51
|
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 2014; 171:12-23. [PMID: 24102106 DOI: 10.1111/bph.12407] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
52
|
Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol 2014; 5:65. [PMID: 24616704 PMCID: PMC3935357 DOI: 10.3389/fphys.2014.00065] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/03/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.
Collapse
Affiliation(s)
- Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at ChicagoChicago, IL, USA
| | | | | |
Collapse
|
53
|
Fürst O, Mondou B, D'Avanzo N. Phosphoinositide regulation of inward rectifier potassium (Kir) channels. Front Physiol 2014; 4:404. [PMID: 24409153 PMCID: PMC3884141 DOI: 10.3389/fphys.2013.00404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
Inward rectifier potassium (Kir) channels are integral membrane proteins charged with a key role in establishing the resting membrane potential of excitable cells through selective control of the permeation of K+ ions across cell membranes. In conjunction with secondary anionic phospholipids, members of this family are directly regulated by phosphoinositides (PIPs) in the absence of other proteins or downstream signaling pathways. Different Kir isoforms display distinct specificities for the activating PIPs but all eukaryotic Kir channels are activated by PI(4,5)P2. On the other hand, the bacterial KirBac1.1 channel is inhibited by PIPs. Recent crystal structures of eukaryotic Kir channels in apo and lipid bound forms reveal one specific binding site per subunit, formed at the interface of N- and C-terminal domains, just beyond the transmembrane segments and clearly involving some of the key residues previously identified as controlling PI(4,5)P2 sensitivity. Computational, biochemical, and biophysical approaches have attempted to address the energetic determinants of PIP binding and selectivity among Kir channel isoforms, as well as the conformational changes that trigger channel gating. Here we review our current understanding of the molecular determinants of PIP regulation of Kir channel activity, including in context with other lipid modulators, and provide further discussion on the key questions that remain to be answered.
Collapse
Affiliation(s)
- Oliver Fürst
- Groupe d'étude des Protéines Membranaires (GÉPROM), Physiologie, Université de Montréal Montréal, QC, Canada
| | - Benoit Mondou
- Groupe d'étude des Protéines Membranaires (GÉPROM), Physiologie, Université de Montréal Montréal, QC, Canada
| | - Nazzareno D'Avanzo
- Groupe d'étude des Protéines Membranaires (GÉPROM), Physiologie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
54
|
Takeda I, Takahashi T, Ueno H, Morino H, Ochi K, Nakamura T, Hosomi N, Kawakami H, Hashimoto K, Matsumoto M. Autosomal recessive Andersen-Tawil syndrome with a novel mutation L94P in Kir2.1. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/ncn3.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ikuko Takeda
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Hiroki Ueno
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Hiroyuki Morino
- Department of Epidemiology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Kazuhide Ochi
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Takeshi Nakamura
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Naohisa Hosomi
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Hideshi Kawakami
- Department of Epidemiology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics; Hiroshima University; Graduate School of Biomedical and Health Sciences; Hiroshima; Japan
| |
Collapse
|
55
|
D'Avanzo N, Lee SJ, Cheng WWL, Nichols CG. Energetics and location of phosphoinositide binding in human Kir2.1 channels. J Biol Chem 2013; 288:16726-16737. [PMID: 23564459 PMCID: PMC3675606 DOI: 10.1074/jbc.m113.452540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/03/2013] [Indexed: 11/06/2022] Open
Abstract
Kir2.1 channels are uniquely activated by phosphoinositide 4,5-bisphosphate (PI(4,5)P2) and can be inhibited by other phosphoinositides (PIPs). Using biochemical and computational approaches, we assess PIP-channel interactions and distinguish residues that are energetically critical for binding from those that alter PIP sensitivity by shifting the open-closed equilibrium. Intriguingly, binding of each PIP is disrupted by a different subset of mutations. In silico ligand docking indicates that PIPs bind to two sites. The second minor site may correspond to the secondary anionic phospholipid site required for channel activation. However, 96-99% of PIP binding localizes to the first cluster, which corresponds to the general PI(4,5)P2 binding location in recent Kir crystal structures. PIPs can encompass multiple orientations; each di- and triphosphorylated species binds with comparable energies and is favored over monophosphorylated PIPs. The data suggest that selective activation by PI(4,5)P2 involves orientational specificity and that other PIPs inhibit this activation through direct competition.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110.
| | - Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Wayland W L Cheng
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110.
| |
Collapse
|
56
|
D'Avanzo N, McCusker EC, Powl AM, Miles AJ, Nichols CG, Wallace BA. Differential lipid dependence of the function of bacterial sodium channels. PLoS One 2013; 8:e61216. [PMID: 23579615 PMCID: PMC3620320 DOI: 10.1371/journal.pone.0061216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/08/2013] [Indexed: 12/13/2022] Open
Abstract
The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative (22)Na(+) uptake into proteoliposomes containing a 3∶1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different "guest" glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Physiology and GEPROM (Group d'étude des Proteins Membranaires), Université de Montréal, Montréal, Québec, Canada
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Emily C. McCusker
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Andrew M. Powl
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Andrew J. Miles
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Colin G. Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (CN); (BW)
| | - B. A. Wallace
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (CN); (BW)
| |
Collapse
|
57
|
Schmidt MR, Stansfeld PJ, Tucker SJ, Sansom MSP. Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel. Biochemistry 2013; 52:279-81. [PMID: 23270460 PMCID: PMC4606973 DOI: 10.1021/bi301350s] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-lipid interactions regulate many membrane protein functions. Using a multiscale approach that combines coarse-grained and atomistic molecular dynamics simulations, we have predicted the binding site for the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) on the Kir2.2 inwardly rectifying (Kir) potassium channel. Comparison of the predicted binding site to that observed in the recent PIP(2)-bound crystal structure of Kir2.2 reveals good agreement between simulation and experiment. In addition to providing insight into the mechanism by which PIP(2) binds to Kir2.2, these results help to establish the validity of this multiscale simulation approach and its future application in the examination of novel membrane protein-lipid interactions in the increasing number of high-resolution membrane protein structures that are now available.
Collapse
Affiliation(s)
- Matthias R. Schmidt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
58
|
Lee SJ, Wang S, Borschel W, Heyman S, Gyore J, Nichols CG. Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels. Nat Commun 2013; 4:2786. [PMID: 24270915 PMCID: PMC3868208 DOI: 10.1038/ncomms3786] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/16/2013] [Indexed: 12/03/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels regulate multiple tissues. All Kir channels require interaction of phosphatidyl-4,5-bisphosphate (PIP2) at a crystallographically identified binding site, but an additional nonspecific secondary anionic phospholipid (PL(-)) is required to generate high PIP2 sensitivity of Kir2 channel gating. The PL(-)-binding site and mechanism are yet to be elucidated. Here we report docking simulations that identify a putative PL(-)-binding site, adjacent to the PIP2-binding site, generated by two lysine residues from neighbouring subunits. When either lysine is mutated to cysteine (K64C and K219C), channel activity is significantly decreased in cells and in reconstituted liposomes. Directly tethering K64C to the membrane by modification with decyl-MTS generates high PIP2 sensitivity in liposomes, even in the complete absence of PL(-)s. The results provide a coherent molecular mechanism whereby PL(-) interaction with a discrete binding site results in a conformational change that stabilizes the high-affinity PIP2 activatory site.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Shizhen Wang
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - William Borschel
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sarah Heyman
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jacob Gyore
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
59
|
Hammond GRV, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 2012; 337:727-30. [PMID: 22722250 PMCID: PMC3646512 DOI: 10.1126/science.1222483] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quantitatively minor phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P(2)] fulfills many cellular functions in the plasma membrane (PM), whereas its synthetic precursor, phosphatidylinositol 4-phosphate (PI4P), has no assigned PM roles apart from PI(4,5)P(2) synthesis. We used a combination of pharmacological and chemical genetic approaches to probe the function of PM PI4P, most of which was not required for the synthesis or functions of PI(4,5)P(2). However, depletion of both lipids was required to prevent PM targeting of proteins that interact with acidic lipids or activation of the transient receptor potential vanilloid 1 cation channel. Therefore, PI4P contributes to the pool of polyanionic lipids that define plasma membrane identity and to some functions previously attributed specifically to PI(4,5)P(2), which may be fulfilled by a more general polyanionic lipid requirement.
Collapse
Affiliation(s)
- Gerald R. V. Hammond
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Fischer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K
| | - Karen E Anderson
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jon Holdich
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K
| | - Ardita Koteci
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin F. Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K
| |
Collapse
|
60
|
Jimenez V, Docampo R. Molecular and electrophysiological characterization of a novel cation channel of Trypanosoma cruzi. PLoS Pathog 2012; 8:e1002750. [PMID: 22685407 PMCID: PMC3369953 DOI: 10.1371/journal.ppat.1002750] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023] Open
Abstract
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of a novel cation channel (TcCat) from Trypanosoma cruzi, the etiologic agent of Chagas disease. This channel is potassium permeable and shows inward rectification in the presence of magnesium. Western blot analyses with specific antibodies indicated that the protein is expressed in the three main life cycle stages of the parasite. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. TcCat rapidly translocates to the tip of the flagellum when trypomastigotes are submitted to acidic pH, to the plasma membrane when epimastigotes are submitted to hyperosmotic stress, and to the cell surface when amastigotes are released to the extracellular medium. Pharmacological block of TcCat activity also resulted in alterations in the trypomastigotes ability to respond to hyperosmotic stress. We also demonstrate the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. The peculiar characteristics of TcCat could be important for the development of specific inhibitors with therapeutic potential against trypanosomes. The use of high-resolution electrophysiological techniques to study ion channels has provided a large amount of information on functional aspects of these important membrane proteins. However, the study of ion channels in unicellular eukaryotes has been limited to detection of ion conductances in large cells, gene identification studies, and pharmacological treatments to investigate the potential presence of different ion channels. In this paper we report the first identification, functional expression, purification, reconstitution, and electrophysiological characterization with single-molecule resolution of a novel cation channel (TcCat) from Trypanosoma cruzi. This is a novel channel that shares little sequence and functional similarities to other potassium channels and its peculiar characteristics could be important for the development of specific inhibitors with therapeutic potential against trypanosomiasis. Surprisingly, the parasites have the unprecedented ability to rapidly change the localization of the channel when they are exposed to different environmental stresses. We demonstrated the feasibility of purifying and reconstituting a functional ion channel from T. cruzi after recombinant expression in bacteria. In addition, we obtained yeast mutants that will provide a useful genetic system for studies of the assembly and composition of the channel.
Collapse
Affiliation(s)
- Veronica Jimenez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (VJ); (RD)
| |
Collapse
|
61
|
Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun 2012; 3:617. [PMID: 22233627 PMCID: PMC4277880 DOI: 10.1038/ncomms1625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Inward rectifier potassium (Kir) channels are physiologically regulated by a wide range of ligands that all act on a common gate, although structural details of gating are unclear. Here we show, using small molecule fluorescent probes attached to introduced cysteines, the molecular motions associated with gating of KirBac1.1 channels. The accessibility of the probes indicates a major barrier to fluorophore entry to the inner cavity. Changes in FRET between fluorophores attached to KirBac1.1 tetramers show that PIP2-induced closure involves tilting and rotational motions of secondary structural elements of the cytoplasmic domain that couple ligand binding to a narrowing of the cytoplasmic vestibule. The observed ligand-dependent conformational changes in KirBac1.1 provide a general model for ligand-induced Kir channel gating at the molecular level.
Collapse
|
62
|
Pattnaik BR, Asuma MP, Spott R, Pillers DAM. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review. Mol Genet Metab 2012; 105:64-72. [PMID: 22079268 PMCID: PMC3253982 DOI: 10.1016/j.ymgme.2011.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 02/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels are essential for maintaining normal potassium homeostasis and the resting membrane potential. As a consequence, mutations in Kir channels cause debilitating diseases ranging from cardiac failure to renal, ocular, pancreatic, and neurological abnormalities. Structurally, Kir channels consist of two trans-membrane domains, a pore-forming loop that contains the selectivity filter and two cytoplasmic polar tails. Within the cytoplasmic structure, clusters of amino acid sequences form regulatory domains that interact with cellular metabolites to control the opening and closing of the channel. In this review, we present an overview of Kir channel function and recent progress in the characterization of selected Kir channel mutations that lie in and near a C-terminal cytoplasmic 'hotspot' domain. The resultant molecular mechanisms by which the loss or gain of channel function leads to organ failure provide potential opportunities for targeted therapeutic interventions for this important group of channelopathies.
Collapse
Affiliation(s)
- Bikash R. Pattnaik
- Department of Pediatrics, University of Wisconsin, Madison
- Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison
- Department of Eye Research Institute, University of Wisconsin, Madison
| | - Matti P. Asuma
- Department of Pediatrics, University of Wisconsin, Madison
| | - Ryan Spott
- Department of Pediatrics, University of Wisconsin, Madison
| | - De-Ann M. Pillers
- Department of Pediatrics, University of Wisconsin, Madison
- Department of Eye Research Institute, University of Wisconsin, Madison
| |
Collapse
|
63
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
64
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
65
|
Zakharian E, Cao C, Rohacs T. Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5) P₂. FASEB J 2011; 25:3915-28. [PMID: 21810903 DOI: 10.1096/fj.11-184630] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transient receptor potential vanilloid 6 (TRPV6) channels play an important role in Ca(2+) absorption in the intestines. Both phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and cytoplasmic ATP have been proposed to be important for maintaining TRPV6 activity. To evaluate whether PtdIns(4,5)P(2) and ATP affect channel activity directly or indirectly, we have used a dual approach, examining channel activity in excised patches and planar lipid bilayers. In excised inside-out patch-clamp measurements, ATP reactivated the human TRPV6 channels after current rundown only in the presence of Mg(2+). The effect of MgATP was inhibited by 3 structurally different compounds that inhibit type III phosphatidylinositol 4-kinases (PI4Ks). PtdIns(4,5)P(2) also activated TRPV6 in excised patches, while its precursor PtdIns(4)P had only minimal effect. These data demonstrate that MgATP provides substrate for lipid kinases, allowing the resynthesis of PtdIns(4,5)P(2). To determine whether PtdIns(4,5)P(2) is a direct activator of TRPV6, we purified and reconstituted the channel protein in planar lipid bilayers. The reconstituted channel showed high activity in the presence of PtdIns(4,5)P(2), while PtdIns(4)P induced only minimal activity. Our data establish PtdIns(4,5)P(2) as a direct activator of TRPV6 and demonstrate that intracellular ATP regulates the channel indirectly as a substrate for type III PI4Ks.
Collapse
Affiliation(s)
- Eleonora Zakharian
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
66
|
Cheng WWL, D'Avanzo N, Doyle DA, Nichols CG. Dual-mode phospholipid regulation of human inward rectifying potassium channels. Biophys J 2011; 100:620-628. [PMID: 21281576 DOI: 10.1016/j.bpj.2010.12.3724] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 12/29/2022] Open
Abstract
The lipid bilayer is a critical determinant of ion channel activity; however, efforts to define the lipid dependence of channel function have generally been limited to cellular expression systems in which the membrane composition cannot be fully controlled. We reconstituted purified human Kir2.1 and Kir2.2 channels into liposomes of defined composition to study their phospholipid dependence of activity using (86)Rb(+) flux and patch-clamp assays. Our results demonstrate that Kir2.1 and Kir2.2 have two distinct lipid requirements for activity: a specific requirement for phosphatidylinositol 4,5-bisphosphate (PIP(2)) and a nonspecific requirement for anionic phospholipids. Whereas we previously showed that PIP(2) increases the channel open probability, in this work we find that activation by POPG increases both the open probability and unitary conductance. Oleoyl CoA potently inhibits Kir2.1 by antagonizing the specific requirement for PIP(2), and EPC appears to antagonize activation by the nonspecific anionic requirement. Phosphatidylinositol phosphates can act on both lipid requirements, yielding variable and even opposite effects on Kir2.1 activity depending on the lipid background. Mutagenesis experiments point to the role of intracellular residues in activation by both PIP(2) and anionic phospholipids. In conclusion, we utilized purified proteins in defined lipid membranes to quantitatively determine the phospholipid requirements for human Kir channel activity.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Declan A Doyle
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri; Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
67
|
D'Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One 2011; 6:e19393. [PMID: 21559361 PMCID: PMC3084843 DOI: 10.1371/journal.pone.0019393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/29/2011] [Indexed: 02/06/2023] Open
Abstract
Cholesterol is the major sterol component of all mammalian cell plasma membranes and plays a critical role in cell function and growth. Previous studies have shown that cholesterol inhibits inward rectifier K+ (Kir) channels, but have not distinguished whether this is due directly to protein-sterol interactions or indirectly to changes in the physical properties of the lipid bilayer. Using purified bacterial and eukaryotic Kir channels reconstituted into liposomes of controlled lipid composition, we demonstrate by 86Rb+ influx assays that bacterial Kir channels (KirBac1.1 and KirBac3.1) and human Kir2.1 are all inhibited by cholesterol, most likely by locking the channels into prolonged closed states, whereas the enantiomer, ent-cholesterol, does not inhibit these channels. These data indicate that cholesterol regulates Kir channels through direct protein-sterol interactions likely taking advantage of an evolutionarily conserved binding pocket.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krzysztof Hyrc
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Decha Enkvetchakul
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|