyclophilin A in cells exposed to chloramines and hypochlorous acid. Arch Biochem Biophys 2012; 527:45-54. [DOI: 10.1016/j.abb.2012.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 12/31/2022]
|
84
|
Superoxide dismutase as a novel macromolecular nitric oxide carrier: preparation and characterization. Int J Mol Sci 2012. [PMID: 23203045 PMCID: PMC3509561 DOI: 10.3390/ijms131113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is an important molecule that exerts multiple functions in biological systems. Because of the short-lived nature of NO, S-nitrosothiols (RSNOs) are believed to act as stable NO carriers. Recently, sulfhydryl (SH) containing macromolecules have been shown to be promising NO carriers. In the present study, we aimed to synthesize and characterize a potential NO carrier based on bovine Cu,Zn-superoxide dismutase (bSOD). To prepare S-nitrosated bSOD, the protein was incubated with S-nitrosoglutathione (GSNO) under varied experimental conditions. The results show that significant S-nitrosation of bSOD occurred only at high temperature (50 °C) for prolonged incubation time (>2 h). S-nitrosation efficiency increased with reaction time and reached a plateau at ~4 h. The maximum amount of NO loaded was determined to be about 0.6 mol SNO/mol protein (~30% loading efficiency). The enzymatic activity of bSOD, however, decreased with reaction time. Our data further indicate that NO functionality can only be measured in the presence of extremely high concentrations of Hg2+ or when the protein was denatured by guanidine. Moreover, mildly acidic pH was shown to favor S-nitrosation of bSOD. A model based on unfolding and refolding of bSOD during preparation was proposed to possibly explain our observation.
Collapse
|
85
|
Agarwal AR, Zhao L, Sancheti H, Sundar IK, Rahman I, Cadenas E. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2012; 303:L889-98. [PMID: 23064950 DOI: 10.1152/ajplung.00219.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cigarette smoking leads to alteration in cellular redox status, a hallmark in the pathogenesis of chronic obstructive pulmonary disease. This study examines the role of cigarette smoke (CS) exposure in the impairment of energy metabolism and, consequently, mitochondrial dysfunction. Male A/J mice were exposed to CS generated by a smoking machine for 4 or 8 wk. A recovery group was exposed to CS for 8 wk and allowed to recover for 2 wk. Acute CS exposure altered lung glucose metabolism, entailing a decrease in the rate of glycolysis and an increase in the pentose phosphate pathway, as evidenced by altered expression and activity of GAPDH and glucose-6-phosphate dehydrogenase, respectively. Impairment of GAPDH was found to be due to glutathionylation of its catalytic site cysteines. Metabolic changes were associated with changes in cellular and mitochondrial redox status, assessed in terms of pyridine nucleotides and glutathione. CS exposure elicited an upregulation of the expression of complexes II, III, IV, and V and of the activity of complexes II, IV, and V. Microarray analysis of gene expression in mouse lungs after exposure to CS for 8 wk revealed upregulation of a group of genes involved in metabolism, electron transfer chain, oxidative phosphorylation, mitochondrial transport and dynamics, and redox regulation. These changes occurred independently of inflammatory responses. These findings have implications for the early onset of alterations in energy and redox metabolism upon acute lung exposure to CS.
Collapse
Affiliation(s)
- Amit R Agarwal
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, Univ. of Southern California, Los Angeles, CA 90089-9121, USA
| | | | | | | | | | | |
Collapse
|
86
|
Mongin AA, Dohare P, Jourd'heuil D. Selective vulnerability of synaptic signaling and metabolism to nitrosative stress. Antioxid Redox Signal 2012; 17:992-1012. [PMID: 22339371 PMCID: PMC3411350 DOI: 10.1089/ars.2012.4559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | |
Collapse
|
87
|
CIB1 prevents nuclear GAPDH accumulation and non-apoptotic tumor cell death via AKT and ERK signaling. Oncogene 2012; 32:4017-27. [PMID: 22964641 PMCID: PMC3530648 DOI: 10.1038/onc.2012.408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/25/2012] [Accepted: 07/29/2012] [Indexed: 01/05/2023]
Abstract
CIB1 is a 22-kDa regulatory protein previously implicated in cell survival and proliferation. However, the mechanism by which CIB1 regulates these processes is poorly defined. Here we report that CIB1 depletion in SK-N-SH neuroblastoma and MDA-MB-468 breast cancer cells promotes non-apoptotic, caspase-independent cell death that is not initiated by increased outer mitochondrial membrane permeability or translocation of apoptosis-inducing factor to the nucleus. Instead, cell death requires nuclear GAPDH accumulation. Furthermore, CIB1 depletion disrupts two commonly dysregulated, oncogenic pathways– PI3K/AKT and Ras/MEK/ERK, resulting in a synergistic mechanism of cell death, which was mimicked by simultaneous pharmacological inhibition of both pathways, but not either pathway alone. In defining each pathway’s contributions, we found that AKT inhibition alone maximally induced GAPDH nuclear accumulation, whereas MEK/ERK inhibition alone had no effect on GAPDH localization. Concurrent GAPDH nuclear accumulation and ERK inhibition were required however, to induce a significant DNA damage response, which was critical to subsequent cell death. Collectively, our results indicate that CIB1 is uniquely positioned to regulate PI3K/AKT and MEK/ERK signaling and that simultaneous disruption of these pathways synergistically induces a nuclear GAPDH-dependent cell death. The mechanistic insights into cell death induced by CIB1 interference suggest novel molecular targets for cancer therapy.
Collapse
|
88
|
Bertrand R. Nitric oxide-mediated suppression of 2,3-bisphosphoglycerate synthesis: Therapeutic relevance for environmental hypoxia and sickle cell disease. Med Hypotheses 2012; 79:315-8. [DOI: 10.1016/j.mehy.2012.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/10/2012] [Indexed: 11/26/2022]
|
89
|
Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH. Biochem Biophys Res Commun 2012; 425:656-61. [DOI: 10.1016/j.bbrc.2012.07.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 01/30/2023]
|
90
|
Furuhata A, Honda K, Shibata T, Chikazawa M, Kawai Y, Shibata N, Uchida K. Monoclonal antibody against protein-bound glutathione: use of glutathione conjugate of acrolein-modified proteins as an immunogen. Chem Res Toxicol 2012; 25:1393-401. [PMID: 22716076 DOI: 10.1021/tx300082u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrolein shows a facile reactivity with the ε-amino group of lysine to form N(ε)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) as the major product. In addition, FDP-lysine generated in the acrolein-modified protein could function as an electrophile, reacting with thiol compounds, to form an irreversible thioether adduct. In the present study, to establish the utility of this irreversible conjugate, we attempted to use it as an immunogen to raise a monoclonal antibody (mAb), which specifically recognized protein-bound thiol compounds. Using the glutathione (GSH) conjugate of the acrolein-modified protein as an immunogen, we raised the mAb 2C4, which cross-reacted with the GSH conjugate of acrolein-modified proteins. Specificity studies revealed that mAb 2C4 recognized both the GSH conjugate of an acrolein-lysine adduct, FDP-lysine, and oxidized GSH (GSSG). In addition, mAb 2C4 cross-reacted not only with the GSH conjugates of the acrolein-modified protein but also with the GSH-treated, oxidized protein (S-glutathiolated protein), suggesting that the antibody significantly recognized the protein-bound GSH as the epitope. An immunohistochemical analysis of the atherosclerotic lesions from the human aorta showed that immunoreactive materials with mAb 2C4 were indeed present in the macrophage-derived foam cells and migrating smooth muscles. In addition, using mAb 2C4, we analyzed the GSH-treated, oxidized low-density lipoproteins by agarose gel electrophoresis under reducing or nonreducing conditions followed by immunoblot analysis and found that the majority of the GSH was irreversibly incorporated into the proteins. The results of this study not only showed the utility of the antibody raised against the GSH conjugate of the acrolein-modified proteins but also suggested that the irreversible binding of GSH and other redox molecules to the oxidized LDL might represent the process common to the modification of LDL during atherogenesis.
Collapse
Affiliation(s)
- Atsunori Furuhata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Application of iTRAQ Reagents to Relatively Quantify the Reversible Redox State of Cysteine Residues. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:514847. [PMID: 22844595 PMCID: PMC3403169 DOI: 10.1155/2012/514847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022]
Abstract
Cysteines are one of the most rarely used amino acids, but when conserved in proteins they often play critical roles in structure, function, or regulation. Reversible cysteine modifications allow for potential redox regulation of proteins. Traditional measurement of the relative absolute quantity of a protein between two samples is not always necessarily proportional to the activity of the protein. We propose application of iTRAQ reagents in combination with a previous thiol selection method to relatively quantify the redox state of cysteines both within and between samples in a single analysis. Our method allows for the identification of the proteins, identification of redox-sensitive cysteines within proteins, and quantification of the redox status of individual cysteine-containing peptides. As a proof of principle, we applied this technique to yeast alcohol dehydrogenase-1 exposed in vitro to H2O2 and also in vivo to the complex proteome of the Gram-negative bacterium Bacillus subtilis.
Collapse
|
92
|
Kim JJ, Lee MY. p53 is not necessary for nuclear translocation of GAPDH during NO-induced apoptosis. BMB Rep 2012; 44:782-6. [PMID: 22189680 DOI: 10.5483/bmbrep.2011.44.12.782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.
Collapse
Affiliation(s)
- Jum-Ji Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-600, Korea
| | | |
Collapse
|
93
|
Errafiy N, Soukri A. Purification and partial characterization of glyceraldehyde-3-phosphate dehydrogenase from the ciliate Tetrahymena thermophila. Acta Biochim Biophys Sin (Shanghai) 2012; 44:527-34. [PMID: 22543501 DOI: 10.1093/abbs/gms028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present study, we purified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is involved in cellular energy production and has important housekeeping functions, from the ciliate Tetrahymena thermophila using a three-step procedure. The enzyme was purified ~68 folds by ammonium sulfate precipitation, followed by two steps of column chromatography (DEAE-cellulose and Mono-S). The purified enzyme is a homotetramer with a molecular weight of ~120 kDa. Isoelectric focusing analysis showed the presence of only one basic GAPDH isoform with an isoelectric point of 8.8. Western blot analysis showed a single 32-kDa band corresponding to the enzyme subunit using a monospecific polyclonal antibody against the T. thermophila GAPDH. The maximum of enzyme activity occurred at pH 8.0 and at 30-35°C. The apparent K(m) values for both NAD(+) and D-glyceraldehyde-3-phosphate were 0.102 ± 0.012 and 0.360 ± 0.018 mM, respectively. The maximal velocity (V(max)) was 39.40 ± 2.95 U/mg. The T. thermophila GAPDH is inhibited by oxidative and nitrosative stress reagents.
Collapse
Affiliation(s)
- Nadia Errafiy
- Laboratoire de Physiologie et Génétique Moléculaire, Département de Biologie, Faculté des Sciences Aïn Chock, Université Hassan II-Aïn Chock, Km 8 Route d'El Jadida, BP. 5366 Maârif, Casablanca, Morocco.
| | | |
Collapse
|
94
|
Zhang H, Forman HJ. Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 2012; 23:722-8. [PMID: 22504020 DOI: 10.1016/j.semcdb.2012.03.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 02/07/2023]
Abstract
Glutathione (GSH) is the most abundant antioxidant and a major detoxification agent in cells. It is synthesized through two-enzyme reaction catalyzed by glutamate cysteine ligase and glutathione synthetase, and its level is well regulated in response to redox change. Accumulating evidence suggests that GSH may play important roles in cell signaling. This review will focus on the biosynthesis of GSH, the reaction of S-glutathionylation (the conjugation of GSH with thiol residue on proteins), GSNO, and their roles in redox signaling.
Collapse
Affiliation(s)
- Hongqiao Zhang
- University of Southern California, Los Angeles, CA 90089, United States
| | | |
Collapse
|
95
|
Pastore A, Piemonte F. S-Glutathionylation signaling in cell biology: progress and prospects. Eur J Pharm Sci 2012; 46:279-92. [PMID: 22484331 DOI: 10.1016/j.ejps.2012.03.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/18/2022]
Abstract
S-Glutathionylation is a mechanism of signal transduction by which cells respond effectively and reversibly to redox inputs. The glutathionylation regulates most cellular pathways. It is involved in oxidative cellular response to insult by modulating the transcription factor Nrf2 and inducing the expression of antioxidant genes (ARE); it contributes to cell survival through nuclear translocation of NFkB and activation of survival genes, and to cell death by modulating the activity of caspase 3. It is involved in mitotic spindle formation during cell division by binding cytoskeletal proteins thus contributing to cell proliferation and differentiation. Glutathionylation also interfaces with the mechanism of phosphorylation by modulating several kinases (PKA, CK) and phosphatases (PP2A, PTEN), thus allowing a cross talk between the two processes of signal transduction. Also, skeletal RyR1 channels responsible of muscle excitation-contraction coupling appear to be sensitive to glutathionylation. Members of the ryanodine receptor super family, responsible for Ca(2) release from endoplasmic reticulum stores, contain sulfhydryl groups that function as a redox "switch", which either induces or inhibits Ca(2) release. Finally, but very importantly, glutathionylation of proteins may also act on cell metabolism by modulating enzymes involved in glycosylation, in the Krebs cycle and in mitochondrial oxidative phosphorylation. In this review, we propose a greater role for glutathionylation in cell biology: not only a cellular response to oxidative stress, but an elegant and sensitive mechanism able to respond even to subtle changes in redox balance in the different cellular compartments. Given the wide spectrum of redox-sensitive proteins, we discuss the possibility that different pathways light up by glutathionylation under various pathological conditions. The feature of reversibility of this process also makes it prone to develop targeted drug therapies and monitor the pharmacological effectiveness once identified the sensor proteins involved.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
96
|
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD. Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 2012; 16:567-86. [PMID: 22053845 DOI: 10.1089/ars.2011.4255] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, besides the well-established disulfide/dithiol exchange reactions specifically controlled by thioredoxins (TRXs), protein S-glutathionylation is emerging as an alternative redox modification occurring under stress conditions. This modification, consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue, can not only protect specific cysteines from irreversible oxidation but also modulate protein activities and appears to be specifically controlled by small disulfide oxidoreductases of the TRX superfamily named glutaredoxins (GRXs). RECENT STUDIES In recent times, several studies allowed significant progress in this area, mostly due to the identification of several plant proteins undergoing S-glutathionylation and to the characterization of the molecular mechanisms and the proteins involved in the control of this modification. CRITICAL ISSUES This article provides a global overview of protein glutathionylation in photosynthetic organisms with particular emphasis on the mechanisms of protein glutathionylation and deglutathionylation and a focus on the role of GRXs. Then, we describe the methods employed for identification of glutathionylated proteins in photosynthetic organisms and review the targets and the possible physiological functions of protein glutathionylation. FUTURE DIRECTIONS In order to establish the importance of protein S-glutathionylation in photosynthetic organisms, future studies should be aimed at delineating more accurately the molecular mechanisms of glutathionylation and deglutathionylation reactions, at identifying proteins undergoing S-glutathionylation in vivo under diverse conditions, and at investigating the importance of redoxins, GRX, and TRX, in the control of this redox modification in vivo.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
97
|
Sabens Liedhegner EA, Gao XH, Mieyal JJ. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation. Antioxid Redox Signal 2012; 16:543-66. [PMID: 22066468 PMCID: PMC3270051 DOI: 10.1089/ars.2011.4119] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Neurodegenerative diseases are characterized by progressive loss of neurons. A common feature is oxidative stress, which arises when reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceed amounts required for normal redox signaling. An imbalance in ROS/RNS alters functionality of cysteines and perturbs thiol-disulfide homeostasis. Many cysteine modifications may occur, but reversible protein mixed disulfides with glutathione (GSH) likely represents the common steady-state derivative due to cellular abundance of GSH and ready conversion of cysteine-sulfenic acid and S-nitrosocysteine precursors to S-glutathionylcysteine disulfides. Thus, S-glutathionylation acts in redox signal transduction and serves as a protective mechanism against irreversible cysteine oxidation. Reversal of protein-S-glutathionylation is catalyzed specifically by glutaredoxin which thereby plays a critical role in cellular regulation. This review highlights the role of oxidative modification of proteins, notably S-glutathionylation, and alterations in thiol homeostatic enzyme activities in neurodegenerative diseases, providing insights for therapeutic intervention. RECENT ADVANCES Recent studies show that dysregulation of redox signaling and sulfhydryl homeostasis likely contributes to onset/progression of neurodegeneration. Oxidative stress alters the thiol-disulfide status of key proteins that regulate the balance between cell survival and cell death. CRITICAL ISSUES Much of the current information about redox modification of key enzymes and signaling intermediates has been gleaned from studies focused on oxidative stress situations other than the neurodegenerative diseases. FUTURE DIRECTIONS The findings in other contexts are expected to apply to understanding neurodegenerative mechanisms. Identification of selectively glutathionylated proteins in a quantitative fashion will provide new insights about neuropathological consequences of this oxidative protein modification.
Collapse
|
98
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
99
|
Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Res Cardiol 2012; 107:253. [PMID: 22351077 DOI: 10.1007/s00395-012-0253-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Although the late phase of ischemic preconditioning is known to be mediated by increased inducible nitric oxide synthase (iNOS) activity, controversy persists regarding the role of iNOS in ischemia/reperfusion (I/R) injury and, specifically, whether this protein is protective or detrimental. We hypothesized that iNOS is protective in myocytes but detrimental in inflammatory cells. To test this hypothesis, we created chimeric mice with iNOS-deficient peripheral blood cells by transplanting iNOS knockout (KO) bone marrow in wild-type (WT) mice after lethal irradiation. 2 months later, the mice underwent a 30-min coronary occlusion followed by 24 h of reperfusion. In WT naïve mice (iNOS(+/+) naïve; group I, n = 17), infarct size was 56.9 ± 2.8% of the risk region. In iNOS KO naïve mice with whole-body iNOS deletion (iNOS(-/-) naïve; group II, n = 10), infarct size was comparable to group I (53.4 ± 3.5%). When irradiated WT mice received marrow from WT mice (iNOS(+/+) chimera; group III, n = 10), infarct size was slightly reduced versus group I (44.3 ± 3.2%), indicating that irradiation and/or transplantation slightly decrease I/R injury. However, when WT mice received marrow from iNOS KO mice (iNOS(-/-) chimera; group IV, n = 14), infarct size was profoundly reduced (22.8 ± 2.1%, P < 0.05 vs. group III), indicating that selective deletion of iNOS from peripheral blood cells (with no change in myocardial iNOS content) induces protection against myocardial infarction. Together with our previous work showing the cardioprotective actions of NO donors, iNOS gene therapy, and cardiac-specific overexpression of iNOS, these data support a complex, dual role of iNOS in myocardial infarction (i.e., protective in myocytes but deleterious in blood cells). To our knowledge, this is the first study to identify a critical role of iNOS in peripheral blood cells as a mediator of myocardial I/R injury. The results support heretofore unknown differential actions of iNOS depending on cell source and have important translational implications.
Collapse
|
100
|
Abstract
Cysteines are one of the most rarely used amino acids in proteins, therefore when conserved in proteins they usually play critical roles in structure, function, or regulation of the protein. These cysteines or thiols can be reversibly oxidised to sulfenic acid (-SOH), thiyl radicals (-S) or nitrosothiols (-SNO) or form both inter-and intra-disulfide bridges (PSSP). The protein thiol groups PSSPs, represent a larger active redox pool than glutathione and are likely to be directly involved in cellular defence against oxidative stress. Diagonal electrophoresis is a relatively simple technique to analyze the formation of protein disulfides by sequential non-reducing/reducing electrophoresis. Proteins that do not form disulfides, electrophorese identically in both dimensions and form a diagonal after the second dimension, proteins that contained intra-chain disulfides lie above this diagonal, while those that formed inter-disulfides fall below the diagonal. This technique therefore allows for the detection and identification of protein disulfides.
Collapse
Affiliation(s)
- Brian McDonagh
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|