51
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
52
|
Antoon JW, White MD, Burow ME, Beckman BS. Dual inhibition of sphingosine kinase isoforms ablates TNF-induced drug resistance. Oncol Rep 2012; 27:1779-86. [PMID: 22469881 DOI: 10.3892/or.2012.1743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/15/2012] [Indexed: 01/14/2023] Open
Abstract
Recent research has demonstrated that aberrant sphingolipid signaling is an important mechanism of chemoresistance in solid tumors. Sphingosine kinase (Sphk), the primary enzyme metabolizing the sphingolipid ceramide into sphingosine-1-phosphate (S1P), is a primary mediator of breast cancer promotion, survival and chemoresistance. However, to date the mechanism of Sphk-mediated drug resistance is poorly understood. Using the dual sphingosine kinase isozyme inhibitor, SKI-II (4-[4-(4-chloro-phenyl)-thiazol-2-ylamino]-phenol), we explored the effects of sphingosine kinase inhibition on multi-drug-resistant breast cancer cells. We demonstrate that SKI-II alters endogenous sphingolipid signaling and decreases cancer proliferation, survival and viability. Furthermore, pharmacological inhibition of Sphk1/2 induced intrinsic apoptosis in these cells through modulation of the NF-κB pathway. SKI-II decreases NF-κB transcriptional activity through altered phosphorylation of the p65 subunit. Taken together, these results suggest that Sphk may be a promising therapeutic target in chemoresistant cancers.
Collapse
Affiliation(s)
- James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
53
|
von Bismarck P, Winoto-Morbach S, Herzberg M, Uhlig U, Schütze S, Lucius R, Krause MF. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulm Pharmacol Ther 2012; 25:228-35. [PMID: 22469869 DOI: 10.1016/j.pupt.2012.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/10/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms.
Collapse
Affiliation(s)
- Philipp von Bismarck
- Department of Paediatrics, University Hospital Schleswig-Holstein, and Department of Anatomy, CAU University of Kiel, Campus Kiel, Schwanenweg 20, 24105 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
54
|
Schuchardt M, Tölle M, Prüfer J, van der Giet M. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 2011; 163:1140-62. [PMID: 21309759 DOI: 10.1111/j.1476-5381.2011.01260.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was identified as a crucial molecule for regulating immune responses, inflammatory processes as well as influencing the cardiovascular system. S1P mediates differentiation, proliferation and migration during vascular development and homoeostasis. S1P is a naturally occurring lipid metabolite and is present in human blood in nanomolar concentrations. S1P is not only involved in physiological but also in pathophysiological processes. Therefore, this complex signalling system is potentially interesting for pharmacological intervention. Modulation of the system might influence inflammatory, angiogenic or vasoregulatory processes. S1P activates G-protein coupled receptors, namely S1P(1-5) , whereas only S1P(1-3) is present in vascular cells. S1P can also act as an intracellular signalling molecule. This review highlights the pharmacological potential of S1P signalling in the vascular system by giving an overview of S1P-mediated processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). After a short summary of S1P metabolism and signalling pathways, the role of S1P in EC and VSMC proliferation and migration, the cause of relaxation and constriction of arterial blood vessels, the protective functions on endothelial apoptosis, as well as the regulatory function in leukocyte adhesion and inflammatory responses are summarized. This is followed by a detailed description of currently known pharmacological agonists and antagonists as new tools for mediating S1P signalling in the vasculature. The variety of effects influenced by S1P provides plenty of therapeutic targets currently under investigation for potential pharmacological intervention.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité- Universitätsmedizin Berlin, CharitéCentrum 10, Department of Nephrology, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | |
Collapse
|
55
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
56
|
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipid sphingosine into the antiapoptotic lipid sphingosine-1-phosphate, which activates the signal transduction pathways that lead to cell proliferation, migration, activation of the inflammatory response and impairment of apoptosis. Compelling evidence suggests that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread. High levels of SK1 expression or activity have been associated with poor prognosis in several cancers, including those of the prostate. Recent studies using prostate cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy. However, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery that clinically approved drug fingolimod has SK1-inhibiting properties, SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors might follow soon.
Collapse
|
57
|
Lan T, Bi H, Liu W, Xie X, Xu S, Huang H. Simultaneous determination of sphingosine and sphingosine 1-phosphate in biological samples by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:520-6. [DOI: 10.1016/j.jchromb.2011.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 11/27/2022]
|
58
|
Lee SH. Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.1.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
59
|
Jin YX, Shin KO, Park MY, Lee SH, Park BD, Oh SK, Yoo HS, Lee YM. Effects of Synthetic Pseudoceramides on Sphingosine Kinase Activity in F9-12 Cells. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.1.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
60
|
Liu J, Hsu A, Lee JF, Cramer DE, Lee MJ. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient. World J Biol Chem 2011; 2:1-13. [PMID: 21472036 PMCID: PMC3070303 DOI: 10.4331/wjbc.v2.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/05/2023] Open
Abstract
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.
Collapse
Affiliation(s)
- Jingjing Liu
- Jingjing Liu, Andrew Hsu, Jen-Fu Lee, Menq-Jer Lee, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | | | | | | | | |
Collapse
|
61
|
Lan T, Bi H, Xu S, Le K, Xie Z, Liu Y, Huang H. Determination of sphingosine kinase activity in biological samples by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2011; 24:1075-83. [PMID: 20352614 DOI: 10.1002/bmc.1407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sphingosine kinase (SphK) is a key enzyme in modulating the levels of sphingosine 1-phosphate (S1P) as well as an important enzyme in numerous biological responses. Using C17-sphingosine as a substrate, we established a rapid, sensitive and highly efficient method for determination of SphK activity by analyzing the product C17-sphingosine 1-phosphate (C17-S1P) using liquid chromatography-tandem mass spectrometry. The standard curve for C17-S1P was linear over a wide range (10-1000 ng/mL) with correlation coefficient (r(2)) greater than 0.999. The lower limit of quantification for C17-S1P was 10 ng/mL. The K(m) values for C17-sphingosine and ATP were determined to be 28.17 and 188.5 microM, respectively. More importantly, the SphK activity dramatically increased in cultured HEK 293 cells expressing wild-type SphK1 as well as cells treated with tumor necrosis factor-alpha, a sphingosine kinase activator. In contrast, the SphK activity decreased in cultured HEK 293 cells treated with dimethylsphngosine, a sphingosine kinase inhibitor. In conclusion, this method was sensitive and rapid in the determination of SphK acitivity, providing striking utilities in exploring the sphingosine kinase signaling pathway and screening active compounds targeting SphK activity.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Wati S, Rawlinson SM, Ivanov RA, Dorstyn L, Beard MR, Jans DA, Pitson SM, Burrell CJ, Li P, Carr JM. Tumour necrosis factor alpha (TNF-alpha) stimulation of cells with established dengue virus type 2 infection induces cell death that is accompanied by a reduced ability of TNF-alpha to activate nuclear factor kappaB and reduced sphingosine kinase-1 activity. J Gen Virol 2010; 92:807-18. [PMID: 21148274 DOI: 10.1099/vir.0.028159-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) has an antiviral role in some infections but in dengue virus (DENV) infection it is linked to severe pathology. We have previously shown that TNF-α stimulation cannot activate nuclear factor κB (NF-κB) to the fullest extent in DENV-2-infected cells. Here, we investigate further responses of DENV-2-infected cells to TNF-α, focussing particularly on cell death and pro-survival signals. TNF-α stimulation of productively DENV-2-infected monocyte-derived macrophages or HEK-293 cells induced caspase-3-mediated cell death. While TNF-α induced comparable degradation of the inhibitor of NF-κB alpha (IκB-α) and NF-κB activation in mock-infected and DENV-2-infected cells early in infection, later in infection and coinciding with TNF-α-induced cell death, TNF-α-stimulated IκB-α degradation and NF-κB activation was reduced. This was associated with reduced levels of sphingosine kinase-1 (SphK1) activity in DENV-2-infected cells; SphK1 being a known mediator of TNF-α-stimulated survival signals. Transfection experiments demonstrated inhibition of TNF-α-stimulated NF-κB activation by expression of DENV-2 capsid (CA) but enhancement by DENV-2 NS5 protein. DENV-2 CA alone, however, did not induce TNF-α-stimulated cell death or inhibit SphK1 activity. Thus, productively DENV-2-infected cells have compromised TNF-α-stimulated survival pathways and show enhanced susceptibility to TNF-α-stimulated cell death, suggesting a role for TNF-α in the killing of healthy productively DENV-2-infected cells. Additionally, the altered ability of TNF-α to activate NF-κB as infection progresses is reflected by the opposing actions of DENV-2 CA and NS5 proteins on TNF-α-stimulated NF-κB activation and could have important consequences for NF-κB-driven release of inflammatory cytokines.
Collapse
Affiliation(s)
- Satiya Wati
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, South Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bonnaud S, Niaudet C, Legoux F, Corre I, Delpon G, Saulquin X, Fuks Z, Gaugler MH, Kolesnick R, Paris F. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res 2010; 70:9905-15. [PMID: 21118968 DOI: 10.1158/0008-5472.can-10-2043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A previous in vitro study showed that sphingosine-1-phosphate (S1P), a ceramide antagonist, preserved endothelial cells in culture from radiation-induced apoptosis. We proposed to validate the role of S1P in tissue radioprotection by inhibiting acute gastrointestinal (GI) syndrome induced by endothelial cell apoptosis after high dose of radiation. Retro-orbital S1P was injected in mice exposed to 15 Gy, a dose-inducing GI syndrome within 10 days. Overall survival and apoptosis on intestines sections were studied. Intestinal cell type targeted by S1P and early molecular survival pathways were researched using irradiated in vitro cell models and in vivo mouse models. We showed that retro-orbital S1P injection before irradiation prevented GI syndrome by inhibiting endothelium collapse. We defined endothelium as a specific therapeutic target because only these cells and not intestinal epithelial cells, or B and T lymphocytes, were protected. Pharmacologic approaches using AKT inhibitor and pertussis toxin established that S1P affords endothelial cell protection in vitro and in vivo through a mechanism involving AKT and 7-pass transmembrane receptors coupled to Gi proteins. Our results provide strong pharmacologic and mechanistic proofs that S1P protects endothelial cells against acute radiation enteropathy.
Collapse
Affiliation(s)
- Stéphanie Bonnaud
- Inserm UMR892-Centre de Recherche en Cancérologie Nantes-Angers, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1345] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Xia P, Wadham C. Sphingosine 1-phosphate, a key mediator of the cytokine network: juxtacrine signaling. Cytokine Growth Factor Rev 2010; 22:45-53. [PMID: 21051273 DOI: 10.1016/j.cytogfr.2010.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 01/21/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite, which has emerged as an important signaling mediator participating in the regulation of multiple cellular processes. The discovery of a family of S1P receptors, together with the more recently identified intracellular targets, has provided fundamental understanding of the multi-faceted actions of S1P. Evidence from both in vitro and in vivo studies has implicated the S1P signaling system in the control of immunity, inflammation and many associated diseases. Enigmatically, S1P appears to have both pro- and anti-inflammatory effects depending on the cell context. Here, we review this emerging area and argue for a pivotal role for S1P, as a key mediator of the cytokine network, acting through juxtacrine signaling in the immune system.
Collapse
Affiliation(s)
- Pu Xia
- Signal Transduction Program, Centenary Institute and Sydney Medical School University of Sydney, Australia.
| | | |
Collapse
|
66
|
Antoon JW, White MD, Meacham WD, Slaughter EM, Muir SE, Elliott S, Rhodes LV, Ashe HB, Wiese TE, Smith CD, Burow ME, Beckman BS. Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology 2010; 151:5124-35. [PMID: 20861237 PMCID: PMC2954724 DOI: 10.1210/en.2010-0420] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alterations in sphingolipid metabolism have been shown to contribute to the development of endocrine resistance and breast cancer tumor survival. Sphingosine kinase (SK), in particular, is overexpressed in breast cancer and is a promising target for breast cancer drug development. In this study, we used the novel SK inhibitor ABC294640 as a tool to explore the relationship between SK and estrogen (E2) receptor (ER) signaling in breast cancer cells. Treatment with ABC294640 decreased E2-stimulated ERE-luciferase activity in both MCF-7 and ER-transfected HEK293 cells. Furthermore, the inhibitor reduced E2-mediated transcription of the ER-regulated genes progesterone receptor and SDF-1. Competitive receptor-binding assays revealed that ABC294640 binds in the antagonist ligand-binding domain of the ER, acting as a partial antagonist similar to tamoxifen. Finally, treatment with ABC294640 inhibited ER-positive breast cancer tumor formation in vivo. After 15 d of treatment with ABC294640, tumor volume was reduced by 68.4% (P < 0.05; n = 5) compared with control tumors, with no marked weight loss or illness. Taken together, these results provide strong evidence that this novel SK inhibitor, which had not previously been known to interact with E2 signaling pathways, has therapeutic potential in treating ER-positive breast cancer via inhibition of both SK and ER signaling.
Collapse
Affiliation(s)
- James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Pchejetski D, Bohler T, Brizuela L, Sauer L, Doumerc N, Golzio M, Salunkhe V, Teissié J, Malavaud B, Waxman J, Cuvillier O. FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 2010; 70:8651-61. [PMID: 20959468 DOI: 10.1158/0008-5472.can-10-1388] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radiotherapy is widely used as a radical treatment for prostate cancer, but curative treatments are elusive for poorly differentiated tumors where survival is just 15% at 15 years. Dose escalation improves local response rates but is limited by tolerance in normal tissues. A sphingosine analogue, FTY720 (fingolimod), a drug currently in phase III studies for treatment of multiple sclerosis, has been found to be a potent apoptosis inducer in prostate cancer cells. Using in vitro and in vivo approaches, we analyzed the impact of FTY720 on sphingolipid metabolism in hormone-refractory metastatic prostate cancer cells and evaluated its potential as a radiosensitizer on cell lines and prostate tumor xenografts. In prostate cancer cell lines, FTY720 acted as a sphingosine kinase 1 (SphK1) inhibitor that induced prostate cancer cell apoptosis in a manner independent of sphingosine-1-phosphate receptors. In contrast, γ irradiation did not affect SphK1 activity in prostate cancer cells yet synergized with FTY720 to inhibit SphK1. In mice bearing orthotopic or s.c. prostate cancer tumors, we show that FTY720 dramatically increased radiotherapeutic sensitivity, reducing tumor growth and metastasis without toxic side effects. Our findings suggest that low, well-tolerated doses of FTY720 could offer significant improvement to the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Dmitri Pchejetski
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chiba Y, Takeuchi H, Sakai H, Misawa M. SKI-II, an inhibitor of sphingosine kinase, ameliorates antigen-induced bronchial smooth muscle hyperresponsiveness, but not airway inflammation, in mice. J Pharmacol Sci 2010; 114:304-10. [PMID: 20948165 DOI: 10.1254/jphs.10202fp] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
To determine if endogenously generated sphingosine-1-phosphate (S1P) is involved in the development of allergic bronchial asthma, the effects of systemic treatments with SKI-II, a specific inhibitor of sphingosine kinase, on antigen-induced bronchial smooth muscle (BSM) hyperresponsiveness and airway inflammation were examined in mice. Male BALB/c mice were actively sensitized with ovalbumin (OA) antigen and were repeatedly challenged with aerosolized antigen. Animals also received intraperitoneal injections with SKI-II (50 mg/kg) 1 h prior to each antigen challenge. The acetylcholine (ACh)-induced contraction of BSM isolated from the repeatedly antigen-challenged mice was significantly augmented, that is, BSM hyperresponsiveness, as compared with that from the control animals (P < 0.05). The BSM hyperresponsiveness induced by antigen exposure was ameliorated by the systemic treatment with SKI-II, whereas the treatments had no effect on BSM responsiveness to ACh in control animals. On the other hand, the systemic treatments with SKI-II had no effect on antigen-induced inflammatory signs, such as increase in cell counts in bronchoalveolar lavage fluids (BALFs) and change in airway histology; upregulation of BALF cytokines, such as interleukin-4 (IL-4) and IL-13; and elevation of total and OA-specific immunoglobulin E (IgE) in sera. These findings suggest that sphingosine kinase inhibitors such as SKI-II have an ability to prevent the development of BSM hyperresponsiveness, but not of allergic airway inflammation. The endogenously generated S1P might be one of the exacerbating factors for the airway hyperresponsiveness, one of the characteristic features of allergic bronchial asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, Japan.
| | | | | | | |
Collapse
|
69
|
Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S, Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-α enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-phosphate signaling. Stroke 2010; 41:2618-24. [PMID: 20930159 DOI: 10.1161/strokeaha.110.593327] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE We sought to demonstrate that tumor necrosis factor (TNF)-α, via sphingosine-1-phosphate signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss. METHODS We performed intravital fluorescence microscopy to measure blood flow and capillary diameter in anesthetized guinea pigs. To measure capillary diameter ex vivo, capillary beds from the gerbil spiral ligament were isolated from the cochlear lateral wall and maintained in an organ bath. Isolated gerbil spiral modiolar arteries, maintained and transfected in organ culture, were used to measure calcium sensitivity (calcium-tone relationship). In a clinical study, a total of 12 adult patients presenting with typical symptoms of sudden hearing loss who were not responsive or only partially responsive to prednisolone treatment were identified and selected for etanercept treatment. Etanercept (25 mg s.c.) was self-administered twice a week for 12 weeks. RESULTS TNF-α induced a proconstrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing sphingosine-1-phosphate receptor 2 subtype signaling (by 1 μmol/L JTE013) attenuated the effects of TNF-α in all models. TNF-α activated sphingosine kinase 1 (Sk1) and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1(G82D)) eliminated both baseline spiral modiolar artery calcium sensitivity and TNF-α effects, whereas a nonphosphorylatable Sk1 mutant (Sk1(S225A)) blocked the effects of TNF-α only. A small group of etanercept-treated, hearing loss patients recovered according to a 1-phase exponential decay (half-life=1.56 ± 0.20 weeks), which matched the kinetics predicted for a vascular origin. CONCLUSIONS TNF-α indeed reduces cochlear blood flow via activation of vascular sphingosine-1-phosphate signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis, and treatment.
Collapse
Affiliation(s)
- Elias Q Scherer
- Hals-Nasen-Ohrenklinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) control inflammatory and immune responses by acting downstream of TNFRs and Toll-like receptors (TLRs). TRAF2 in particular has been extensively studied for its involvement in signaling by TNF-α, the classic inflammatory cytokine. Because it has a RING finger, it has been suggested that TRAF2 acts as an E3 ubiquitin ligase that catalyzes the noncanonical Lys-63 (K63)-linked polyubiquitination of receptor-induced protein 1 (RIP1), which is an essential event in the activation of the IκB kinase complex and consequently nuclear factor κB. Furthermore, TRAF2 itself is subject to K63-linked polyubiquitination, a modification that is rapidly induced upon receptor ligation and was interpreted to be the result of self-ubiquitination. However, formal evidence that TRAF2 is an active E3 ubiquitin ligase was lacking. New evidence shows that sphingosine-1-phosphate (S1P), a sphingolipid that is synthesized during inflammatory responses, is an essential cofactor for TRAF2 ubiquitin ligase activity. S1P binds to TRAF2 and promotes TRAF2-mediated K63-linked RIP1 polyubiquitination, providing direct evidence that TRAF2 is an active E3 ubiquitin ligase and also introducing lipid second messengers into the realm of TNFR and TLR signaling.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
71
|
Siow DL, Anderson CD, Berdyshev EV, Skobeleva A, Pitson SM, Wattenberg BW. Intracellular localization of sphingosine kinase 1 alters access to substrate pools but does not affect the degradative fate of sphingosine-1-phosphate. J Lipid Res 2010; 51:2546-59. [PMID: 20386061 PMCID: PMC2918438 DOI: 10.1194/jlr.m004374] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/11/2010] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinase 1 (SK1) produces sphingosine-1-phosphate (S1P), a potent signaling lipid. The subcellular localization of SK1 can dictate its signaling function. Here, we use artificial targeting of SK1 to either the plasma membrane (PM) or the endoplasmic reticulum (ER) to test the effects of compartmentalization of SK1 on substrate utilization and downstream metabolism of S1P. Expression of untargeted or ER-targeted SK1, but surprisingly not PM-targeted SK1, results in a dramatic increase in the phosphorylation of dihydrosphingosine, a metabolic precursor in de novo ceramide synthesis. Conversely, knockdown of endogenous SK1 diminishes both dihydrosphingosine-1-phosphate and S1P levels. We tested the effects of SK1 localization on degradation of S1P by depletion of the ER-localized S1P phosphatases and lyase. Remarkably, S1P produced at the PM was degraded to the same extent as that produced in the ER. This indicates that there is an efficient mechanism for the transport of S1P from the PM to the ER. In acute labeling experiments, we find that S1P degradation is primarily driven by lyase cleavage of S1P. Counterintuitively, when S1P-specific phosphatases are depleted, acute labeling of S1P is significantly reduced, indicative of a phosphatase-dependent recycling process. We conclude that the localization of SK1 influences the substrate pools that it has access to and that S1P can rapidly translocate from the site where it is synthesized to other intracellular sites.
Collapse
Affiliation(s)
- Deanna L. Siow
- Departments of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY
- Departments of Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY
| | - Charles D. Anderson
- Departments of Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY
| | - Evgeny V. Berdyshev
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL
| | - Anastasia Skobeleva
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Binks W. Wattenberg
- Departments of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY
- Departments of Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY
- Departments of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
72
|
Lin CH, Lu J, Lee H. Interleukin-1β expression is required for lysophosphatidic Acid-induced lymphangiogenesis in human umbilical vein endothelial cells. Int J Inflam 2010; 2011:351010. [PMID: 21151531 PMCID: PMC2989649 DOI: 10.4061/2011/351010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/24/2010] [Accepted: 06/28/2010] [Indexed: 11/20/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator which binds to G-protein-coupled receptors and regulates various cellular responses, including inflammation of endothelial cells. Interleukin- (IL-) 1β, a proinflammatory cytokine, is elevated upon LPA treatment in human umbilical vein endothelial cells (HUVECs). Previous studies indicated that LPA upregulates vascular endothelial growth factor- (VEGF-) C and lymphatic marker expressions in HUVECs. However, the relationships between LPA-induced VEGF-C and IL-1β expressions are not clear. In this paper, we demonstrated that, in the presence of AF12198, an inhibitor of the IL-1 receptor abolished LPA-induced VEGF-C and lymphatic marker expressions in HUVECs. Furthermore, LPA-induced in vitro tube formation of HUVECs was also suppressed by pretreatment with AF12198. Our results suggest that LPA-stimulated lymphangiogenesis in HUVECs is mediated through IL-1β-induced VEGF-C expression.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- Institute of Zoology, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | |
Collapse
|
73
|
Lucki NC, Sewer MB. The interplay between bioactive sphingolipids and steroid hormones. Steroids 2010; 75:390-9. [PMID: 20138078 PMCID: PMC2854287 DOI: 10.1016/j.steroids.2010.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 01/02/2023]
Abstract
Steroid hormones regulate various physiological processes including development, reproduction, and metabolism. These regulatory molecules are synthesized from cholesterol in endocrine organs - such as the adrenal glands and gonads - via a multi-step enzymatic process that is catalyzed by the cytochrome P450 superfamily of monooxygenases and hydroxysteroid dehydrogenases. Steroidogenesis is induced by trophic peptide hormones primarily via the activation of a cAMP/protein kinase A (PKA)-dependent pathway. However, other signaling molecules, including cytokines and growth factors, control the steroid hormone biosynthetic pathway. More recently, sphingolipids, including ceramide, sphingosine-1-phosphate, and sphingosine, have been found to modulate steroid hormone secretion at multiple levels. In this review, we provide a brief overview of the mechanisms by which sphingolipids regulate steroidogenesis. In addition, we discuss how steroid hormones control sphingolipid metabolism. Finally, we outline evidence supporting the emerging role of bioactive sphingolipids in various nuclear processes and discuss a role for nuclear sphingolipid metabolism in the control of gene transcription.
Collapse
Affiliation(s)
- Natasha C. Lucki
- School of Biology and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 310 Ferst Dr., Atlanta, GA 30332
| | - Marion B. Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0704, La Jolla, CA 92093
| |
Collapse
|
74
|
Leong WI, Saba JD. S1P metabolism in cancer and other pathological conditions. Biochimie 2010; 92:716-23. [PMID: 20167244 DOI: 10.1016/j.biochi.2010.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/12/2010] [Indexed: 12/28/2022]
Abstract
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.
Collapse
Affiliation(s)
- Weng In Leong
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA
| | | |
Collapse
|
75
|
Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn’s disease. Inflammopharmacology 2010; 18:73-85. [DOI: 10.1007/s10787-010-0032-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/20/2010] [Indexed: 12/23/2022]
|
76
|
Hernandez F, Peluffo MC, Bas D, Stouffer RL, Tesone M. Local effects of the sphingosine 1-phosphate on prostaglandin F2alpha-induced luteolysis in the pregnant rat. Mol Reprod Dev 2010; 76:1153-64. [PMID: 19645054 DOI: 10.1002/mrd.21083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Since the regression of the corpus luteum (CL) occurs via a tightly controlled apoptotic process, studies were designed to determine if local administration of the antiapoptotic agent sphingosine 1-phosphate (S1P) effectively blocks the luteolytic action of prostaglandin F-2alpha (PGF-2alpha). On day 19 of pregnancy, 2 hr before systemic PGF-2alpha administration, rats were injected intrabursa with either S1P or vehicle (control). The activity of four caspases, which contribute to the initial (caspase-2, -8, and -9) and final (caspase-3) events in apoptosis was measured in pooled CL from four individual ovaries at 0 and 4 hr after PGF-2alpha injection. The expression of the phosphorylated form of AKT (pAKT) and tumor necrosis factor-alpha (TNF-alpha) was analyzed by ELISA. In addition, cell death was evaluated by electronic microscopy (EM) in CL 4 and 36 hr after PGF-2alpha injection. The activity of caspase-2, -3, and -8 was significantly greater by 4 hr after PGF-2alpha, but not caspase-9 activity. In contrast, expression of pAKT and TNF-alpha decreased significantly. Administration of S1P suppressed (P < 0.05) these effects, decreasing caspase activities and increasing pAKT and TNF-alpha expression. The administration of S1P also significantly decreased the percentage of luteal apoptotic cells induced by PGF-2alpha. PGF-2alpha treatment increased the prevalence of luteal cells with advanced signs of apoptosis (i.e., multiple nuclear fragments, chromatin condensation, or apoptotic bodies). S1P treatment suppressed these changes and increased the blood vessel density. These results suggest that S1P blocks the luteolytic effect of the PGF-2alpha by decreasing caspase-2, -3, and -8 activities and increasing AKT phosphorylation and TNF-alpha expression.
Collapse
Affiliation(s)
- Fatima Hernandez
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
77
|
Yamamoto Y, Olson DM, van Bennekom M, Brindley DN, Hemmings DG. Increased expression of enzymes for sphingosine 1-phosphate turnover and signaling in human decidua during late pregnancy. Biol Reprod 2009; 82:628-35. [PMID: 20007411 DOI: 10.1095/biolreprod.109.081497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An appropriate balance between uterine quiescence and activation during pregnancy is essential for a successful outcome. Sphingosine 1-phosphate (S1P), a bioactive lipid, increases cell survival, proliferation, and angiogenesis, all important to maintain the pregnancy. Indeed progesterone increases sphingosine kinase 1 (SPHK1) mRNA, which produces S1P. In contrast, induction of prostaglandin endoperoxide synthase 2 by S1P and stimulation of SPHK1 by estradiol and cytokines suggests a role for S1P in the termination of pregnancy. Human decidua is important for regulating the maintenance and termination of pregnancy with production of progesterone receptors, cytokines, and prostaglandins. We hypothesized that S1P is produced by and acts on the decidua to stimulate production of mediators that induce labor. Our objective was to investigate the metabolism of S1P and its receptors in human decidua during pregnancy. We found that SPHK1 protein and activity positively correlated with increasing gestational age in human decidua parietalis. This was accompanied at term by increased expression of the S1P lyase, which irreversibly degrades S1P. This implies increased S1P turnover in the decidua at term. Although the mRNA level of phosphatidic acid phosphatase type 2A and 2B (PPAP2A,B), which dephosphorylate extracellular S1P, were increased at term, PPAP2 activity did not change. Sphingosine 1-phosphate receptor 3 protein expression also increased at term, indicating increased signaling by S1P in the decidua. There were no differences in any parameter tested in decidua from women in labor compared to those who were not. This work provides the first evidence of increased S1P synthesis, degradation, and signaling in human decidua during gestation.
Collapse
Affiliation(s)
- Yuka Yamamoto
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
78
|
Sukocheva O, Wang L, Verrier E, Vadas MA, Xia P. Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology 2009; 150:4484-92. [PMID: 19706837 DOI: 10.1210/en.2009-0391] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously demonstrated that sphingosine kinase-1 (SphK1) is an important mediator in the cytoplasmic signaling of estrogens, including Ca(2+) mobilization, ERK1/2 activation, and the epidermal growth factor receptor transactivation. Here we report for the first time that SphK1 activity is causally associated with endocrine resistance in MCF-7 human breast cancer cells. Enforced overexpression of human SphK1 in MCF-7 cells resulted in enhanced cell proliferation and resistance to tamoxifen-induced cell growth arrest and apoptosis. Tamoxifen-resistant (TamR) MCF-7 cells selected by prolonged exposure to 4-hydroxytamoxifen, exhibited higher levels in SphK1 expression and activity, compared with the control cells. Inhibition of SphK1 activity by either specific pharmaceutical inhibitors or the dominant-negative mutant SphK1(G82D) restored the antiproliferative and proapoptotic effects of tamoxifen in the TamR cells. Furthermore, silencing of SphK1, but not SphK2, expression by the specific small interference RNA also restored the tamoxifen responsiveness in the TamR cells. Thus, blockade of the SphK1 signaling pathway may reprogram cellular responsiveness to tamoxifen and abrogate antiestrogen resistance in human breast cancer cells.
Collapse
Affiliation(s)
- Olga Sukocheva
- Signal Transduction Laboratory, Centenary Institute, Newtown, New South Wales 2042, Australia
| | | | | | | | | |
Collapse
|
79
|
Hengst JA, Guilford JM, Fox TE, Wang X, Conroy EJ, Yun JK. Sphingosine kinase 1 localized to the plasma membrane lipid raft microdomain overcomes serum deprivation induced growth inhibition. Arch Biochem Biophys 2009; 492:62-73. [PMID: 19782042 DOI: 10.1016/j.abb.2009.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 11/18/2022]
Abstract
Several studies have demonstrated that sphingosine kinase 1 (SphK1) translocates to the plasma membrane (PM) upon its activation and further suggested the plasma membrane lipid raft microdomain (PMLRM) as a target for SphK1 relocalization. To date, however, direct evidence of SphK1 localization to the PMLRM has been lacking. In this report, using multiple biochemical and subcellular fractionation techniques we demonstrate that endogenous SphK1 protein and its substrate, D-erythro-sphingosine, are present within the PMLRM. Additionally, we demonstrate that the PMA stimulation of SphK1 localized to the PMLRM results in production of sphingosine-1-phosphate as well as induction of cell growth under serum deprivation conditions. We further report that Ser225Ala and Thr54Cys mutations, reported to abrogate phosphatidylserine binding, block SphK1 targeting to the PMLRM and SphK1 induced cell growth. Together these findings provide direct evidence that the PMLRM is the major site of action for SphK1 to overcome serum-deprived cell growth inhibition.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
80
|
Florey O, Haskard DO. Sphingosine 1-phosphate enhances Fc gamma receptor-mediated neutrophil activation and recruitment under flow conditions. THE JOURNAL OF IMMUNOLOGY 2009; 183:2330-6. [PMID: 19620297 DOI: 10.4049/jimmunol.0901019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that is released by platelets and endothelial cells and has been implicated in diverse biological functions. We hypothesized that S1P may influence immune complex-mediated polymorphonuclear neutrophil activation. Using flow cytometry and fluorescence spectrometry, we found that exogenous addition of S1P led to an enhanced polymorphonuclear neutrophil Fcgamma receptor-mediated rise in intracellular Ca(2+) and reactive oxygen species generation in a pertussis toxin-independent manner, while having only a small effect by itself. Thus, S1P amplifies a positive feedback loop where Fcgamma receptor-mediated rises in Ca(2+) and reactive oxygen species are interdependent, with reactive oxygen species acting to increase tyrosine phosphorylation and activity of upstream signaling intermediates. S1P augmentation of Fcgamma receptor signaling translates to downstream functional consequences, including shape change and recruitment to endothelial surfaces coated with suboptimal levels of immune complexes. Taken together, S1P from activated platelets or endothelial cells may serve to amplify leukocyte recruitment and tissue injury at sites of immune complex deposition in vasculitis.
Collapse
Affiliation(s)
- Oliver Florey
- British Heart Foundation Cardiovascular Medicine Unit, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
81
|
Nemoto S, Nakamura M, Osawa Y, Kono S, Itoh Y, Okano Y, Murate T, Hara A, Ueda H, Nozawa Y, Banno Y. Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 2009; 284:10422-32. [PMID: 19240026 PMCID: PMC2667729 DOI: 10.1074/jbc.m900735200] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/23/2009] [Indexed: 11/06/2022] Open
Abstract
The relationship between sphingosine kinase (SPHK), cellular ceramide concentration and chemosensitivity was investigated in human colon cancer cell lines. Among nine colon cancer cell lines, SPHK1 and SPHK2 activity and protein expression was highest in RKO cells and lowest in HCT116 cells. A viability assay revealed that HCT116 cells were sensitive to the effects of oxaliplatin (l-OHP), whereas RKO cells were resistant to those of l-OHP. Treatment with 5microg/ml l-OHP induced a marked time-dependent increase in various ceramides (C16, C24, C24:1) in HCT116 cells but not in RKO cells, as indicated by liquid chromatography/mass spectrometry. The increase in ceramide and caspase activation induced by l-OHP in the sensitive HCT116 cells was abolished by pretreatment with a neutral sphingomyelinase inhibitor, suggesting that the ceramide formation was due to the activation of neutral, rather than acid, sphingomyelinase. In contrast, in l-OHP-resistant RKO cells, treatment with an SPHK inhibitor or SPHK1 and SPHK2 silencing by RNA interference suppressed cell viability and increased caspase activity and cellular ceramide formation after l-OHP treatment. The elevated ceramide formation induced by SPHK inhibition and l-OHP was inhibited by fumonisin B1 but not myriocin, suggesting that ceramide formation was through the salvage pathway. Endogenous phosphorylated Akt levels were much higher in the resistant RKO cells than in the sensitive HCT116 cells. Either SPHK1 or SPHK2 silencing in RKO cells decreased phosphorylated Akt levels and increased p53 and p21 protein levels as well as poly(ADP-ribose) polymerase cleavage in response to l-OHP treatment. These findings indicate that SPHK isoforms and neutral sphingomyelinase contribute to the regulation of chemosensitivity by controlling ceramide formation and the downstream Akt pathway in human colon cancer cells.
Collapse
Affiliation(s)
- Satoshi Nemoto
- Department of Cell Signaling, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H. Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 2009; 284:13648-13659. [PMID: 19293152 DOI: 10.1074/jbc.m807498200] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in diverse cellular functions including survival, proliferation, tumorigenesis, inflammation, and immunity. Sphingosine kinase (SphK) contributes to these functions by converting sphingosine to S1P. We report here that the nonstructural protein NS3 from bovine viral diarrhea virus (BVDV), a close relative of hepatitis C virus (HCV), binds to and inhibits the catalytic activity of SphK1 independently of its serine protease activity, whereas HCV NS3 does not affect SphK1 activity. Uncleaved NS2-3 from BVDV was also found to interact with and inhibit SphK1. We suspect that inhibition of SphK1 activity by BVDV NS3 and NS2-3 may benefit viral replication, because SphK1 inhibition by small interfering RNA, chemical inhibitor, or overexpression of catalytically inactive SphK1 results in enhanced viral replication, although the mechanisms by which SphK1 inhibition leads to enhanced viral replication remain unknown. A role of SphK1 inhibition in viral cytopathogenesis is also suggested as overexpression of SphK1 significantly attenuates the induction of apoptosis in cells infected with cytopathogenic BVDV. These findings suggest that SphK is targeted by this virus to regulate its catalytic activity.
Collapse
Affiliation(s)
- Daisuke Yamane
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad A Zahoor
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yassir M Mohamed
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
83
|
Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cell Mol Biol Lett 2009; 14:424-41. [PMID: 19238330 PMCID: PMC6275620 DOI: 10.2478/s11658-009-0009-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 02/12/2009] [Indexed: 11/21/2022] Open
Abstract
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (EC(SK)) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. EC(SK) showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (EC(EV)). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in EC(SK). By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial.
Collapse
|
84
|
Wadgaonkar R, Patel V, Grinkina N, Romano C, Liu J, Zhao Y, Sammani S, Garcia JGN, Natarajan V. Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296:L603-13. [PMID: 19168577 DOI: 10.1152/ajplung.90357.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two mammalian sphingosine kinase (SphK) isoforms, SphK1 and SphK2, possess identical kinase domains but have distinct kinetic properties and subcellular localizations, suggesting each has one or more specific roles in sphingosine-1-phosphate (S1P) generation. Although both kinases use sphingosine as a substrate to generate S1P, the mechanisms controlling SphK activation and subsequent S1P generation during lung injury are not fully understood. In this study, we established a murine lung injury model to investigate LPS-induced lung injury in SphK1 knockout (SphK1(-/-)) and wild-type (WT) mice. We found that SphK1(-/-) mice were much more susceptible to LPS-induced lung injury compared with their WT counterparts, quantified by multiple parameters including cytokine induction. Intriguingly, overexpression of WT SphK1 delivered by adenoviral vector to the lungs protected SphK1(-/-) mice from lung injury and attenuated the severity of the response to LPS. However, adenoviral overexpression of a SphK1 kinase-dead mutant (SphKKD) in SphK1(-/-) mouse lungs further exacerbated the response to LPS as well as the extent of lung injury. WT SphK2 adenoviral overexpression also failed to provide protection and, in fact, augmented the degree of LPS-induced lung injury. This suggested that, in vascular injury, S1P generated by SphK2 activation plays a distinctly separate role compared with SphK1-dependent S1P generation and survival signaling. Microarray and real-time RT-PCR analysis of SphK1 and SphK2 expression levels during lung injury revealed that, in WT mice, LPS treatment caused significantly enhanced SphK1 expression ( approximately 5x) levels within 6 h, which declined back to baseline levels by 24 h posttreatment. In contrast, expression of SphK2 was gradually induced following LPS treatment and was elevated within 24 h. Collectively, our results for the first time demonstrate distinct functional roles of the two SphK isoforms in the regulation of LPS-induced lung injury.
Collapse
Affiliation(s)
- Raj Wadgaonkar
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Circulating endothelial progenitor cells (EPCs) are incorporated into foci of neovascularization where they undergo differentiation to mature endothelial cells (ECs). We show here that the enzyme sphingosine kinase-1 (SK-1) regulates the rate and direction of EPC differentiation without effect on the hematopoietic compartment. EPCs have high levels of SK-1 activity, which diminishes with differentiation and is, at least partially, responsible for maintaining their EPC phenotype. EPCs from SK-1 knockout mice form more adherent EC units and acquire a mature EC phenotype more rapidly. Conversely, EPCs from mice overexpressing SK-1 in the EC compartment are retarded in their differentiation. Exogenous regulation of SK-1 levels in normal EPCs, by genetic and pharmacologic means, including the immunomodulating drug FTY720, recapitulates these effects on EC differentiation. SK-1 knockout mice have higher levels of circulating EPCs, an exaggerated response to erythropoietin-induced EPC mobilization, and, in a mouse model of kidney ischemia reperfusion injury, exhibit a recovery similar to that of ischemic mice administered exogenous EPCs. Thus, SK-1 is a critical player in EPC differentiation into EC pointing to the potential utility of SK-1 modifying agents in the specific manipulation of endothelial development and repair.
Collapse
|
86
|
Hashimoto T, Igarashi J, Kosaka H. Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesis. J Lipid Res 2008; 50:602-10. [PMID: 19020339 DOI: 10.1194/jlr.m800206-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that exerts numerous biological activities both as a receptor ligand and as an intracellular second messenger. In the present study, we explored roles of sphingosine kinase (SphK), an S1P-producing enzyme, in adipose tissue. We utilized mouse 3T3-L1 cells as an in vitro model of adipogenesis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. Real-time quantitative PCR (qRT-PCR) assays revealed that the expression levels of transcripts encoding both isoforms of SphK-1 and SphK-2 are up-regulated during adipogenesis (37.6- and 6.6-fold vs. basal, P < 0.05, respectively). Concomitantly, SphK-1/SphK-2 protein abundance and S1P contents of these cells increased at 3 days after hormonal stimulation. Loss-of-function approaches by pharmacological inhibition of SphK activity as well as by transfection with small interfering RNA (siRNA) against SphK-1 led to significant attenuation of lipid droplet accumulation and adipocyte marker gene expression. We detected marked elevation of SphK-1 mRNA in adipose tissue derived from 13-week-old ob/ob mice with obese phenotype than their lean littermates. These results suggest that increased expression of SphK, an S1P-producing enzyme, plays a significant role during adipogenesis, potentially providing a novel point of control in adipose tissue.
Collapse
Affiliation(s)
- Takeshi Hashimoto
- Department of Cardiovascular Physiology, Kagawa University Faculty of Medicine, Kagawa, Japan 761-0793
| | | | | |
Collapse
|
87
|
Zhao C, Fernandes MJ, Turgeon M, Tancrède S, Di Battista J, Poubelle PE, Bourgoin SG. Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-α. J Lipid Res 2008; 49:2323-37. [DOI: 10.1194/jlr.m800143-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
88
|
Bollag WB. Potential role of sphingosine 1-phosphate in the pathogenesis of rheumatoid arthritis. J Lipid Res 2008; 49:2281-2. [DOI: 10.1194/jlr.e800016-jlr200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
89
|
Barr RK, Lynn HE, Moretti PAB, Khew-Goodall Y, Pitson SM. Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem 2008; 283:34994-5002. [PMID: 18852266 DOI: 10.1074/jbc.m804658200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is an important regulator of cellular signaling that has been implicated in a broad range of cellular processes. Cell exposure to a wide array of growth factors, cytokines, and other cell agonists can result in a rapid and transient increase in SK activity via an activating phosphorylation. We have previously identified extracellular signal-regulated kinases 1 and 2 (ERK1/2) as the kinases responsible for the phosphorylation of human SK1 at Ser(225), but the corresponding phosphatase targeting this phosphorylation has remained undefined. Here, we provide data to support a role for protein phosphatase 2A (PP2A) in the deactivation of SK1 through dephosphorylation of phospho-Ser(225). The catalytic subunit of PP2A (PP2Ac) was found to interact with SK1 using both GST-pulldown and coimmunoprecipitation analyses. Coexpression of PP2Ac with SK1 resulted in reduced Ser(225) phosphorylation of SK1 in human embryonic kidney (HEK293) cells. In vitro phosphatase assays showed that PP2Ac dephosphorylated both recombinant SK1 and a phosphopeptide based on the phospho-Ser(225) region of SK1. Finally, both basal and tumor necrosis factor-alpha-stimulated cellular SK1 activity were regulated by molecular manipulation of PP2Ac activity. Thus, PP2A appears to function as an endogenous regulator of SK1 phosphorylation.
Collapse
Affiliation(s)
- Renae K Barr
- Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, University of Adelaide, Adelaide, Australia
| | | | | | | | | |
Collapse
|
90
|
Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R, Fyrst H, Saba J, Vogel SM, Malik AB, Mehta D. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res 2008; 103:1164-72. [PMID: 18849324 DOI: 10.1161/01.res.0000338501.84810.51] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lipid mediator sphingosine-1-phosphate (S1P), the product of sphingosine kinase (SPHK)-induced phosphorylation of sphingosine, is known to stabilize interendothelial junctions and prevent microvessel leakiness. Here, we investigated the role of SPHK1 activation in regulating the increase in pulmonary microvessel permeability induced by challenge of mice with lipopolysaccharide or thrombin ligation of protease-activating receptor (PAR)-1. Both lipopolysaccharide and thrombin increased mouse lung microvascular permeability and resulted in a delayed activation of SPHK1 that was coupled to the onset of restoration of permeability. In contrast to wild-type mice, Sphk1(-/-) mice showed markedly enhanced pulmonary edema formation in response to lipopolysaccharide and PAR-1 activation. Using endothelial cells challenged with thrombin concentration (50 nmol/L) that elicited a transient but reversible increase in endothelial permeability, we observed that increased SPHK1 activity and decreased intracellular S1P concentration preceded the onset of barrier recovery. Thus, we tested the hypothesis that released S1P in a paracrine manner activates its receptor S1P1 to restore the endothelial barrier. Knockdown of SPHK1 decreased basal S1P production and Rac1 activity but increased basal endothelial permeability. In SPHK1-depleted cells, PAR-1 activation failed to induce Rac1 activation but augmented RhoA activation and endothelial hyperpermeability response. Knockdown of S1P1 receptor in endothelial cells also enhanced the increase in endothelial permeability following PAR-1 activation. S1P treatment of Sphk1(-/-) lungs or SPHK1-deficient endothelial cells restored endothelial barrier function. Our results suggest the crucial role of activation of the SPHK1-->S1P-->S1P1 signaling pathway in response to inflammatory mediators in endothelial cells in regulating endothelial barrier homeostasis.
Collapse
Affiliation(s)
- Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Sphingolipids such as sphingosine-1-phosphate (S1P), ceramide, or sphingomyelin are essential constituents of plasma membranes and regulate many (patho)physiological cellular responses inducing apoptosis and cell survival, vascular permeability, mast cell activation, and airway smooth muscle functions. The complexity of sphingolipid biology is generated by a great variety of compounds, diverse receptors, and often antagonistic functions of different sphingolipids. For instance, apoptosis is promoted by ceramide and prevented by S1P, and pulmonary vascular permeability is increased by S1P2/3 receptors and by ceramide, whereas S1P1 receptors stabilize barrier integrity. Several enzymes of the sphingolipid metabolism respond to external stimuli such as sphingomyelinase isoenzymes that are activated by many stress stimuli and the sphingosine kinase isoenzymes that are activated by allergens. The past years have provided increasing evidence that these processes contribute to pulmonary disorders including asthma, chronic obstructive pulmonary disease, acute lung injury, and cystic fibrosis. Sphingolipid metabolism offers several novel therapeutic targets for the treatment of lung diseases such as emphysema, asthma, cystic fibrosis, respiratory tract infection, sepsis, and acute lung injury.
Collapse
Affiliation(s)
- Stefan Uhlig
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen, Aachen, Germany.
| | | |
Collapse
|
92
|
Limaye V. The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. ACTA ACUST UNITED AC 2008; 15:101-12. [PMID: 18568950 DOI: 10.1080/10623320802125342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sphingolipids, in particular sphingosine kinase (SphK) and its product sphingosine-1-phosphate (S1P), are now recognized to play an important role in regulating many critical processes in endothelial cells. Activation of SphK1 is essential in mediating the endothelial proinflammatory effects of inflammatory cytokines such as tumor necrosis factor (TNF). In addition, S1P regulates the survival and proliferation of endothelial cells, as well as their ability to undergo cell migration, all essential components of angiogenesis. Thus the inflammatory and angiogenic potential of the endothelium is in part regulated by intracellular components including the activity of SphK1 and levels of S1P. Herein a review of the sphingomyelin pathway with a particular focus on its relevance to endothelial cell biology is presented.
Collapse
Affiliation(s)
- Vidya Limaye
- Rheumatology Department, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
93
|
Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:477-82. [PMID: 18674637 DOI: 10.1016/j.bbalip.2008.07.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 01/22/2023]
Abstract
Sphingosine 1-phosphate (S1P), a product of sphingomyelin metabolism, is enriched in the circulatory system whereas it is estimated to be much lower in interstitial fluids of tissues. This concentration gradient, termed the vascular S1P gradient appears to form as a result of substrate availability and the action of metabolic enzymes. S1P levels in blood and lymph are estimated to be in the muM range. In the immune system, the S1P gradient is needed as a spatial cue for lymphocyte and hematopoietic cell trafficking. During inflammatory reactions in which enhanced vascular permeability occurs, a burst of S1P becomes available to its receptors in the extravascular compartment, which likely contributes to the tissue reactions. Thus, the presence of the vascular S1P gradient is thought to contribute to physiological and pathological conditions. From an evolutionary perspective, S1P receptors may have co-evolved with the advent of a closed vascular system and the trafficking paradigms for hematopoietic cells to navigate in and out of the vascular system.
Collapse
Affiliation(s)
- Timothy Hla
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06001, USA.
| | | | | |
Collapse
|
94
|
Mu Z, Wang H, Zhang J, Li Q, Wang L, Guo X. KAI1/CD82 suppresses hepatocyte growth factor-induced migration of hepatoma cells via upregulation of Sprouty2. ACTA ACUST UNITED AC 2008; 51:648-54. [PMID: 18622748 DOI: 10.1007/s11427-008-0086-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/19/2008] [Indexed: 12/21/2022]
Abstract
We conducted a study concerning the suppressive mechanism of KAI1/CD82 on hepatoma cell metastasis. Hepatocyte growth factor (HGF) induces the migration of hepatoma cells through activation of cellular sphingosine kinase 1 (SphK1). Adenovirus-mediated gene transfer of KAI1 (Ad-KAI1) downregulates the SphK1 expression and suppresses the HGF-induced migration of SMMC-7721 human hepatocellcular carcinoma cells. Overexpression of KAI1/CD82 significantly elevates Sprouty2 at the protein level. Ablation of Sprouty2 with RNA interference can block the KAI1/CD82-induced suppression of hepatoma cell migration and downregulation of SphK1 expression. It is demonstrated that KAI1/CD82 suppresses HGF-induced migration of hepatoma cells via upregulation of Sprouty2.
Collapse
Affiliation(s)
- Zhenbin Mu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | |
Collapse
|
95
|
Wakamoto S, Fujihara M, Sakagawa H, Takahashi D, Niwa K, Morioka M, Sato S, Kato T, Azuma H, Ikeda H. Endothelial permeability is increased by the supernatant of peripheral blood mononuclear cells stimulated with HLA Class II antibody. Transfusion 2008; 48:2060-8. [PMID: 18564388 DOI: 10.1111/j.1537-2995.2008.01809.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The generation of inflammatory mediators from monocytes activated by HLA Class II antibodies is thought to play important roles in the etiology of nonhemolytic transfusion reactions. Increased permeability of endothelial cells contributes to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema, which are symptoms of transfusion reactions. STUDY DESIGN AND METHODS We investigated whether inflammatory mediators released from monocytes upon stimulation by HLA Class II antibodies could increase endothelial permeability. Human endothelial cell monolayers were incubated with cell-free supernatants of peripheral blood mononuclear cells (PBMNCs) stimulated with HLA Class II antibody-containing plasma (anti-HLA-DR plasma), which has been implicated in severe nonhemolytic transfusion reactions. The permeability of endothelial cells to dextran was measured. RESULTS The supernatants of PBMNCs stimulated with the anti-HLA-DR plasma in corresponding antigen-antibody combinations were able to increase endothelial permeability. At least 3 hours of exposure of PBMNCs to anti-HLA-DR plasma was required to produce a supernatant that could induce a significant increase in permeability. Simultaneous addition of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) neutralizing antibodies to the activated PBMNC supernatant significantly reduced the increase in permeability. Treatment of the endothelial cells with an inhibitor of nuclear factor kappaB (NF-kappaB), but not inhibitors of apoptosis, significantly prevented the increase in permeability. CONCLUSION Both TNF-alpha and IL-1 beta, generated from PBMNCs by anti-HLA-DR plasma in a corresponding antigen-antibody-dependent manner, led to an increase in endothelial permeability. The activation of monocytes by the HLA-DR antibodies and the resultant inflammatory mediators could contribute to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema after transfusion.
Collapse
Affiliation(s)
- Shinobu Wakamoto
- Hokkaido Red Cross Blood Center and Aiiku Hospital, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Maines LW, Fitzpatrick LR, French KJ, Zhuang Y, Xia Z, Keller SN, Upson JJ, Smith CD. Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Dig Dis Sci 2008; 53:997-1012. [PMID: 18058233 PMCID: PMC2660406 DOI: 10.1007/s10620-007-0133-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 01/06/2023]
Abstract
A critical step in the mechanism of action of inflammatory cytokines is the stimulation of sphingolipid metabolism, including activation of sphingosine kinase (SK), which produces the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). We have developed orally bioavailable compounds that effectively inhibit SK activity in vitro in intact cells and in cancer models in vivo. In this study, we assessed the effects of these SK inhibitors on cellular responses to tumor necrosis factor alpha (TNFalpha) and evaluated their efficacy in the dextran sulfate sodium (DSS) model of ulcerative colitis in mice. Using several cell systems, it was shown that the SK inhibitors block the ability of TNFalpha to activate nuclear factor kappa B (NFkappaB), induce expression of adhesion proteins, and promote production of prostaglandin E(2) (PGE(2)). In an acute model of DSS-induced ulcerative colitis, SK inhibitors were equivalent to or more effective than Dipentum in reducing disease progression, colon shortening, and neutrophil infiltration into the colon. The effects of SK inhibitors were associated with decreased colonic levels of inflammatory cytokines TNFalpha, interleukin (IL)-1beta, interferon gamma (IFN)-gamma, IL-6, and reduction of S1P levels. A similar reduction in disease progression was provided by SK inhibitors in a chronic model of ulcerative colitis in which the mice received 3-week-long cycles of DSS interspaced with week-long recovery periods. In the chronic model, immunohistochemistry for SK showed increased expression in DSS-treated mice (compared with water-treated controls) that was reduced by drug treatment. S1P levels were also elevated in the DSS group and significantly reduced by drug treatment. Together, these data indicate that SK is a critical component in inflammation and that inhibitors of this enzyme may be useful in treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lynn W Maines
- Apogee Biotechnology Corporation, PO Box 916, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Alewijnse AE, Peters SLM. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 2008; 585:292-302. [PMID: 18420192 DOI: 10.1016/j.ejphar.2008.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/21/2008] [Accepted: 02/06/2008] [Indexed: 12/25/2022]
Abstract
Sphingolipids are biologically active lipids that play important roles in various cellular processes and the sphingomyelin metabolites ceramide, sphingosine and sphingosine-1-phosphate can act as signalling molecules in most cell types. With the recent development of the immunosuppressant drug FTY720 (Fingolimod) which after phosphorylation in vivo acts as a sphingosine-1-phosphate receptor agonist, research on the role of sphingolipids in the immune and other organ systems was triggered enormously. Since it was reported that FTY720 induced a modest, but significant transient decrease in heart rate in animals and humans, the question was raised which pharmacological properties of drugs targeting sphingolipid signalling will affect cardiovascular function in vivo. The answer to this question will most likely also indicate what type of drug could be used to treat cardiovascular disease. The latter is becoming increasingly important because of the increasing population carrying characteristics of the metabolic syndrome. This syndrome is, amongst others, characterized by obesity, hypertension, atherosclerosis and diabetes. As such, individuals with this syndrome are at increased risk of heart disease. Now numerous studies have investigated sphingolipid effects in the cardiovascular system, can we speculate whether certain sphingolipids under specific conditions are good, bad or maybe both? In this review we will give a brief overview of the pathophysiological role of sphingolipids in cardiovascular disease. In addition, we will try to answer how drugs that target sphingolipid signalling will potentially influence cardiovascular function and whether these drugs would be useful to treat cardiovascular disease.
Collapse
Affiliation(s)
- Astrid E Alewijnse
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
98
|
Stradner MH, Hermann J, Angerer H, Setznagl D, Sunk IG, Windhager R, Graninger WB. Spingosine-1-phosphate stimulates proliferation and counteracts interleukin-1 induced nitric oxide formation in articular chondrocytes. Osteoarthritis Cartilage 2008; 16:305-11. [PMID: 17703957 DOI: 10.1016/j.joca.2007.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/25/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sphingosine-1-phosphate (S1P) is a messenger molecule, with important functions in inflammation and wound healing. The present study was performed to elucidate a possible role of S1P signaling in articular chondrocytes. METHODS Human and bovine primary chondrocytes were cultured in monolayer. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect S1P receptor mRNA. Proliferation of S1P stimulated chondrocytes was measured by 3H-thymidine uptake. Supernatants of cultured bovine chondrocytes stimulated with S1P alone or in combination with interleukin-1beta (IL-1beta) were tested for nitric oxide (NO) formation and expression of inducible nitric oxide synthase (iNOS). Matrixmetalloprotease-13 (MMP-13) and aggrecanase-1 (ADAMTS-4) were evaluated using real-time PCR. Glycosaminoglycan (GAG) loss from bovine cartilage explants was evaluated using the dimethylene blue method. RESULTS S1P1, S1P2 and S1P3 but not S1P4 and S1P5 receptor mRNA were detected in human and bovine chondrocytes. S1P dose dependently induced proliferation in bovine and human chondrocytes. S1P significantly reduced NO formation and iNOS mRNA and protein expression, both in un-stimulated and IL-1beta stimulated bovine chondrocytes. Furthermore, S1P dose dependently inhibited IL-1beta induced expression of ADAMTS-4 and MMP-13 and diminished IL-1beta mediated GAG depletion from cartilage explants. CONCLUSION These results suggest that S1P provides an anti-catabolic signal in articular chondrocytes.
Collapse
Affiliation(s)
- M H Stradner
- Department of Internal Medicine, Division of Rheumatology, Medical University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
99
|
Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells. Int J Hematol 2008; 87:266-75. [DOI: 10.1007/s12185-008-0052-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/26/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
|
100
|
Moriue T, Igarashi J, Yoneda K, Nakai K, Kosaka H, Kubota Y. Sphingosine 1-phosphate attenuates H2O2-induced apoptosis in endothelial cells. Biochem Biophys Res Commun 2008; 368:852-7. [PMID: 18267109 DOI: 10.1016/j.bbrc.2008.01.155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species including H(2)O(2) lead vascular endothelial cells (EC) to undergo apoptosis. Sphingosine 1-phosphate (S1P) is a platelet-derived sphingolipid mediator that elicits various EC responses. We aimed to explore whether and how S1P modulates EC apoptosis induced by H(2)O(2). Treatment of cultured bovine aortic EC (BAEC) with H(2)O(2) (750 microM for 6h) led to DNA fragmentation (ELISA), DNA nick formation (TUNEL staining), and cleavage of caspase-3, key features of EC apoptosis. These responses elicited by H(2)O(2) were alike markedly attenuated by pretreatment with S1P (1 microM, 30 min). H(2)O(2) induced robust phosphorylation of both p38 and JNK MAP kinases. However, pretreatment with S1P decreased phosphorylation of only p38 MAP kinase, but not that of JNK; conversely, an inhibitor of p38 MAP kinase, but not that of JNK, attenuated H(2)O(2)-induced caspase-3 activation. Thus S1P attenuates H(2)O(2)-induced apoptosis of cultured BAEC, involving p38 MAP kinase.
Collapse
Affiliation(s)
- Tetsuya Moriue
- Department of Dermatology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|