51
|
Sato T, Ito H, Hirata A, Abe T, Mano N, Yamaguchi H. Interactions of crizotinib and gefitinib with organic anion-transporting polypeptides (OATP)1B1, OATP1B3 and OATP2B1: gefitinib shows contradictory interaction with OATP1B3. Xenobiotica 2017; 48:73-78. [PMID: 28005438 DOI: 10.1080/00498254.2016.1275880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The drug-drug interaction (DDI) mediated by organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and OATP2B1 has a major impact on the hepatic clearance of drugs. The effects of tyrosine kinase inhibitors (TKIs) on OATPs have not been well studied. In the present study, we evaluated the contribution of OATPs to the hepatic uptake of crizotinib and gefitinib and the interaction of those TKIs with OATPs to estimate DDIs. 2. To clarify whether crizotinib and gefitinib were substrates for OATPs, we performed uptake studies. We examined the effects of the TKIs on uptake of typical substrates and fluvastatin via OATPs. IC50 and EC50 values of the TKIs were calculated. 3. OATP1B3- and OATP2B1-mediated crizotinib uptake and OATP2B1-mediated gefitinib uptake were observed. Gefitinib accelerated OATP1B3-mediated [3H]TCA uptake and inhibited OATP2B1-mediated [3H]E3S uptake. On the other hand, gefitinib inhibited OATP1B1- and OATP2B1-mediated fluvastatin uptake. 4. We provided basic information to estimate the DDI on OATPs caused by TKIs. The DDI on OATPs caused by gefitinib could occur in a normal clinical situation. And the uptake of crizotinib into the intrahepatocellular environment via OATPs may induce DDI and liver damage. We therefore emphasize the necessity of careful use of TKIs.
Collapse
Affiliation(s)
- Toshihiro Sato
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan
| | - Hajime Ito
- b Laboratory of Clinical Pharmaceutics & Therapeutics , Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan
| | - Ayaka Hirata
- c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Takaaki Abe
- d Division of Nephrology , Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University , Sendai , Japan.,e Division of Medical Science , Graduate School of Biomedical Engineering, Tohoku University , Sendai , Japan , and.,f Department of Clinical Biology and Hormonal Regulation , Graduate School of Medicine, Tohoku University , Sendai , Japan
| | - Nariyasu Mano
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan.,c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Hiroaki Yamaguchi
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan.,c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
52
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
53
|
Feasibility of the functional expression of the human organic anion transporting polypeptide 1B1 (OATP1B1) and its genetic variant 521T/C in the mouse liver. Eur J Pharm Sci 2017; 96:28-36. [PMID: 27619346 DOI: 10.1016/j.ejps.2016.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022]
Abstract
The objective of this study was to examine the feasibility of functional expression of the human organic anion transporting polypeptide 1B1 (hOATP1B1) forms in the liver of the mouse. After the mouse received the gene of interest (i.e., luciferase as the reporter or hOATP1B1) via hydrodynamic gene delivery (HGD) method, the expression was found to be liver-specific while alterations in the serum biochemistry and hepatocyte histology were apparently transient and reversible. The reporter activity was also detected in the plasma, but not in the blood cell in mice that received HGD, suggesting that the protein is probably released due to transiently increased permeability in hepatocytes by HGD. Using this delivery condition, the expression of hOATP1B1 was readily detected in the liver, but not in other tissues, of the mice receiving HGD for the transporter gene. Compared with the sham control mice, the uptake of pravastatin into the liver increased significantly in mice receiving hOATP1B1 wild type; the uptake parameters decreased consistently in mice expressing the 521T>C variant compared with that of the wild type control. These observations suggest that the functional expression of human transporter gene in mice is feasible, further suggesting that this treatment is practically useful in the pharmacokinetic studies for hOATP1B1 substrates.
Collapse
|
54
|
Wang H, Sun P, Wang C, Meng Q, Liu Z, Huo X, Sun H, Ma X, Peng J, Liu K. Liver uptake of cefditoren is mediated by OATP1B1 and OATP2B1 in humans and Oatp1a1, Oatp1a4, and Oatp1b2 in rats. RSC Adv 2017; 7:30038-30048. [DOI: 10.1039/c7ra03537c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
OATPs and Oatps mediated liver uptake of cefditoren in humans and in rats.
Collapse
|
55
|
Kovacsics D, Patik I, Özvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:409-424. [PMID: 27783531 DOI: 10.1080/17425255.2017.1253679] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets. Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug-drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1. Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.
Collapse
Affiliation(s)
- Daniella Kovacsics
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Izabel Patik
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Csilla Özvegy-Laczka
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
56
|
Abstract
Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.
Collapse
Affiliation(s)
- Scott A Hubers
- From Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| | - Nancy J Brown
- From Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
57
|
Pharmacogenomics in type 2 diabetes: oral antidiabetic drugs. THE PHARMACOGENOMICS JOURNAL 2016; 16:399-410. [DOI: 10.1038/tpj.2016.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
|
58
|
Ayalasomayajula S, Han Y, Langenickel T, Malcolm K, Zhou W, Hanna I, Alexander N, Natrillo A, Goswami B, Hinder M, Sunkara G. In vitro and clinical evaluation of OATP-mediated drug interaction potential of sacubitril/valsartan (LCZ696). J Clin Pharm Ther 2016; 41:424-31. [PMID: 27321165 DOI: 10.1111/jcpt.12408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 12/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Sacubitril/valsartan (LCZ696) has been recently approved for the treatment of heart failure (HF) patients with reduced ejection fraction. Several HF patients receive statins as co-medication. METHODS Because clearance of statins is meditated via OATP1B1/1B3, the inhibition potential of these transporters by LCZ696 analytes was evaluated in vitro. Furthermore, an open-label, fixed-sequence clinical study was conducted to determine the effect of LCZ696 on the exposure of simvastatin and its active metabolite simvastatin acid. In this clinical study, 26 healthy subjects received simvastatin 40 mg alone or in combination with LCZ696 or after 1 or 2 h of LCZ696 dosing. RESULTS AND DISCUSSION Although no significant inhibition by LBQ657 (an active metabolite of sacubitril) and valsartan was observed, sacubitril inhibited OATP1B1 and OATP1B3 in vitro, with IC50 of 1·91 and 3·81 μm, respectively. Upon co-administration of simvastatin with LCZ696, the Cmax of simvastatin and simvastatin acid decreased by 7% and 13%, respectively. When administered 1 h after LCZ696 dosing, the corresponding Cmax of simvastatin and simvastatin acid decreased by 16% and 4%, respectively. When administered 2 h after LCZ696 dosing, the Cmax of simvastatin decreased by 33% and that of simvastatin acid increased by 16%. However, no notable changes were observed in the AUCs of simvastatin or simvastatin acid upon co-administration or time-separated administration with LCZ696. No notable impact of simvastatin co-administration was observed on the pharmacokinetics of LCZ696 analytes. LCZ696 and simvastatin were generally well tolerated when administered alone or in combination. WHAT IS NEW AND CONCLUSIONS Overall, the results of this study suggest that although sacubitril inhibited OATP1B1 and OATP1B3 in vitro, it does not translate into any clinically relevant in vivo effect.
Collapse
Affiliation(s)
- S Ayalasomayajula
- Translational Medicine, Drug Metabolism and Pharmacokintinetics, NIBR, East Hanover, NJ, USA
| | - Y Han
- Translational Medicine, Drug Metabolism and Pharmacokinetics, NIBR, Shanghai, China
| | - T Langenickel
- Translational Medicine, Clinical Pharmacology and Profiling, NIBR, Basel, Switzerland
| | - K Malcolm
- CS&I, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - W Zhou
- Translational Medicine, Drug Metabolism and Pharmacokintinetics, NIBR, East Hanover, NJ, USA
| | - I Hanna
- Translational Medicine, Drug Metabolism and Pharmacokintinetics, NIBR, East Hanover, NJ, USA
| | - N Alexander
- Translational Medicine, Drug Metabolism and Pharmacokintinetics, NIBR, East Hanover, NJ, USA
| | - A Natrillo
- Translational Medicine, Drug Metabolism and Pharmacokintinetics, NIBR, East Hanover, NJ, USA
| | - B Goswami
- Biostatistical Sciences, Novartis Healthcare Private Limited, Hyderabad, India
| | - M Hinder
- Translational Medicine, Clinical Pharmacology and Profiling, NIBR, Basel, Switzerland
| | - G Sunkara
- Translational Medicine, Drug Metabolism and Pharmacokintinetics, NIBR, East Hanover, NJ, USA
| |
Collapse
|
59
|
Reimer T, Kempert S, Gerber B, Thiesen HJ, Hartmann S, Koczan D. SLCO1B1*5 polymorphism (rs4149056) is associated with chemotherapy-induced amenorrhea in premenopausal women with breast cancer: a prospective cohort study. BMC Cancer 2016; 16:337. [PMID: 27234217 PMCID: PMC4884353 DOI: 10.1186/s12885-016-2373-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
Background Because inheritance is recognized as playing a role in age at menarche and natural menopause, the development of chemotherapy-induced amenorrhea (CIA) might depend on inherited genetic factors; however, studies that explore such a correlation are few and have received scant attention. Given the importance of this topic we conducted a comprehensive genotype study in young women (≤45 years) with early-stage breast cancer. Methods Our approach tested the effect of variant polymorphisms in drug metabolism enzymes (DMEs) using a predesigned pharmacogenomics panel (TaqMan® OpenArray®, Life Technologies GmbH, Darmstadt, Germany) in premenopausal women (n = 50). Patients received contemporary chemotherapy; in all cases a cyclophosphamide-based regimen with a dose of at least 500 mg/m2 for six cycles. CIA was considered to be present in women with no resumption of menstrual bleeding within 12 months after completion of chemotherapy or goserelin. Results Twenty-six patients (52 %) showed CIA during follow-up whereas 24 women (48 %) remained premenopausal. Of all the DMEs studied, only the SLCO1B1*5 (rs4149056) genotype was associated with the development of CIA (P = 0.017). Of the 26 patients who were homozygous for the T/T allele SLCO1B1*5, 18 (69.2 %) developed CIA compared with 8 (30.8 %) of the 22 patients who were heterozygous (C/T allele). The association of heterozygous SLCO1B1*5 allele (OR 0.038; 95%CI: 0.05–0.92) with a lower risk of developing CIA remained significant in a binary logistic regression analysis that include age, SLCO1B1*5 allele variants, and goserelin therapy. Conclusions Patient age and SLCO1B1*5 allele variants predict the likelihood of young women with breast cancer developing CIA. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2373-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toralf Reimer
- Department of Obstetrics and Gynecology, University of Rostock, Klinikum Suedstadt, Suedring 81, Rostock, 18059, Germany.
| | - Sarah Kempert
- Department of Obstetrics and Gynecology, University of Rostock, Klinikum Suedstadt, Suedring 81, Rostock, 18059, Germany
| | - Bernd Gerber
- Department of Obstetrics and Gynecology, University of Rostock, Klinikum Suedstadt, Suedring 81, Rostock, 18059, Germany
| | - Hans-Jürgen Thiesen
- Institute of Immunology, University of Rostock, P.O.B. 100888, Rostock, 18055, Germany
| | - Steffi Hartmann
- Department of Obstetrics and Gynecology, University of Rostock, Klinikum Suedstadt, Suedring 81, Rostock, 18059, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, P.O.B. 100888, Rostock, 18055, Germany
| |
Collapse
|
60
|
Abstract
OBJECTIVE Organic anion transporting polypeptide 1B1 (OATP1B1, encoded by SLCO1B1 gene) is a hepatic uptake transporter, and its genetic variability is associated with pharmacokinetics and muscle toxicity risk of simvastatin. We examined the possible effects of variations in the SLCO1B1 gene on the pharmacokinetics of lovastatin in a prospective genotype panel study. PARTICIPANTS AND METHODS Seven healthy volunteers with the SLCO1B1*1B/*1B genotype, five with the SLCO1B1*5/*15 or *15/*15 genotype, and 15 with the SLCO1B1*1A/*1A genotype (controls) were recruited. Each study participant ingested a single 40-mg dose of lovastatin. Plasma concentrations of lovastatin (inactive lactone) and its active metabolite lovastatin acid were measured up to 24 h. RESULTS In the SLCO1B1*5/*15 or *15/*15 genotype group, the geometric mean Cmax and AUC0-24 of lovastatin acid were 340 and 286% of the corresponding values in the SLCO1B1*1A/*1A (reference) genotype group (P<0.005). In contrast, the AUC0-24 of lovastatin acid in the SLCO1B1*1B/*1B genotype group was only 68% of that in the reference genotype group (P=0.03). No statistically significant association was observed between the SLCO1B1 genotype and the pharmacokinetics of lovastatin lactone. CONCLUSION SLCO1B1*5/*15 and *15/*15 genotypes markedly increase the exposure to active lovastatin acid, but have no significant effect on lovastatin lactone, similar to their effects on simvastatin and simvastatin acid. Accordingly, it is probable that the risk of muscle toxicity during lovastatin treatment is increased in individuals carrying the SLCO1B1*5 or *15 allele. The SLCO1B1*1B/*1B genotype is associated with reduced lovastatin acid concentrations, consistent with enhanced hepatic uptake.
Collapse
|
61
|
Cárdenas-Rojas MI, Delgado-Enciso I, Baltazar-Rodríguez LM, Guzmán-Esquivel J, Ramírez-Flores M. Effects of the SLCO1B1 *1 and SLCO1B1 *5 polymorphisms on IL-6 and IL-10 levels in patients under pravastatin treatment prior to inguinal hernia repair. Int J Surg 2016; 27:105-109. [PMID: 26826613 DOI: 10.1016/j.ijsu.2016.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Different genetic variants in the SLCO1B1 gene have been shown to have functional importance in individual variability in pravastatin pharmacokinetics, resulting in different inflammatory responses to surgical inguinal hernia repair. The aim of this study was to determine IL-6 and IL-10 serum concentrations in the presence and absence of the SLCO1B1*1 and SLCO1B1*5 polymorphisms in patients under pravastatin treatment that underwent inguinal hernia repair. METHODS The study included 26 subjects that were under pravastatin treatment (40 mg/day) at least 1 month prior to inguinal hernia repair open technique. All the subjects were genotyped for the SLCO1B1*1 and SLCO1B1*5 polymorphisms through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and their preoperative and postoperative serum IL-6 and IL-10 levels were quantified through the ELISA technique. The IL-6 and IL-10 levels were analyzed in the presence or absence of the mutated polymorphism for SLCO1B1*1 and SLCO1B1*5. RESULTS The SLCO1B1*1 polymorphism had a frequency of 38.5% and the SLCO1B1*5 polymorphism had a frequency of 19.2%. The preoperative and postoperative serum concentrations of IL-6 were 0.252 pg/ml ± 0.19 and 0.206 pg/ml ± 0.20, respectively, with a p = 0.525, whereas the preoperative and postoperative serum concentrations for IL-10 were 4.943 pg/ml ± 3.13 and 4.611 pg/ml ± 3.01, respectively, with a p = 0.004. CONCLUSIONS The patients under pravastatin treatment presented with lower postoperative IL-10 levels with respect to the baseline concentration (p = 0.004), regardless of the presence or absence of the two polymorphisms.
Collapse
Affiliation(s)
| | | | | | | | - Mario Ramírez-Flores
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.
| |
Collapse
|
62
|
Choi Y, Huh J, Woo DC, Kim KW. Use of gadoxetate disodium for functional MRI based on its unique molecular mechanism. Br J Radiol 2015; 89:20150666. [PMID: 26693795 DOI: 10.1259/bjr.20150666] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gadolinium ethoxybenzyl dimeglumine (gadoxetate) is a recently developed hepatocyte-specific MRI contrast medium. Gadoxetate demonstrates unique pharmacokinetic and pharmacodynamic properties, because its uptake in hepatocytes occurs via the organic anion transporting polypeptide (OATP) transporter expressed at the sinusoidal membrane, and its biliary excretion via the multidrug resistance-associated proteins (MRPs) at the canalicular membrane. Based on these characteristics, gadoxetate-enhanced MRI can provide functional information on hepatobiliary diseases, including liver function estimation, biliary drainage evaluation and characterization of hepatocarcinogenesis. In addition, understanding its mode of action can provide an opportunity to use gadoxetate for cellular and molecular imaging. Radiologists and imaging scientists should be familiar with the basic mechanism of gadoxetate and OATP/MRP transporters.
Collapse
Affiliation(s)
- YoonSeok Choi
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea
| | - Jimi Huh
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea.,2 Department of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea.,2 Department of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea.,2 Department of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
63
|
Peng JF, Liu L, Guo CX, Liu SK, Chen XP, Huang LH, Xiang H, Huang ZJ, Yuan H, Yang GP. Role of miR-511 in the Regulation of OATP1B1 Expression by Free Fatty Acid. Biomol Ther (Seoul) 2015; 23:400-6. [PMID: 26336578 PMCID: PMC4556198 DOI: 10.4062/biomolther.2015.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/20/2015] [Accepted: 07/23/2015] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNA that are able to adjust the expression of many proteins, including ATP-binding cassette transporter and organic cation transporter. We sought to evaluate the effect of miR-511 on the regulation of OATP1B1 expression by free fatty acids. When using free fatty acids to stimulate Chang liver cells, we found that the expression of miR-511 increased significantly while the expression of OATP1B1 decreased. We also proved that SLCO1B1 is the target gene of miR-511 with a bioinformatics analysis and using the dual luciferase reporter assay. Furthermore, the expressions of SLCO1B1 and OATP1B1 decreased if transfecting Chang liver cells with miR-511, but did not increase when transfecting the inhibitors of miR-511 into steatosis cells. Our study indicates that miR-511 may play an important role in the regulation of OATP1B1 expression by free fatty acids.
Collapse
Affiliation(s)
- Jin Fu Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000 ; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Li Liu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Cheng Xian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Shi Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000
| | - Xiao Ping Chen
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410013, China
| | - Li Hua Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Hong Xiang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Zhi Jun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Hong Yuan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| | - Guo Ping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013
| |
Collapse
|
64
|
Chapy H, Klieber S, Brun P, Gerbal-Chaloin S, Boulenc X, Nicolas O. PBPK modeling of irbesartan: incorporation of hepatic uptake. Biopharm Drug Dispos 2015; 36:491-506. [PMID: 26037524 DOI: 10.1002/bdd.1961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/05/2015] [Accepted: 05/30/2015] [Indexed: 11/09/2022]
Abstract
Physiological based pharmacokinetic (PBPK) modeling is now commonly used in drug development to integrate human or animal physiological data in order to predict pharmacokinetic profiles. The aim of this work was to construct and refine a PBPK model of irbesartan taking into account its active uptake via OATP1B1/B3 in order to predict more accurately its pharmacokinetic profile using Simcyp(®). The activity and expression of the human hepatocyte transporters OATP1B1 and OATP1B3 were studied. The relative activity factors (RAFs) for OATP1B1 and OATP1B3 transporters were calculated from intrinsic clearances obtained by concentration dependent uptake experiments in human hepatocytes and HEK overexpressing cells: RAF1B1 using estrone-3-sulfate and pitavastatine clearances, and RAF1B3 using cholecystokinine octapeptide (CCK-8) clearances. The relative expression factor (REF) was calculated by comparing immunoblotting of hepatocytes (REFHH ) or tissues (REFtissue) with those of overexpressing HEK cells for each transporter. These scaling factors were applied in a PBPK model of irbesartan using the Simcyp® simulator. Pharmacokinetic simulation using REFHH (1.82 for OATP1B1, 8.03 for OATP1B3) as an extrapolation factor was the closest to the human clinical pharmacokinetic profile of irbesartan. These investigations show the importance of integrating the contribution of the active uptake of a drug in the liver to improve PBPK modeling.
Collapse
Affiliation(s)
- Helene Chapy
- Drug Disposition Domain, Disposition Safety and Animal Research, Sanofi, Montpellier, France
| | - Sylvie Klieber
- Drug Disposition Domain, Disposition Safety and Animal Research, Sanofi, Montpellier, France
| | - Priscilla Brun
- Drug Disposition Domain, Disposition Safety and Animal Research, Sanofi, Montpellier, France
| | - Sabine Gerbal-Chaloin
- INSERM, U1040, Institut de Recherche en Biothérapie, Montpellier, F-34293, France.,Université Montpellier 1, UMR 1040, Montpellier, F-34293, France
| | - Xavier Boulenc
- Drug Disposition Domain, Disposition Safety and Animal Research, Sanofi, Montpellier, France
| | - Olivier Nicolas
- Drug Disposition Domain, Disposition Safety and Animal Research, Sanofi, Montpellier, France
| |
Collapse
|
65
|
Hogg K, Thomas J, Ashford D, Cartwright J, Coldwell R, Weston DJ, Pillmoor J, Surry D, O’Toole P. Quantification of proteins by flow cytometry: Quantification of human hepatic transporter P-gp and OATP1B1 using flow cytometry and mass spectrometry. Methods 2015; 82:38-46. [DOI: 10.1016/j.ymeth.2015.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022] Open
|
66
|
Testa A, Zanda M, Elmore CS, Sharma P. PET Tracers To Study Clinically Relevant Hepatic Transporters. Mol Pharm 2015; 12:2203-16. [DOI: 10.1021/acs.molpharmaceut.5b00059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Andrea Testa
- Kosterlitz
Centre for Therapeutics, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Matteo Zanda
- Kosterlitz
Centre for Therapeutics, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
| | | | - Pradeep Sharma
- AstraZeneca R&D, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| |
Collapse
|
67
|
Clinical validity of new genetic biomarkers of irinotecan neutropenia: an independent replication study. THE PHARMACOGENOMICS JOURNAL 2015; 16:54-9. [PMID: 25869015 DOI: 10.1038/tpj.2015.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/04/2014] [Accepted: 01/28/2015] [Indexed: 01/26/2023]
Abstract
The overall goal of this study was to provide evidence for the clinical validity of nine genetic variants in five genes previously associated with irinotecan neutropenia and pharmacokinetics. Variants associated with absolute neutrophil count (ANC) nadir and/or irinotecan pharmacokinetics in a discovery cohort of cancer patients were genotyped in an independent replication cohort of 108 cancer patients. Patients received single-agent irinotecan every 3 weeks. For ANC nadir, we replicated UGT1A1*28, UGT1A1*93 and SLCO1B1*1b in univariate analyses. For irinotecan area under the concentration-time curve (AUC0-24), we replicated ABCC2 -24C>T; however, ABCC2 -24C>T only predicted a small fraction of the variance. For SN-38 AUC0-24 and the glucuronidation ratio, we replicated UGT1A1*28 and UGT1A1*93. In addition to UGT1A1*28, this study independently validated UGT1A1*93 and SLCO1B1*1b as new predictors of irinotecan neutropenia. Further demonstration of their clinical utility will optimize irinotecan therapy in cancer patients.
Collapse
|
68
|
Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev 2015; 36:214-44. [PMID: 25751422 DOI: 10.1210/er.2014-1081] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For a long time it has been known that both hypo- and hyperthyroidism are associated with an increased risk of morbidity and mortality. In recent years, it has also become clear that minor variations in thyroid function, including subclinical dysfunction and variation in thyroid function within the reference range, can have important effects on clinical endpoints, such as bone mineral density, depression, metabolic syndrome, and cardiovascular mortality. Serum thyroid parameters show substantial interindividual variability, whereas the intraindividual variability lies within a narrow range. This suggests that every individual has a unique hypothalamus-pituitary-thyroid axis setpoint that is mainly determined by genetic factors, and this heritability has been estimated to be 40-60%. Various mutations in thyroid hormone pathway genes have been identified in persons with thyroid dysfunction or altered thyroid function tests. Because these causes are rare, many candidate gene and linkage studies have been performed over the years to identify more common variants (polymorphisms) associated with thyroid (dys)function, but only a limited number of consistent associations have been found. However, in the past 5 years, advances in genetic research have led to the identification of a large number of new candidate genes. In this review, we provide an overview of the current knowledge about the polygenic basis of thyroid (dys)function. This includes new candidate genes identified by genome-wide approaches, what insights these genes provide into the genetic basis of thyroid (dys)function, and which new techniques will help to further decipher the genetic basis of thyroid (dys)function in the near future.
Collapse
Affiliation(s)
- Marco Medici
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
69
|
Watanabe M, Watanabe T, Yabuki M, Tamai I. Dehydroepiandrosterone sulfate, a useful endogenous probe for evaluation of drug–drug interaction on hepatic organic anion transporting polypeptide (OATP) in cynomolgus monkeys. Drug Metab Pharmacokinet 2015; 30:198-204. [DOI: 10.1016/j.dmpk.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/11/2014] [Accepted: 12/28/2014] [Indexed: 11/25/2022]
|
70
|
Thakkar N, Lockhart AC, Lee W. Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy. AAPS JOURNAL 2015; 17:535-45. [PMID: 25735612 DOI: 10.1208/s12248-015-9740-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022]
Abstract
The superfamily of organic anion-transporting polypeptides (OATPs, gene symbol SLCO) includes important transporters handling a variety of endogenous and xenobiotic substrates. Currently, 11 human OATPs are known and their substrates include endogenous hormones and their conjugates, anticancer drugs, and imaging agents. The contribution of OATPs to the in vivo disposition of these substrates has been extensively investigated. An accumulating body of evidence also indicates that the expression of some OATPs may be up- or downregulated in several types of cancers, suggesting potential pathogenic roles during the development and progression of cancer. Given that the role of OATPs in handling cancer therapeutics has been already covered by several excellent reviews, this review will focus on the recent progresses on the topic, in particular the role of OATPs in the disposition of anticancer drugs, the impact of OATP genetic variations on the function of OATPs, and the OATPs differentially expressed in cancer and their potential roles in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Nilay Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
71
|
Marada VVVR, Flörl S, Kühne A, Burckhardt G, Hagos Y. Interaction of human organic anion transporter polypeptides 1B1 and 1B3 with antineoplastic compounds. Eur J Med Chem 2015; 92:723-31. [PMID: 25618019 DOI: 10.1016/j.ejmech.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022]
Abstract
Antineoplastic compounds are used in the treatment of a variety of cancers. The effectiveness of an antineoplastic compound to exert its activity is largely dependent on transport proteins involved in the entry of the compound into the cells, and those which drive it out of the cell. Organic anion transporting polypeptide 1B1 (OATP1B1) and organic anion transporting polypeptide 1B3 (OATP1B3), belonging to the SLCO family of proteins, are specifically expressed in the sinusoidal membranes of the liver, and are known to interact with a variety of drugs. The present study deals with the interaction of these proteins with antineoplastic compounds routinely used in cancer chemotherapy. The proteins OATP1B1 and OATP1B3 were functionally characterized in stably transfected human embryonic kidney cells using [(3)H] labeled estrone 3-sulfate and [(3)H] labeled cholecystokinin octapeptide (CCK-8) as substrates, respectively. Substrate uptake experiments performed in the presence of antineoplastic compounds showed that vinblastine and paclitaxel strongly interacted with the OATP1B1 with Ki values of 10.2 μM and 0.84 μM, respectively. OATP1B3 showed highly significant interactions with a variety of antineoplastic compounds including chlorambucil, mitoxantrone, vinblastine, vincristine, paclitaxel and etoposide, with Ki values of 40.6 μM, 3.2 μM, 15.9 μM, 30.6 μM, 1.8 μM and 13.5 μM, respectively. We report several novel interactions of the transporter proteins OATP1B1 and OATP1B3 highlighting the need to investigate their role in drug-drug interactions and cancer chemotherapy.
Collapse
Affiliation(s)
- Venkata V V R Marada
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Saskia Flörl
- PortaCellTec Biosciences GmbH, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Annett Kühne
- PortaCellTec Biosciences GmbH, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Gerhard Burckhardt
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Yohannes Hagos
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; PortaCellTec Biosciences GmbH, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
72
|
Yan Z, Li E, He L, Wang J, Zhu X, Wang H, Wang Z. Role of OATP1B3 in the transport of bile acids assessed using first-trimester trophoblasts. J Obstet Gynaecol Res 2014; 41:392-401. [PMID: 25345542 DOI: 10.1111/jog.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 07/25/2014] [Indexed: 01/15/2023]
Abstract
AIMS The aim of this study was to investigate the transport of two kinds of bile acids by organic anion transporting polypeptide 1B3 (OATP1B3) using first-trimester trophoblasts. The mechanisms of damage to fetuses with intrahepatic cholestasis of pregnancy were investigated, providing new potential strategies for targeted therapies aimed at reducing fetal risk. MATERIAL AND METHODS The expression of OATP1B3 was knocked down by lentiviral vector-mediated RNA interference, and silencing efficiency was assessed using real-time polymerase chain reaction and Western blotting. The cytotoxicity of two bile acids (glycocholic acid [GCA] and glycochenodeoxycholic acid [GCDCA]) was assessed using the MTT method. Transport of bile acids was assessed by establishing an in vitro trophoblast monolayer model using polyester Transwell-clear inserts, and the concentration of bile acids in the upper compartment was assessed using high-pressure liquid chromatography. RESULTS GCA and GCDCA (10 and 20 μM) were not cytotoxic to the SWAN cell line (P > 0.05). RNAi treatment decreased the mRNA and protein expressions of OATP1B3 by 94.42% and 49.51%, respectively (P < 0.05). The bile acid transport curves were similar in the control and negative RNAi groups, whereas those in the RNAi group differed significantly from those in the control and negative RNAi groups. The concentration of GCA and GCDCA in the upper compartment was significantly lower in the RNAi group than in the control and negative RNAi groups. CONCLUSIONS OATP1B3 expression in trophoblasts was confirmed indirectly by its ability to transport the bile acids GCA and GCDCA.
Collapse
Affiliation(s)
- Ziru Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Nakanishi T, Tamai I. Putative roles of organic anion transporting polypeptides (OATPs) in cell survival and progression of human cancers. Biopharm Drug Dispos 2014; 35:463-84. [DOI: 10.1002/bdd.1915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
74
|
Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1). Toxicol Appl Pharmacol 2014; 280:149-58. [DOI: 10.1016/j.taap.2014.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/23/2023]
|
75
|
Abstract
The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described.
Collapse
Affiliation(s)
- Michele Visentin
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461; , , ,
| | | | | | | |
Collapse
|
76
|
Steiner K, Hagenbuch B, Dietrich DR. Molecular cloning and functional characterization of a rainbow trout liver Oatp. Toxicol Appl Pharmacol 2014; 280:534-42. [PMID: 25218291 DOI: 10.1016/j.taap.2014.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772bp containing a 2115bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9μM and 13.4μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications.
Collapse
Affiliation(s)
- Konstanze Steiner
- University of Konstanz, Human- and Environmental Toxicology, 78464 Konstanz, Germany.
| | - Bruno Hagenbuch
- Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City 66160, KS, USA.
| | - Daniel R Dietrich
- University of Konstanz, Human- and Environmental Toxicology, 78464 Konstanz, Germany.
| |
Collapse
|
77
|
Hua WJ, Hua WX, Nan FY, Jiang WA, Yan C. The influence of herbal medicine ursolic acid on the uptake of rosuvastatin mediated by OATP1B1*1a and *5. Eur J Drug Metab Pharmacokinet 2014; 39:221-30. [PMID: 24736980 PMCID: PMC4142139 DOI: 10.1007/s13318-014-0187-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/07/2014] [Indexed: 02/08/2023]
Abstract
Chinese herbal medicines such as hawthorn, salvia, etc., are frequently combined with statins so as to treat cardiovascular diseases more effectively. Chinese herbal medicines contain many kinds of active components, which may have drug-drug interactions with statins. This study aims to explore the effect and mechanism by which ursolic acid affects OATP1B1-mediated transport of rosuvastatin. This study will explore the effect of ursolic acid on OAPT1B1-mediated transport of rosuvastatin in the different cell systems. Given the genetic polymorphisms of OATP1B1, simultaneously, this study will further explore the effect of ursolic acid on OATP1B1 (521T>C)-mediated transport of rosuvastatin. When the concentration of ursolic acid was 1.8 and 18 µM, it showed that ursolic acid significantly inhibits the uptake of rosuvastatin in both OATP1B1*1a-HEK 293T cells and OATP1B1*5-HEK 293T cells. The reduction of OATP1B1*1a transport of rosuvastatin were 34.60 ± 2.99 and 66.08 ± 1.83 %, and for OATP1B1*5 were 34.27 ± 7.08 % and 66.95 ± 1.14 %. Inhibitory parameters of IC50 were 6.25 ± 0.42 and 6.07 ± 0.57 µM, respectively. This study suggests that ursolic acid can affect the uptake of rosuvastatin in hepatocytes by inhibiting the transport of OATP1B1, and gene mutation of OATP1B1 may cause different effects on its transport of rosuvastatin.
Collapse
Affiliation(s)
- Wen Jin Hua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | | | | | | | | |
Collapse
|
78
|
Iusuf D, Hendrikx JJ, van Esch A, van de Steeg E, Wagenaar E, Rosing H, Beijnen JH, Schinkel AH. Human OATP1B1, OATP1B3 and OATP1A2 can mediate thein vivouptake and clearance of docetaxel. Int J Cancer 2014; 136:225-33. [DOI: 10.1002/ijc.28970] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Dilek Iusuf
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Jeroen J.M.A. Hendrikx
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
- Department of Pharmacy & Pharmacology; Slotervaart Hospital; Amsterdam The Netherlands
| | - Anita van Esch
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Evita van de Steeg
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Els Wagenaar
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology; Slotervaart Hospital; Amsterdam The Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology; Slotervaart Hospital; Amsterdam The Netherlands
| | - Alfred H. Schinkel
- Division of Molecular Oncology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| |
Collapse
|
79
|
Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. MOLECULAR AND CELLULAR THERAPIES 2014; 2:15. [PMID: 26056583 PMCID: PMC4452062 DOI: 10.1186/2052-8426-2-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022]
Abstract
Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA ; Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410078 China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
| |
Collapse
|
80
|
Sprowl JA, Sparreboom A. Uptake carriers and oncology drug safety. Drug Metab Dispos 2014; 42:611-22. [PMID: 24378324 PMCID: PMC3965905 DOI: 10.1124/dmd.113.055806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 02/06/2023] Open
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics in multiple tissues. Many of these transporters are highly expressed in the gastrointestinal tract, liver, and kidney and are considered to be of particular importance in governing drug absorption, elimination, and cellular sensitivity of specific organs to a wide variety of oncology drugs. Although the majority of studies on the interaction of oncology drugs with SLC have been restricted to the use of exploratory in vitro model systems, emerging evidence suggests that several SLCs, including OCT2 and OATP1B1, contribute to clinically important phenotypes associated with those agents. Recent literature has indicated that modulation of SLC activity may result in drug-drug interactions, and genetic polymorphisms in SLC genes have been described that can affect the handling of substrates. Alteration of SLC function by either of these mechanisms has been demonstrated to contribute to interindividual variability in the pharmacokinetics and toxicity associated with several oncology drugs. In this report, we provide an update on this rapidly emerging field.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
81
|
Sun P, Wang C, Liu Q, Meng Q, Zhang A, Huo X, Sun H, Liu K. OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacol Rep 2014; 66:311-9. [PMID: 24911086 DOI: 10.1016/j.pharep.2014.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 10/03/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Eprosartan is an angiotensin II receptor antagonist, used in the treatment of hypertension and heart failure in clinical patients. The objective of this study was to clarify the mechanism underlying hepatic uptake and biliary excretion of eprosartan in rats and humans. METHODS Perfused rat liver in situ, rat liver slices, isolated rat hepatocytes and human organic anion-transporting polypeptide (OATP)-transfected cells in vitro were used in this study. RESULTS Extraction ratio of eprosartan was decreased by rifampicin in perfused rat livers. Uptake of eprosartan in rat liver slices and isolated rat hepatocytes was significantly inhibited by Oatp modulators such as ibuprofen, digoxin, rifampicin and cyclosporine A, but not by tetraethyl ammonium or p-aminohippurate. Uptake of eprosartan in rat hepatocytes indicated a saturable process. Although uptake of eprosartan in OATP1B3-human embryonic kidney cells (HEK) 293 cells was not observed, significant differences in cellular accumulations of eprosartan between vector- and OATP1B1-Madin-Darby canine kidney strain (MDCK) II cells were found in transcellular transport study. Moreover, cumulative biliary excretion rate of eprosartan in the presence of probenecid (Multidrug resistance-associated protein 2 (Mrp2) inhibitor) was significantly decreased in perfused rat livers. Vectorial basal-to-apical transport of eprosartan was also observed in OATP1B1/MRP2 double transfectants. CONCLUSIONS Eprosartan was transported by multiple Oatps (at least Oatp1a1 and Oatp1a4)/Mrp2 in rat and OATP1B1/MRP2, at least, in human.
Collapse
Affiliation(s)
- Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Aijie Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China; Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Liaoning, China.
| |
Collapse
|
82
|
Radulović Z, Porter LM, Kim TK, Mulenga A. Comparative bioinformatics, temporal and spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides. Ticks Tick Borne Dis 2014; 5:287-98. [PMID: 24582512 DOI: 10.1016/j.ttbdis.2013.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 01/06/2023]
Abstract
Organic anion-transporting polypeptides (Oatps) are an integral part of the detoxification mechanism in vertebrates and invertebrates. These cell surface proteins are involved in mediating the sodium-independent uptake and/or distribution of a broad array of organic amphipathic compounds and xenobiotic drugs. This study describes bioinformatics and biological characterization of 9 Oatp sequences in the Ixodes scapularis genome. These sequences have been annotated on the basis of 12 transmembrane domains, consensus motif D-X-RW-(I,V)-GAWW-X-G-(F,L)-L, and 11 conserved cysteine amino acid residues in the large extracellular loop 5 that characterize the Oatp superfamily. Ixodes scapularis Oatps may regulate non-redundant cross-tick species conserved functions in that they did not cluster as a monolithic group on the phylogeny tree and that they have orthologs in other ticks. Phylogeny clustering patterns also suggest that some tick Oatp sequences transport substrates that are similar to those of body louse, mosquito, eye worm, and filarial worm Oatps. Semi-quantitative RT-PCR analysis demonstrated that all 9 I. scapularis Oatp sequences were expressed during tick feeding. Ixodes scapularis Oatp genes potentially regulate functions during early and/or late-stage tick feeding as revealed by normalized mRNA profiles. Normalized transcript abundance indicates that I. scapularis Oatp genes are strongly expressed in unfed ticks during the first 24h of feeding and/or at the end of the tick feeding process. Except for 2 I. scapularis Oatps, which were expressed in the salivary glands and ovaries, all other genes were expressed in all tested organs, suggesting the significance of I. scapularis Oatps in maintaining tick homeostasis. Different I. scapularis Oatp mRNA expression patterns were detected and discussed with reference to different physiological states of unfed and feeding ticks.
Collapse
Affiliation(s)
- Zeljko Radulović
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Lindsay M Porter
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Tae K Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
83
|
Choi MK, Kwon M, Ahn JH, Kim NJ, Bae MA, Song IS. Transport characteristics and transporter-based drug-drug interactions of TM-25659, a novel TAZ modulator. Biopharm Drug Dispos 2013; 35:183-94. [PMID: 24285344 DOI: 10.1002/bdd.1883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
The in vitro metabolic stability and transport mechanism of TM-25659, a novel TAZ modulator, was investigated in human hepatocytes and human liver microsomes (HLMs) based on the preferred hepatobiliary elimination in rats. In addition, the in vitro transport mechanism and transporter-mediated drug-drug interactions were evaluated using oocytes and MDCKII cells overexpressing clinically important drug transporters. After a 1 h incubation in HLMs, 92.9 ± 9.5% and 95.5 ± 11.6% of the initial TM-25659 remained in the presence of NADPH and UDPGA, respectively. Uptake of TM-25659 readily accumulated in human hepatocytes at 37 ºC (i.e. 6.7-fold greater than that at 4 ºC), in which drug transporters such as OATP1B1 and OATP1B3 were involved. TM-25659 had a significantly greater basal to apical transport rate (5.9-fold) than apical to basal transport rate in the Caco-2 cell monolayer, suggesting the involvement of an efflux transport system. Further studies using inhibitors of efflux transporters and overexpressing cells revealed that MRP2 was involved in the transport of TM-25659. These results, taken together, suggested that TM-25659 can be actively influxed into hepatocytes and undergo biliary excretion without substantial metabolism. Additionally, TM-25659 inhibited the transport activities of OATP1B1 and OATP1B3 with IC50 values of 36.3 and 25.9 μm, respectively. TM-25659 (100 μm) increased the accumulation of the probe substrate by 160% and 213%, respectively, through the inhibition of efflux function of P-gp and MRP2. In conclusion, OATP1B1, OATP1B3, P-gp and MRP2 might be major transporters responsible for the pharmacokinetics and drug-drug interaction of TM-25659, although their contribution to in vivo pharmacokinetics needs to be further investigated.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan, Korea
| | | | | | | | | | | |
Collapse
|
84
|
Izumi S, Nozaki Y, Komori T, Maeda K, Takenaka O, Kusano K, Yoshimura T, Kusuhara H, Sugiyama Y. Substrate-dependent inhibition of organic anion transporting polypeptide 1B1: comparative analysis with prototypical probe substrates estradiol-17β-glucuronide, estrone-3-sulfate, and sulfobromophthalein. Drug Metab Dispos 2013; 41:1859-66. [PMID: 23920221 DOI: 10.1124/dmd.113.052290] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 plays an important role in the hepatic uptake of many drugs, and the evaluation of OATP1B1-mediated drug-drug interactions (DDIs) is emphasized in the latest DDI (draft) guidance documents from U.S. and E.U. regulatory agencies. It has been suggested that some OATP1B1 inhibitors show a discrepancy in their inhibitory potential, depending on the substrates used in the cell-based assay. In this study, inhibitory effects of 14 compounds on the OATP1B1-mediated uptake of the prototypical substrates [³H]estradiol-17β-glucuronide (E₂G), [³H]estrone-3-sulfate (E₁S), and [³H]sulfobromophthalein (BSP) were studied in OATP1B1-transfected cells. Inhibitory potencies of tested compounds varied depending on the substrates. Ritonavir, gemfibrozil, and erythromycin caused remarkable substrate-dependent inhibition with up to 117-, 14-, and 13-fold difference in their IC₅₀ values, respectively. Also, the clinically relevant OATP inhibitors rifampin and cyclosporin A exhibited up to 12- and 6-fold variation in their IC₅₀ values, respectively. Regardless of the inhibitors tested, the most potent OATP1B1 inhibition was observed when [³H]E₂G was used as a substrate. Mutual inhibition studies of OATP1B1 indicated that E₂G and E₁S competitively inhibited each other, whereas BSP noncompetitively inhibited E₂G uptake. In addition, BSP inhibited E₁S in a competitive manner, but E₁S caused an atypical kinetics on BSP uptake. This study showed substrate-dependent inhibition of OATP1B1 and demonstrated that E₂G was the most sensitive in vitro OATP1B1 probe substrate among three substrates tested. This will give us an insight into the assessment of clinically relevant OATP1B1-mediated DDI in vitro with minimum potential of false-negative prediction.
Collapse
Affiliation(s)
- Saki Izumi
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd., Tokodai, Tsukuba-shi, Ibaraki, Japan (S.I., Y.N., T.K., O.T., K.K., T.Y.); Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama-shi, Kanagawa, Japan (Y.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hagenbuch B, Stieger B. The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 2013; 34:396-412. [PMID: 23506880 DOI: 10.1016/j.mam.2012.10.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 01/04/2023]
Abstract
The members of the organic anion transporting polypeptide superfamily (OATPs) are classified within the SLCO solute carrier family. All functionally well characterized members are predicted to have 12 transmembrane domains and are sodium-independent transport systems that mediate the transport of a broad range of endo- as well as xenobiotics. Substrates are mainly amphipathic organic anions with a molecular weight of more than 300Da, but some of the known transported substrates are also neutral or even positively charged. Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs. Based on their amino acid sequence identities, the different OATPs cluster into families (in general with more than 40% amino acid sequence identity) and subfamilies (more than 60% amino acid identity). With the sequencing of genomes from different species and the computerized prediction of encoded proteins more than 300 OATPs can be found in the databases, however only a fraction of them have been identified in humans, rodents, and some additional species important for pharmaceutical research like the rhesus monkey (Macaca mulatta), the dog (Canis lupus familiaris) and the pig (Sus scrofa). These OATPs form 6 families (OATP1-OATP6) and 13 subfamilies. In this review we try to summarize what is currently known about OATPs with respect to endogenous substrates, tissue distribution, transport mechanisms, regulation of expression, structure-function relationship and mutations and polymorphisms.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
86
|
Shitara Y, Takeuchi K, Horie T. Long-Lasting Inhibitory Effects of Saquinavir and Ritonavir on OATP1B1-Mediated Uptake. J Pharm Sci 2013; 102:3427-35. [DOI: 10.1002/jps.23477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/13/2013] [Accepted: 01/31/2013] [Indexed: 12/17/2022]
|
87
|
Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 2013; 34:45-78. [PMID: 23115084 DOI: 10.1002/bdd.1823] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organic anion transporting polypeptide (OATP) family transporters accept a number of drugs and are increasingly being recognized as important factors in governing drug and metabolite pharmacokinetics. OATP1B1 and OATP1B3 play an important role in hepatic drug uptake while OATP2B1 and OATP1A2 might be key players in intestinal absorption and transport across blood-brain barrier of drugs, respectively. To understand the importance of OATPs in the hepatic clearance of drugs, the rate-determining process for elimination should be considered; for some drugs, hepatic uptake clearance rather than metabolic intrinsic clearance is the more important determinant of hepatic clearances. The importance of the unbound concentration ratio (liver/blood), K(p,uu) , of drugs, which is partly governed by OATPs, is exemplified in interpreting the difference in the IC(50) of statins between the hepatocyte and microsome systems for the inhibition of HMG-CoA reductase activity. The intrinsic activity and/or expression level of OATPs are affected by genetic polymorphisms and drug-drug interactions. Their effects on the elimination rate or intestinal absorption rate of drugs may sometimes depend on the substrate drug. This is partly because of the different contribution of OATP isoforms to clearance or intestinal absorption. When the contribution of the OATP-mediated pathway is substantial, the pharmacokinetics of substrate drugs should be greatly affected. This review describes the estimation of the contribution of OATP1B1 to the total hepatic uptake of drugs from the data of fold-increases in the plasma concentration of substrate drugs by the genetic polymorphism of this transporter. To understand the importance of the OATP family transporters, modeling and simulation with a physiologically based pharmacokinetic model are helpful.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- Pharmacokinetics Laboratory, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Tsakalozou E, Adane ED, Kuo KL, Daily A, Moscow JA, Leggas M. The effect of breast cancer resistance protein, multidrug resistant protein 1, and organic anion-transporting polypeptide 1B3 on the antitumor efficacy of the lipophilic camptothecin 7-t-butyldimethylsilyl-10-hydroxycamptothecin (AR-67) in vitro. Drug Metab Dispos 2013; 41:1404-13. [PMID: 23620484 PMCID: PMC3684821 DOI: 10.1124/dmd.112.050021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/24/2013] [Indexed: 11/22/2022] Open
Abstract
AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin) is a lipophilic camptothecin analog, currently under early stage clinical trials. Transporters are known to have an impact on the disposition of camptothecins and on the response to chemotherapeutics in general due to their expression in tumor tissues. Therefore, we investigated the interplay between the breast cancer resistance protein (BCRP), multidrug resistant protein 1 (MDR1), and organic anion-transporting polypeptide (OATP) 1B1/1B3 transporters and AR-67 and their impact on the toxicity profile of AR-67. Using cell lines expressing the aforementioned transporters, we showed that the lipophilic AR-67 lactone form is a substrate for efflux transporters BCRP and MDR1. Additionally, OATP1B1 and OATP1B3 facilitated the uptake of AR-67 carboxylate in SLCO1B1- and SLCO1B3-transfected cell systems compared with the mock-transfected ones. Notably, both BCRP and MDR1 conferred resistance to AR-67 lactone. Prompted by recent studies showing increased OATP1B3 expression in certain cancer types, we investigated the effect of OATP1B3 expression on cell viability after exposure to AR-67 carboxylate. OATP1B3-expressing cells had increased carboxylate uptake as compared with mock-transfected cells but were not sensitized because the intracellular amount of lactone was 50-fold higher than that of carboxylate and comparable between OATP1B3-expressing and OATP1B3-nonexpressing cells. In conclusion, BCRP- and MDR1-mediated efflux of AR-67 lactone confers resistance to AR-67, but OATP1B3-mediated uptake of the AR-67 carboxylate does not sensitize OATP1B3-expressing tumor cells.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
89
|
König J, Müller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev 2013; 65:944-66. [PMID: 23686349 DOI: 10.1124/pr.113.007518] [Citation(s) in RCA: 403] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs can alter pharmacokinetics and pharmacodynamics of the victim drugs. This review will summarize in particular clinically observed drug-drug interactions attributable to inhibition or induction of intestinal export transporters [P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)], to inhibition of hepatic uptake transporters [organic anion transporting polypeptides (OATPs)], or to inhibition of transporter-mediated [organic anion transporters (OATs), organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATEs), P-gp] renal secretion of xenobiotics. Available data on the impact of nutrition on transport processes as well as genotype-dependent, transporter-mediated drug-drug interactions will be discussed. We will also present and discuss data on the variable extent to which information on the impact of transporters on drug disposition is included in summaries of product characteristics of selected countries (SPCs). Further work is required regarding a better understanding of the role of the drug metabolism-drug transport interplay for drug-drug interactions and on the extrapolation of in vitro findings to the in vivo (human) situation.
Collapse
Affiliation(s)
- Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Clinical Pharmacology and Clinical Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
90
|
Shirasaka Y, Shichiri M, Kasai T, Ohno Y, Nakanishi T, Hayashi K, Nishiura A, Tamai I. A role of prostaglandin transporter in regulating PGE₂ release from human bronchial epithelial BEAS-2B cells in response to LPS. J Endocrinol 2013; 217:265-74. [PMID: 23528477 DOI: 10.1530/joe-12-0339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Naturally occurring prostaglandin E₂ (PGE₂) plays a role in inflammatory responses through eicosanoid signaling pathways. PGE₂ is impermeable to cell membranes at physiological pH and needs solute carrier across the membranes; however, it remains unclear how intercellular concentrations of PGE₂ are regulated under the condition of inflammation. We aimed to clarify a role of organic anion-transporting polypeptide 2A1 (OATP2A1/SLCO2A1), also known as prostaglandin transporter (PGT), in PGE₂ release from cells. Human bronchial epithelial BEAS-2B cells were treated with lipopolysaccharide (LPS), and PGT inhibitors were tested to evaluate contribution of PGT to PGE₂ release by assessing its extracellular concentration and characterizing PGT-mediated PGE₂ efflux in Xenopus laevis oocytes. As a result, LPS elevated mRNA expression of a pro-inflammatory cytokine IL6 and extracellular concentration of PGE₂ in human bronchial epithelial BEAS-2B cells. PGT inhibitors tested (e.g. bromocresol green (BCG), bromosulfophthalein (BSP), and PGB₁) significantly inhibited efflux of PGE₂ from oocytes expressing PGT. Similarly, the amount of released PGE2 from the BEAS-2B cells decreased in the presence of BCG and BSP by 45 and 44% respectively while TGBz increased the concentration by 71%, suggesting that PGT mediates the release. In conclusion, these results imply a role of PGT in regulating intra- and extracellular concentrations of PGE₂ in response to cells under inflammatory conditions.
Collapse
Affiliation(s)
- Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 2013; 121:5145-53. [PMID: 23652803 DOI: 10.1182/blood-2013-01-480335] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pharmacogenetics of methotrexate (MTX) was investigated in a large cohort of pediatric patients with acute lymphoblastic leukemia (ALL). Four hundred ninety-nine children with ALL from the ALL-BFM (Berlin-Frankfurt-Münster) 2000 trial who received 1996 courses of MTX at 5 g/m(2) were genotyped for 8 single nucleotide polymorphisms in 5 candidate genes of the MTX/folate pathway. Patients' MTX pharmacokinetics, MTX toxicities, and outcomes were correlated with the genotypes. The interindividual variability in MTX kinetics had a substantial genetic component between 68% and 75%. The SLCO1B1 rs4149056 variant was significantly associated with MTX kinetics. In a multiple regression model, MTX area under the concentration time curve (AUC)0-48h increased by 26% (P < .001) per SLCO1B1 rs4149056 C allele. MTX AUC0-48h was a significant predictor of overall toxic adverse events during MTX courses (R(2) = 0.043; P < .001), whereas the thymidylate synthase rs34743033 tandem repeat polymorphism was predictive of stomatitis (R(2) = 0.018; P = .009), a frequent side effect of high-dose MTX. Multiple Cox regression analyses revealed an association of minimal residual disease (hazard ratio 7.3; P < .001) and methylenetetrahydrofolate reductase rs1801131 (hazard ratio 3.1; P = .015) with event-free survival in the ALL-BFM 2000 study population. Genetic variations substantially influence the kinetics and response to high-dose MTX therapy in childhood ALL.
Collapse
|
92
|
Ide T, Sasaki T, Maeda K, Higuchi S, Sugiyama Y, Ieiri I. Quantitative Population Pharmacokinetic Analysis of Pravastatin Using an Enterohepatic Circulation Model Combined With Pharmacogenomic Information onSLCO1B1andABCC2Polymorphisms. J Clin Pharmacol 2013; 49:1309-17. [DOI: 10.1177/0091270009341960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
93
|
Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, Sparreboom A, Baker SD. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res 2013; 19:1458-66. [PMID: 23340295 DOI: 10.1158/1078-0432.ccr-12-3306] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Many tyrosine kinase inhibitors (TKI) undergo extensive hepatic metabolism, but mechanisms of their hepatocellular uptake remain poorly understood. We hypothesized that liver uptake of TKIs is mediated by the solute carriers OATP1B1 and OATP1B3. EXPERIMENTAL DESIGN Transport of crizotinib, dasatinib, gefitinib, imatinib, nilotinib, pazopanib, sorafenib, sunitinib, vandetanib, and vemurafenib was studied in vitro using artificial membranes (PAMPA) and HEK293 cell lines stably transfected with OATP1B1, OATP1B3, or the ortholog mouse transporter, Oatp1b2. Pharmacokinetic studies were conducted with Oatp1b2-knockout mice and humanized OATP1B1- or OATP1B3-transgenic mice. RESULTS All 10 TKIs were identified as substrates of OATP1B1, OATP1B3, or both. Transport of sorafenib was investigated further, as its diffusion was particularly low in the PAMPA assay (<4%) than other TKIs that were transported by both OATP1B1 and OATP1B3. Whereas Oatp1b2 deficiency in vivo had minimal influence on parent and active metabolite N-oxide drug exposure, plasma levels of the glucuronic acid metabolite of sorafenib (sorafenib-glucuronide) were increased more than 8-fold in Oatp1b2-knockout mice. This finding was unrelated to possible changes in intrinsic metabolic capacity for sorafenib-glucuronide formation in hepatic or intestinal microsomes ex vivo. Ensuing experiments revealed that sorafenib-glucuronide was itself a transported substrate of Oatp1b2 (17.5-fold vs. control), OATP1B1 (10.6-fold), and OATP1B3 (6.4-fold), and introduction of the human transporters in Oatp1b2-knockout mice provided partial restoration of function. CONCLUSIONS These findings signify a unique role for OATP1B1 and OATP1B3 in the elimination of sorafenib-glucuronide and suggest a role for these transporters in the in vivo handling of glucuronic acid conjugates of drugs.
Collapse
Affiliation(s)
- Eric I Zimmerman
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
95
|
Gong IY, Kim RB. Impact of Genetic Variation in OATP Transporters to Drug Disposition and Response. Drug Metab Pharmacokinet 2013; 28:4-18. [DOI: 10.2133/dmpk.dmpk-12-rv-099] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Impact of OATP1B1, MDR1, and CYP3A4 Expression in Liver and Intestine on Interpatient Pharmacokinetic Variability of Atorvastatin in Obese Subjects. Clin Pharmacol Ther 2012; 93:275-82. [DOI: 10.1038/clpt.2012.261] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
97
|
Loubière LS, Vasilopoulou E, Glazier JD, Taylor PM, Franklyn JA, Kilby MD, Chan SY. Expression and function of thyroid hormone transporters in the microvillous plasma membrane of human term placental syncytiotrophoblast. Endocrinology 2012; 153:6126-35. [PMID: 23087173 PMCID: PMC4192285 DOI: 10.1210/en.2012-1753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022]
Abstract
The transplacental passage of thyroid hormones (THs) from mother to fetus in humans has been deduced from observational clinical studies and is important for normal fetoplacental development. To investigate the transporters that regulate TH uptake by syncytiotrophoblast (the primary barrier to maternal-fetal exchange, which lies in direct contact with maternal blood), we isolated the microvillous plasma membrane (MVM) of human term syncytiotrophoblasts. We have demonstrated that MVM vesicles express plasma membrane TH transporter proteins, including system-L (L-type amino acid transporter 1 and CD98), monocarboxylate transporters (MCTs) 8 and 10, organic anion-transporting polypeptides 1A2 and 4A1. We provide the first definitive evidence that the human syncytiotrophoblast MVM is capable of rapid, saturable T(4) and T(3) uptake at similar rates and in a Na(+)-independent manner. These two major forms of THs could not significantly inhibit each others' uptake, suggesting that each is mediated by largely different transporters. No single transporter was noted to play a dominant role in either T(4) or T(3) uptake. Using combinations of transporter inhibitors that had an additive effect on TH uptake, we provide evidence that 67% of saturable T(4) uptake is facilitated by system-L and MCT10 with a minor role played by organic anion-transporting polypeptides, whereas 87% of saturable T(3) uptake is mediated by MCT8 and MCT10. Our data demonstrate that syncytiotrophoblast may control the quantity and forms of THs taken up by the human placenta. Thus, syncytiotrophoblast could be critical in regulating transplacental TH supply from the mother to the fetus.
Collapse
Affiliation(s)
- L S Loubière
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
98
|
Li J, Wang Y, Zhang W, Huang Y, Hein K, Hidalgo IJ. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems. Drug Metab Dispos 2012; 40:2102-8. [PMID: 22855735 DOI: 10.1124/dmd.112.045666] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Membrane transporters can play a clinically important role in drug absorption and disposition; Caco-2 and Madin-Darby canine kidney (MDCK) cells are the most widely used in vitro models for studying the functions of these transporters and associated drug interactions. Transport studies using these cell models are mostly focused on apical transporters, whereas basolateral drug transport processes are largely ignored. However, for some hydrophilic drugs, a basolateral uptake transporter may be required for drugs to enter cells before they can interact with apical efflux transporters. The objective of this study was to evaluate potential differences in drug transport across Caco-2 and MDCK basolateral membrane that could cause discrepancy in the identification of efflux transporter substrates and to elucidate the underlying factors that may cause such differences, using rosuvastatin as a model substrate. Bidirectional transport results in Caco-2 and breast cancer resistance protein-MDCK cells demonstrated the necessity of an uptake transporter at the basolateral membrane for rosuvastatin. Kinetic study revealed saturable and nonsaturable processes for rosuvastatin uptake across the Caco-2 basolateral membrane, with the saturable process encompassing >75% of overall rosuvastatin basolateral uptake at concentrations below the K(m) (4.2 μM). Furthermore, rosuvastatin basolateral transport exhibited cis-inhibition and trans-stimulation phenomena, indicating a facilitated diffusion mechanism. This basolateral transporter appeared to be a prerequisite for rosuvastatin and perhaps for other hydrophilic substrates to interact with apical efflux transporters. Deficit of such a basolateral transporter in certain cell models may lead to false-negative results when screening drug interactions with apical efflux transporters.
Collapse
Affiliation(s)
- Jibin Li
- Absorption Systems LP, Exton, PA 19341, USA
| | | | | | | | | | | |
Collapse
|
99
|
Segawa M, Ogura J, Seki S, Itagaki S, Takahashi N, Kobayashi M, Hirano T, Yamaguchi H, Iseki K. Rapid stimulating effect of the antiarrhythmic agent amiodarone on absorption of organic anion compounds. Drug Metab Pharmacokinet 2012; 28:178-86. [PMID: 22986710 DOI: 10.2133/dmpk.dmpk-12-rg-010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a clinical setting, changes in pharmacokinetics due to drug-drug interactions can often directly affect the therapeutic safety and efficacy of drugs. Recently, interest has been shown in drug-drug interactions in the intestine. It is now recognized that changes in the functions of drug transporters substantially influence the absorption of administered drugs from the intestine. Amiodarone (AMD) is a potent drug used in the treatment of serious supraventricular and ventricular tachyarrhythmias. Despite its potent pharmacological effects, its wide clinical use is precluded by drug-drug interactions. In this study, we characterized the transporter function between AMD and various compounds in human intestinal model Caco-2 cells. AMD significantly and rapidly increased the uptake of [(3)H]estrone-3-sulfate (E-3-S) for 5 min. The apical-to-basal transport of [(3)H]E-3-S was significantly increased by AMD. The AMD-stimulated [(3)H]E-3-S uptake was inhibited by organic anion transporting polypeptide (OATP) substrates. Caco-2 cells treated with AMD showed increased OATP2B1 expression on the cell surface. AMD also increased the absorption of sulfobromophthalein (BSP), which is a typical organic anion compound, and the expression level of Oatp2b1 at the membrane in in vivo experiments. The results indicate that AMD induces OATP2B1/Oatp2b1 expression at the membrane in the intestine and enhances absorption of organic anion compounds.
Collapse
Affiliation(s)
- Masahiro Segawa
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 2012; 165:1260-87. [PMID: 22013971 DOI: 10.1111/j.1476-5381.2011.01724.x] [Citation(s) in RCA: 574] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption, distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of 12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined, combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A superfamilies.
Collapse
Affiliation(s)
- Megan Roth
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|