51
|
Behet MC, Kurtovic L, van Gemert GJ, Haukes CM, Siebelink-Stoter R, Graumans W, van de Vegte-Bolmer MG, Scholzen A, Langereis JD, Diavatopoulos DA, Beeson JG, Sauerwein RW. The Complement System Contributes to Functional Antibody-Mediated Responses Induced by Immunization with Plasmodium falciparum Malaria Sporozoites. Infect Immun 2018; 86:e00920-17. [PMID: 29735521 PMCID: PMC6013677 DOI: 10.1128/iai.00920-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.
Collapse
Affiliation(s)
- Marije C Behet
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Geert-Jan van Gemert
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Celine M Haukes
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Rianne Siebelink-Stoter
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | | | - Anja Scholzen
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center and Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center and Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - James G Beeson
- Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- Department of Medical Microbiology, Monash University, Clayton, Australia
| | - Robert W Sauerwein
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| |
Collapse
|
52
|
Niwa Y, Nakano Y, Suzuki T, Yamagishi M, Otani K, Dohmae N, Simizu S. Topological analysis of DPY19L3, a human C-mannosyltransferase. FEBS J 2018; 285:1162-1174. [PMID: 29405629 DOI: 10.1111/febs.14398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 01/23/2023]
Abstract
C-mannosylation is a rare type of protein glycosylation, the functions and mechanisms of which remain unclear. Recently, we identified DPY19L3 as a C-mannosyltransferase of R-spondin1 in human cells. DPY19L3 is predicted to be a multipass transmembrane protein that localizes to the endoplasmic reticulum (ER); however, its structure is undetermined. In this study, we propose a topological structure of DPY19L3 by in silico analysis and experimental methods such as redox-sensitive luciferase assay and introduction of N-glycosylation sites, suggesting that DPY19L3 comprises 11 transmembrane regions and two re-entrant loops with the N- and C-terminal ends facing the cytoplasm and ER lumen, respectively. Furthermore, DPY19L3 has four predicted N-glycosylation sites, and we have demonstrated that DPY19L3 is N-glycosylated at Asn118 and Asn704 but not Asn319 and Asn439 , supporting our topological model. By mass spectrometry, we measured the C-mannosyltransferase activity of N-glycosylation-defective mutants of DPY19L3 and isoform2, a splice variant, which lacks the C-terminal luminal region of DPY19L3. Isoform2 does not possess C-mannosyltransferase activity, indicating the importance of the C-terminal region; however, N-glycosylations of DPY19L3 do not have any roles for its enzymatic activity. These novel findings on DPY19L3 provide important insights into the mechanism of C-mannosylation.
Collapse
Affiliation(s)
- Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yoshihiko Nakano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Mizuo Yamagishi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kei Otani
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
53
|
Enrichment and characterization of a bacterial mixture capable of utilizing C-mannosyl tryptophan as a carbon source. Glycoconj J 2018; 35:165-176. [PMID: 29335800 DOI: 10.1007/s10719-017-9807-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
C-Mannosylation, a protein-modification found in various eukaryotes, involves the attachment of a single mannose molecule to selected tryptophan residues of proteins. Since C-mannosyl tryptophan (CMW) was detected in human urine, it is generally thought that CMW is not catabolized inside our body and instead is excreted via the urine. This paper reports enrichment of a bacterial consortium from soil that degrades CMW. The bacteria grew in minimal medium supplemented with CMW as the carbon source. Interestingly, even after successive clonal picks of individual colonies, several species were still present in each colony as revealed by 16S rRNA gene sequence analysis, indicating that a single species may not be responsible for this activity. A next generation sequencing (NGS) analysis was therefore carried out in order to determine which bacteria were responsible for the catabolism of CMW. It was found that a species of Sphingomonadaceae family, but not others, increased with simultaneous decrease of CMW in the media, suggesting that this species is most likely the one that is actively involved in the degradation of CMW.
Collapse
|
54
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
55
|
Dutta D, Mandal C, Mandal C. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3096-3108. [DOI: 10.1016/j.bbagen.2017.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
|
56
|
Sipes JM, Murphy-Ullrich JE, Roberts DD. Thrombospondins: Purification of human platelet thrombospondin-1. Methods Cell Biol 2017; 143:347-369. [PMID: 29310787 DOI: 10.1016/bs.mcb.2017.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thrombospondins are a family of five secreted proteins that have diverse roles in modulating cellular function. Thrombospondins-1 and 2 were identified as matricellular proteins based on their functional roles combined with their transient appearance or accumulation in extracellular matrix at specific times during development and in response to injury or stress in mature tissues. Thrombospondin-1 is a major component of platelet α-granules, which provides a convenient source for purification of the protein. Methods are described to prepare thrombospondin-1 from human platelets in a biologically active form with minimal degradation or contamination with other platelet proteins. A nondenaturing method is described for removing bound transforming growth factor-β1.
Collapse
Affiliation(s)
- John M Sipes
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
57
|
Functional characterization of zebrafish orthologs of the human Beta 3-Glucosyltransferase B3GLCT gene mutated in Peters Plus Syndrome. PLoS One 2017; 12:e0184903. [PMID: 28926587 PMCID: PMC5604996 DOI: 10.1371/journal.pone.0184903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Peters Plus Syndrome (PPS) is a rare autosomal recessive disease characterized by ocular defects, short stature, brachydactyly, characteristic facial features, developmental delay and other highly variable systemic defects. Classic PPS is caused by loss-of-function mutations in the B3GLCT gene encoding for a β3-glucosyltransferase that catalyzes the attachment of glucose via a β1–3 glycosidic linkage to O-linked fucose on thrombospondin type 1 repeats (TSRs). B3GLCT was shown to participate in a non-canonical ER quality control mechanism; however, the exact molecular processes affected in PPS are not well understood. Here we report the identification and characterization of two zebrafish orthologs of the human B3GLCT gene, b3glcta and b3glctb. The b3glcta and b3glctb genes encode for 496-aa and 493-aa proteins with 65% and 57% identity to human B3GLCT, respectively. Expression studies demonstrate that both orthologs are widely expressed with strong presence in embryonic tissues affected in PPS. In vitro glucosylation assays demonstrated that extracts from wildtype embryos contain active b3glct enzyme capable of transferring glucose from UDP-glucose to an O-fucosylated TSR, indicating functional conservation with human B3GLCT. To determine the developmental role of the zebrafish genes, single and double b3glct knockouts were generated using TALEN-induced genome editing. Extracts from double homozygous b3glct-/- embryos demonstrated complete loss of in vitro b3glct activity. Surprisingly, b3glct-/- homozygous fish developed normally. Transcriptome analyses of head and trunk tissues of b3glct-/- 24-hpf embryos identified 483 shared differentially regulated transcripts that may be involved in compensation for b3glct function in these embryos. The presented data show that both sequence and function of B3GLCT/b3glct genes is conserved in vertebrates. At the same time, complete b3glct deficiency in zebrafish appears to be inconsequential and possibly compensated for by a yet unknown mechanism.
Collapse
|
58
|
Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nat Commun 2017; 8:561. [PMID: 28916755 PMCID: PMC5601480 DOI: 10.1038/s41467-017-00571-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism. The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Collapse
|
59
|
Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites. PLoS Negl Trop Dis 2017; 11:e0005791. [PMID: 28759593 PMCID: PMC5552340 DOI: 10.1371/journal.pntd.0005791] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/10/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum. Malaria is one of the most important infectious diseases in the world with hundreds of millions of new cases every year. Malaria is caused by parasites of the genus Plasmodium which have a complex life cycle, alternating between mosquito and mammalian hosts. Human infections are initiated with a sporozoite inoculum deposited into the skin by parasite-infected mosquitoes as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. In the case of Plasmodium vivax, one of the two Plasmodium species responsible for the majority of the disease burden in the world, the parasite has the ability to persist for months in the liver after the initial infection and its activation causes the recurring appearance of the parasite in the blood. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages before the formation of hypnozoites (the persisting parasites in the liver) that an impact on the burden of vivax malaria can be achieved. We used state-of-the-art mass spectrometry-based proteomics tools to identify the total protein make-up of P. vivax sporozoites. By analyzing which proteins are exposed to the parasite surface and determining the degree of protein’s post-translational modifications, our investigation will aid the understanding of the novel biology of sporozoites and importantly, advise the development of potential vaccine candidates targeting this parasite stage.
Collapse
|
60
|
Morishita S, Suzuki T, Niwa Y, Dohmae N, Simizu S. Dpy-19 like 3-mediated C-mannosylation and expression levels of RPE-spondin in human tumor cell lines. Oncol Lett 2017; 14:2537-2544. [PMID: 28781692 DOI: 10.3892/ol.2017.6465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
C-mannosylation is a unique type of protein glycosylation with a mannose attached to the tryptophan residue via the C-C linkage. Our previous study revealed that dpy-19 like 3 (DPY19L3) acts as a C-mannosyltransferase in human cells. The present study hypothesized that RPE-spondin (RPESP) may be a substrate protein of DPY19L3-mediated C-mannosylation. RPESP has unknown biological functions and has two putative C-mannosylation sites at the W80 and W83 residues; however, to the best of our knowledge, C-mannosylation of RPESP has not previously been investigated. The present study suggested that RPESP is C-mannosylated at W80 and W83 in human cells, whereas gain-of-function experiments using S2 cells revealed that human DPY19L3 catalyzed the C-mannosylation of RPESP at W83 but not W80, which suggested substrate specificity. In addition, the present study detected mRNA expression levels of RPESP in various types of cancer cell lines and high expression levels of RPESP were revealed in certain colorectal cancer cell lines, suggesting that RPESP may have an association with the malignancy of colorectal cancers.
Collapse
Affiliation(s)
- Shohei Morishita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
61
|
Zhang S, Niu YH, Ye XS. General Approach to Five-Membered Nitrogen Heteroaryl C-Glycosides Using a Palladium/Copper Cocatalyzed C–H Functionalization Strategy. Org Lett 2017; 19:3608-3611. [DOI: 10.1021/acs.orglett.7b01583] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Natural and Biomimetic
Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - You-Hong Niu
- State Key Laboratory of Natural and Biomimetic
Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic
Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
62
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
63
|
Okamoto S, Murano T, Suzuki T, Uematsu S, Niwa Y, Sasazawa Y, Dohmae N, Bujo H, Simizu S. Regulation of secretion and enzymatic activity of lipoprotein lipase by C -mannosylation. Biochem Biophys Res Commun 2017; 486:558-563. [DOI: 10.1016/j.bbrc.2017.03.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
|
64
|
Franc V, Yang Y, Heck AJR. Proteoform Profile Mapping of the Human Serum Complement Component C9 Revealing Unexpected New Features of N-, O-, and C-Glycosylation. Anal Chem 2017; 89:3483-3491. [PMID: 28221766 PMCID: PMC5362742 DOI: 10.1021/acs.analchem.6b04527] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The human complement
C9 protein (∼65 kDa) is a member of
the complement pathway. It plays an essential role in the membrane
attack complex (MAC), which forms a lethal pore on the cellular surface
of pathogenic bacteria. Here, we charted in detail the structural
microheterogeneity of C9 purified from human blood serum, using an
integrative workflow combining high-resolution native mass spectrometry
and (glyco)peptide-centric proteomics. The proteoform profile of C9
was acquired by high-resolution native mass spectrometry, which revealed
the co-occurrence of ∼50 distinct mass spectrometry (MS) signals.
Subsequent peptide-centric analysis, through proteolytic digestion
of C9 and liquid chromatography (LC)-tandem mass spectrometry (MS/MS)
measurements of the resulting peptide mixtures, provided site-specific
quantitative profiles of three different types of C9 glycosylation
and validation of the native MS data. Our study provides a detailed
specification, validation, and quantification of 15 co-occurring C9
proteoforms and the first direct experimental evidence of O-linked glycans in the N-terminal region.
Additionally, next to the two known glycosylation sites, a third novel,
albeit low abundant, N-glycosylation site on C9 is
identified, which surprisingly does not possess the canonical N-glycosylation sequence N-X-S/T. Our data also reveal a
binding of up to two Ca2+ ions to C9. Mapping all detected
and validated sites of modifications on a structural model of C9,
as present in the MAC, hints at their putative roles in pore formation
or receptor interactions. The applied methods herein represent a powerful
tool for the unbiased in-depth analysis of plasma proteins and may
advance biomarker discovery, as aberrant glycosylation profiles may
be indicative of the pathophysiological state of the patients.
Collapse
Affiliation(s)
- Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yang Yang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
65
|
The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat Chem Biol 2017; 13:479-485. [PMID: 28244988 PMCID: PMC5391292 DOI: 10.1038/nchembio.2320] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Plant development requires coordination among complex signaling networks to enhance plant’s adaptation to changing environments. The transcription regulators DELLAs, originally identified as repressors of phytohormone gibberellin (GA) signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we showed that DELLA was mono-O-fucosylated by a novel O-fucosyltransferase SPINDLY (SPY) in Arabidopsis thaliana. O-fucosylation activates DELLA by promoting its interaction with key regulators in brassinosteroid (BR)- and light-signaling pathways, including BRASSINAZOLE-RESISTANT1 (BZR1), PHYTOCHROME-INTERACTING-FACTOR3 (PIF3), and PIF4. Consistently, spy mutants displayed elevated responses to GA and BR, and increased expression of common target genes of DELLAs, BZR1 and PIFs. Our study revealed that SPY-dependent protein O-fucosylation plays a key role in regulating plant development. This finding has broader importance as SPY orthologs are conserved from prokaryotes to eukaryotes, suggesting that intracellular O-fucosylation may regulate a wide range of biological processes in diverse organisms.
Collapse
|
66
|
Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc Natl Acad Sci U S A 2017; 114:2574-2579. [PMID: 28202721 DOI: 10.1073/pnas.1613165114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thrombospondin type 1 repeats (TSRs) occur in diverse proteins involved in adhesion and signaling. The two extracellular TSRs of the netrin receptor UNC5A contain WxxWxxWxxC motifs that can be C-mannosylated on all tryptophans. A single C-mannosyltransferase (dumpy-19, DPY-19), modifying the first two tryptophans, occurs in Caenorhabditis elegans, but four putative enzymes (DPY-19-like 1-4, DPY19L1-4) exist in mammals. Single and triple CRISPR-Cas9 knockouts of the three homologs that are expressed in Chinese hamster ovary cells (DPY19L1, DPY19L3, and DPY19L4) and complementation experiments with mouse homologs showed that DPY19L1 preferentially mannosylates the first two tryptophans and DPY19L3 prefers the third, whereas DPY19L4 has no function in TSR glycosylation. Mannosylation by DPY19L1 but not DPY19L3 is required for transport of UNC5A from the endoplasmic reticulum to the cell surface. In vertebrates, a new C-mannosyltransferase has apparently evolved to increase glycosylation of TSRs, potentially to increase the stability of the structurally essential tryptophan ladder or to provide additional adhesion functions.
Collapse
|
67
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
68
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
69
|
Alowolodu O, Johnson G, Alashwal L, Addou I, Zhdanova IV, Uversky VN. Intrinsic disorder in spondins and some of their interacting partners. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1255295. [PMID: 28232900 DOI: 10.1080/21690707.2016.1255295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Spondins, which are proteins that inhibit and promote adherence of embryonic cells so as to aid axonal growth are part of the thrombospondin-1 family. Spondins function in several important biological processes, such as apoptosis, angiogenesis, etc. Spondins constitute a thrombospondin subfamily that includes F-spondin, a protein that interacts with Aβ precursor protein and inhibits its proteolytic processing; R-spondin, a 4-membered group of proteins that regulates Wnt pathway and have other functions, such as regulation of kidney proliferation, induction of epithelial proliferation, the tumor suppressant action; M-spondin that mediates mechanical linkage between the muscles and apodemes; and the SCO-spondin, a protein important for neuronal development. In this study, we investigated intrinsic disorder status of human spondins and their interacting partners, such as members of the LRP family, LGR family, Frizzled family, and several other binding partners in order to establish the existence and importance of disordered regions in spondins and their interacting partners by conducting a detailed analysis of their sequences, finding disordered regions, and establishing a correlation between their structure and biological functions.
Collapse
Affiliation(s)
- Oluwole Alowolodu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Gbemisola Johnson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Lamis Alashwal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Iqbal Addou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Irina V Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine , Boston, MA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
70
|
Identification of glycans on plasma-derived ADAMTS13. Blood 2016; 128:e51-e58. [PMID: 27574189 DOI: 10.1182/blood-2016-06-720912] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
Patients suffering from acquired thrombotic thrombocytopenic purpura develop autoantibodies directed toward the plasma glycoprotein ADAMTS13. Here, we studied the glycan composition of plasma-derived ADAMTS13. Purified ADAMTS13 was reduced, alkylated, and processed into peptides with either trypsin or chymotrypsin. Glycopeptides were enriched using zwitterionic HILIC zip-tips and analyzed by tandem mass spectrometry employing higher-energy collision dissociation fragmentation. Upon detection of a diagnostic ion of a glycan fragment, electron transfer dissociation fragmentation was performed on the same precursor ion. The majority of N-linked glycans were of the complex type containing terminal sialic acids and fucose residues. A high mannose-containing glycan was attached to Asn614 in the spacer domain. Six O-linked glycans mostly terminating in sialic acid were found dispersed over ADAMTS13. Five O-linked glycans were attached to a Ser and one to Thr. All 6 O-linked glycans contained a terminal sialic acid. O-fucosylation is a common posttranslational modification of thrombospondin type 1 repeats. We identified 7 O-fucosylation sites in the thrombospondin (TSP) type 1 repeats. Unexpectedly, one additional O-fucosylation site was found in the disintegrin domain. This O-fucosylation site did not meet the proposed consensus sequence CSX(S/T)CG. C-mannosylation sites were identified in TSP1, linker TSP4-TSP5, and TSP8. Overall, our findings highlight the complexity of glycan modifications on ADAMTS13, which may have implications for its interaction with immune- or clearance receptors containing carbohydrate recognition domains.
Collapse
|
71
|
Zhang X, Wang Y. Glycosylation Quality Control by the Golgi Structure. J Mol Biol 2016; 428:3183-3193. [PMID: 26956395 PMCID: PMC4983240 DOI: 10.1016/j.jmb.2016.02.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/27/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
Glycosylation is a ubiquitous modification that occurs on proteins and lipids in all living cells. Consistent with their high complexity, glycans play crucial biological roles in protein quality control and recognition events. Asparagine-linked protein N-glycosylation, the most complex glycosylation, initiates in the endoplasmic reticulum and matures in the Golgi apparatus. This process not only requires an accurate distribution of processing machineries, such as glycosyltransferases, glycosidases, and nucleotide sugar transporters, but also needs an efficient and well-organized factory that is responsible for the fidelity and quality control of sugar chain processing. In addition, accurate glycosylation must occur in coordination with protein trafficking and sorting. These activities are carried out by the Golgi apparatus, a membrane organelle in the center of the secretory pathway. To accomplish these tasks, the Golgi has developed into a unique stacked structure of closely aligned, flattened cisternae in which Golgi enzymes reside; in mammalian cells, dozens of Golgi stacks are often laterally linked into a ribbon-like structure. Here, we review our current knowledge of how the Golgi structure is formed and why its formation is required for accurate glycosylation, with the focus on how the Golgi stacking factors GRASP55 and GRASP65 generate the Golgi structure and how the conserved oligomeric Golgi complex maintains Golgi enzymes in different Golgi subcompartments by retrograde protein trafficking.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
72
|
Sugimoto K, Tsuchiya S, Omori M, Matsuda R, Fujio M, Kuroda K, Okido M, Hibi H. Proteomic analysis of bone proteins adsorbed onto the surface of titanium dioxide. Biochem Biophys Rep 2016; 7:316-322. [PMID: 28955921 PMCID: PMC5613647 DOI: 10.1016/j.bbrep.2016.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 12/03/2022] Open
Abstract
Osseointegration is the structural and functional connection between bone tissues and implants such as titanium dioxide (TiO2). The bone-TiO2 interface is thought to contain proteoglycans. However, exhaustive analysis of the proteins in this layer has not been performed. In this study, we evaluated the bone protein adhered on the surface of TiO2 comprehensively. Pig bone protein was extracted by sequential elutions with guanidine, 0.1 M EDTA, and again with guanidine. The proteins obtained from these extractions were allowed to adhere to an HPLC column packed with TiO2 and were eluted with 0.2 M NaOH. The eluted proteins were identified by LC/MS/MS and included not only proteoglycans but also other proteins such as extracellular matrix proteins, enzymes, and growth factors. Calcium depositions were observed on TiO2 particles incubated with bone proteins, guanidine-extracted proteins adhered to TiO2 displayed significantly high amounts of calcium depositions. We identified bone proteins adhered on the surface of TiO2. Chromatography was an useful tool for investigating the layer adhered on the TiO2. The bone-TiO2 interface contained not only proteoglycans but also other proteins. Some of the adhered proteins showed mineralization capacity.
Collapse
Affiliation(s)
- Keisuke Sugimoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shuhei Tsuchiya
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Omori
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Ryo Matsuda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahito Fujio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kensuke Kuroda
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Masazumi Okido
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
73
|
Fujiwara M, Kato S, Niwa Y, Suzuki T, Tsuchiya M, Sasazawa Y, Dohmae N, Simizu S. C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/β-catenin signaling in cells. FEBS Lett 2016; 590:2639-49. [DOI: 10.1002/1873-3468.12274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Miho Fujiwara
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Shintaro Kato
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Yuki Niwa
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Japan
| | - Miyu Tsuchiya
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Yukiko Sasazawa
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit; RIKEN Center for Sustainable Resource Science; Wako Japan
| | - Siro Simizu
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; Yokohama Japan
| |
Collapse
|
74
|
Fahie K, Zachara NE. Molecular Functions of Glycoconjugates in Autophagy. J Mol Biol 2016; 428:3305-3324. [PMID: 27345664 DOI: 10.1016/j.jmb.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Glycoconjugates, glycans, carbohydrates, and sugars: these terms encompass a class of biomolecules that are diverse in both form and function ranging from free oligosaccharides, glycoproteins, and proteoglycans, to glycolipids that make up a complex glycan code that impacts normal physiology and disease. Recent data suggest that one mechanism by which glycoconjugates impact physiology is through the regulation of the process of autophagy. Autophagy is a degradative pathway necessary for differentiation, organism development, and the maintenance of cell and tissue homeostasis. In this review, we will highlight what is known about the regulation of autophagy by glycoconjugates focusing on signaling mechanisms from the extracellular surface and the regulatory roles of intracellular glycans. Glycan signaling from the extracellular matrix converges on "master" regulators of autophagy including AMPK and mTORC1, thus impacting their localization, activity, and/or expression. Within the intracellular milieu, gangliosides are constituents of the autophagosome membrane, a subset of proteins composing the autophagic machinery are regulated by glycosylation, and oligosaccharide exposure in the cytosol triggers an autophagic response. The examples discussed provide some mechanistic insights into glycan regulation of autophagy and reveal areas for future investigation.
Collapse
Affiliation(s)
- Kamau Fahie
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
75
|
Chang CF, Hsu LS, Weng CY, Chen CK, Wang SY, Chou YH, Liu YY, Yuan ZX, Huang WY, Lin H, Chen YH, Tsai JN. N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability. Int J Mol Sci 2016; 17:ijms17060937. [PMID: 27314333 PMCID: PMC4926470 DOI: 10.3390/ijms17060937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
R-spondin 1 (Rspo1) plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1) domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER) quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.
Collapse
Affiliation(s)
- Chiung-Fang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chieh-Yu Weng
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chih-Kai Chen
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Shu-Ying Wang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yi-Hwa Chou
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yan-Yu Liu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Zi-Xiu Yuan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Wen-Ying Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Jen-Ning Tsai
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
76
|
Takahashi K, Sumarriva K, Kim R, Jiang R, Brantley-Sieders DM, Chen J, Mernaugh RL, Takahashi T. Determination of the CD148-Interacting Region in Thrombospondin-1. PLoS One 2016; 11:e0154916. [PMID: 27149518 PMCID: PMC4858292 DOI: 10.1371/journal.pone.0154916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022] Open
Abstract
CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types, including vascular endothelial cells and duct epithelial cells. Previous studies have shown a prominent role of CD148 to reduce growth factor signals and suppress cell proliferation and transformation. Further, we have recently shown that thrombospondin-1 (TSP1) serves as a functionally important ligand for CD148. TSP1 has multiple structural elements and interacts with various cell surface receptors that exhibit differing effects. In order to create the CD148-specific TSP1 fragment, here we investigated the CD148-interacting region in TSP1 using a series of TSP1 fragments and biochemical and biological assays. Our results demonstrate that: 1) CD148 binds to the 1st type 1 repeat in TSP1; 2) Trimeric TSP1 fragments that contain the 1st type repeat inhibit cell proliferation in A431D cells that stably express wild-type CD148 (A431D/CD148wt cells), while they show no effects in A431D cells that lack CD148 or express a catalytically inactive form of CD148. The anti-proliferative effect of the TSP1 fragment in A431D/CD148wt cells was largely abolished by CD148 knockdown and antagonized by the 1st, but not the 2nd and 3rd, type 1 repeat fragment. Furthermore, the trimeric TSP1 fragments containing the 1st type repeat increased the catalytic activity of CD148 and reduced phospho-tyrosine contents of EGFR and ERK1/2, defined CD148 substrates. These effects were not observed in the TSP1 fragments that lack the 1st type 1 repeat. Last, we demonstrate that the trimeric TSP1 fragment containing the 1st type 1 repeat inhibits endothelial cell proliferation in culture and angiogenesis in vivo. These effects were largely abolished by CD148 knockdown or deficiency. Collectively, these findings indicate that the 1st type 1 repeat interacts with CD148, reducing growth factor signals and inhibiting epithelial or endothelial cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Keiko Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Katherine Sumarriva
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rachel Kim
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rosie Jiang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Dana M. Brantley-Sieders
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jin Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Raymond L. Mernaugh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Takamune Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
77
|
Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, Vaughan AM, Springer TA, Moritz RL, Kappe SHI, Sinnis P. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathog 2016; 12:e1005606. [PMID: 27128092 PMCID: PMC4851412 DOI: 10.1371/journal.ppat.1005606] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria parasite infection is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver for infection. A promising approach to developing a malaria vaccine is the use of proteins located on the sporozoite surface as antigens to elicit humoral immune responses that prevent the establishment of infection. Very little of the P. falciparum genome has been considered as potential vaccine targets, and candidate vaccines have been almost exclusively based on single antigens, generating the need for novel target identification. The most advanced malaria vaccine to date, RTS,S, a subunit vaccine consisting of a portion of the major surface protein circumsporozoite protein (CSP), conferred limited protection in Phase III trials, falling short of community-established vaccine efficacy goals. In striking contrast to the limited protection seen in current vaccine trials, sterilizing immunity can be achieved by immunization with radiation-attenuated sporozoites, suggesting that more potent protection may be achievable with a multivalent protein vaccine. Here, we provide the most comprehensive analysis to date of proteins located on the surface of or secreted by Plasmodium falciparum salivary gland sporozoites. We used chemical labeling to isolate surface-exposed proteins on sporozoites and identified these proteins by mass spectrometry. We validated several of these targets and also provide evidence that components of the inner membrane complex are in fact surface-exposed and accessible to antibodies in live sporozoites. Finally, our mass spectrometry data provide the first direct evidence that the Plasmodium surface proteins CSP and TRAP are glycosylated in sporozoites, a finding that could impact the selection of vaccine antigens. Malaria remains one of the most important infectious diseases in the world, responsible for an estimated 500 million new cases and 600,000 deaths annually. The etiologic agents of the disease are protozoan parasites of the genus Plasmodium that have a complex cycle between mosquito and mammalian hosts. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages that we can make an impact on the economic and health burdens of malaria. Infection is initiated when mosquitoes inoculate sporozoites into the skin as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. The inoculum is low and these early stages of infection are asymptomatic. Though the small amounts of material available for study has made large scale -omics studies difficult, killing the parasite at this stage would prevent infection and block downstream transmission to mosquitoes, thus preventing spread of disease. Here we use state-of-the-art biochemistry tools to identify the proteins on the sporozoite surface and find that two of the most studied proteins, CSP and TRAP, have post-translational modifications. These studies will aid investigations into the novel biology of sporozoites and importantly, significantly expand the pool of potential vaccine candidates.
Collapse
Affiliation(s)
| | - Scott E. Lindner
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lirong Shi
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melanie J. Shears
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anke Harupa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Christine S. Hopp
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ashley M. Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Stefan H. I. Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| | - Photini Sinnis
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (RLM); (SHIK); (PS)
| |
Collapse
|
78
|
Niwa Y, Suzuki T, Dohmae N, Simizu S. Identification of DPY19L3 as the C-mannosyltransferase of R-spondin1 in human cells. Mol Biol Cell 2016; 27:744-56. [PMID: 26764097 PMCID: PMC4803301 DOI: 10.1091/mbc.e15-06-0373] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/05/2016] [Indexed: 12/24/2022] Open
Abstract
It was previously reported that human DPY19L3 is the C-mannosyltransferase of R-spondin1 at Trp-156. It is shown here that DPY19 family members have substrate specificity, providing insight into the function of C-mannosylation in cells. R-spondin1 (Rspo1) is a secreted protein that enhances Wnt signaling, which has crucial functions in embryonic development and several cancers. C-mannosylation is a rare type of glycosylation and might regulate secretion, protein–protein interactions, and enzymatic activity. Although human Rspo1 contains 2 predicted C-mannosylation sites, C-mannosylation of Rspo1 has not been reported, nor have its functional effects on this protein. In this study, we demonstrate by mass spectrometry that Rspo1 is C-mannosylated at W153 and W156. Using Lec15.2 cells, which lack dolichol-phosphate-mannose synthesis activity, and mutant Rspo1-expressing cells that replace W153 and W156 by alanine residues, we observed that C-mannosylation of Rspo1 is required for its secretion. Further, the enhancement of canonical Wnt signaling by Rspo1 is regulated by C-mannosylation. Recently DPY19 was reported to be a C-mannosyltransferase in Caenorhabditis elegans, but no C-mannosyltransferases have been identified in any other organism. In gain- and loss-of-function experiments, human DPY19L3 selectively modified Rspo1 at W156 but not W153 based on mass spectrometry. Moreover, knockdown of DPY19L3 inhibited the secretion of Rspo1. In conclusion, we identified DPY19L3 as the C-mannosyltransferase of Rspo1 at W156 and found that DPY19L3-mediated C-mannosylation of Rspo1 at W156 is required for its secretion.
Collapse
Affiliation(s)
- Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
79
|
C-mannosylation of thrombopoietin receptor (c-Mpl) regulates thrombopoietin-dependent JAK-STAT signaling. Biochem Biophys Res Commun 2015; 468:262-8. [DOI: 10.1016/j.bbrc.2015.10.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
|
80
|
Peterson RA, Gueniche A, Adam de Beaumais S, Breton L, Dalko-Csiba M, Packer NH. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology 2015; 26:218-29. [DOI: 10.1093/glycob/cwv102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
|
81
|
Cova M, Rodrigues JA, Smith TK, Izquierdo L. Sugar activation and glycosylation in Plasmodium. Malar J 2015; 14:427. [PMID: 26520586 PMCID: PMC4628283 DOI: 10.1186/s12936-015-0949-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugates are important mediators of host-pathogen interactions and are usually very abundant in the surface of many protozoan parasites. However, in the particular case of Plasmodium species, previous works show that glycosylphosphatidylinositol anchor modifications, and to an unknown extent, a severely truncated N-glycosylation are the only glycosylation processes taking place in the parasite. Nevertheless, a detailed analysis of the parasite genome and the recent identification of the sugar nucleotide precursors biosynthesized by Plasmodium falciparum support a picture in which several overlooked, albeit not very prominent glycosylations may be occurring during the parasite life cycle. In this work,
the authors review recent developments in the characterization of the biosynthesis of glycosylation precursors in the parasite, focusing on the outline of the possible fates of these precursors.
Collapse
Affiliation(s)
- Marta Cova
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
82
|
Abstract
N-Glycosylation has long been linked to protein folding and quality control in the endoplasmic reticulum (ER). Recent work has shown that O-linked glycosylation and the corresponding glycosyltransferases also participate in this important function. Notably, Protein O-fucosyltransferase 1 (Ofut1/Pofut1), a soluble, ER localized enzyme that fucosylates Epidermal Growth Factor-like (EGF) repeats, functions as a chaperone involved in the proper localization of the Notch receptor in certain contexts. Pofut2, a related enzyme that modifies Thrombospondin type I repeats (TSRs), has also been hypothesized to play a role in the folding and quality control of TSR-containing proteins. Both enzymes only modify fully folded substrates suggesting that they are able to distinguish between folded and unfolded structures. Pofuts have known physiological relevance and are conserved across metazoans. Though consensus sequences for O-fucosylation have been established and structures of both Pofuts have been studied, the mechanism of how they participate in protein folding is not known. This article discusses past and recent advances made in novel roles for these protein O-glycosyltransferases.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | |
Collapse
|
83
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
84
|
Vasudevan D, Takeuchi H, Johar SS, Majerus E, Haltiwanger RS. Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Curr Biol 2014; 25:286-295. [PMID: 25544610 DOI: 10.1016/j.cub.2014.11.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND O-fucose is added to cysteine-rich domains called thrombospondin type 1 repeats (TSRs) by protein O-fucosyltransferase 2 (POFUT2) and is elongated with glucose by β3-glucosyltransferase (B3GLCT). Mutations in B3GLCT result in Peters plus syndrome (PPS), an autosomal recessive disorder characterized by eye and other developmental defects. Although 49 putative targets are known, the function of the disaccharide and its role in PPS remain unexplored. RESULTS Here we show that while POFUT2 is required for secretion of all targets tested, B3GLCT only affects the secretion of a subset, consistent with the observation that B3GLCT mutant phenotypes in PPS patients are less severe than embryonic lethal phenotypes of Pofut2-null mice. O-glycosylation occurs cotranslationally, as TSRs fold. Mass spectral analysis reveals that TSRs from mature, secreted protein are stoichiometrically modified with the disaccharide, whereas TSRs from protein still folding in the ER are partially modified, suggesting that O-glycosylation marks folded TSRs and promotes ER exit. In vitro unfolding assays demonstrate that fucose and glucose stabilize folded TSRs in an additive manner. In vitro refolding assays under redox conditions showed that POFUT2 recognizes, glycosylates, and stabilizes the folded form of TSRs, resulting in a net acceleration of folding. CONCLUSIONS While known ER quality-control machinery rely on identifying and tagging unfolded proteins, we find that POFUT2 and B3GLCT mediate a noncanonical ER quality-control mechanism that recognizes folded TSRs and stabilizes them by glycosylation. Our findings provide a molecular basis for the defects observed in PPS and potential targets that contribute to the pathology.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sumreet Singh Johar
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Elaine Majerus
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
85
|
Via A, Uyar B, Brun C, Zanzoni A. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 2014; 40:36-48. [PMID: 25475989 DOI: 10.1016/j.tibs.2014.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Abstract
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.
Collapse
Affiliation(s)
- Allegra Via
- Department of Physics, Sapienza University, 00185 Rome, Italy
| | - Bora Uyar
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christine Brun
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France; CNRS, Marseille F-13402, France
| | - Andreas Zanzoni
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France.
| |
Collapse
|
86
|
Murphy-Ullrich JE, Sage EH. Revisiting the matricellular concept. Matrix Biol 2014; 37:1-14. [PMID: 25064829 PMCID: PMC4379989 DOI: 10.1016/j.matbio.2014.07.005] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
The concept of a matricellular protein was first proposed by Paul Bornstein in the mid-1990s to account for the non-lethal phenotypes of mice with inactivated genes encoding thrombospondin-1, tenascin-C, or SPARC. It was also recognized that these extracellular matrix proteins were primarily counter or de-adhesive. This review reappraises the matricellular concept after nearly two decades of continuous investigation. The expanded matricellular family as well as the diverse and often unexpected functions, cellular location, and interacting partners/receptors of matricellular proteins are considered. Development of therapeutic strategies that target matricellular proteins are discussed in the context of pathology and regenerative medicine.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | | |
Collapse
|
87
|
Darula Z, Medzihradszky KF. Glycan side reaction may compromise ETD-based glycopeptide identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:977-87. [PMID: 24664807 PMCID: PMC4036456 DOI: 10.1007/s13361-014-0852-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/02/2014] [Indexed: 05/20/2023]
Abstract
Tris(hydroxymethyl)aminomethane (Tris) is one of the most frequently used buffer ingredients. Among other things, it is recommended and is usually used for lectin-based affinity enrichment of glycopeptides. Here we report that sialic acid, a common 'capping' unit in both N- and O-linked glycans may react with this chemical, and this side reaction may compromise glycopeptide identification when ETD spectra are the only MS/MS data used in the database search. We show that the modification may alter N- as well as O-linked glycans, the Tris-derivative is still prone to fragmentation both in 'beam-type' CID (HCD) and ETD experiments, at the same time--since the acidic carboxyl group was 'neutralized'--it will display a different retention time than its unmodified counterpart. We also suggest solutions that--when incorporated into existing search engines--may significantly improve the reliability of glycopeptide assignments.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary,
| | | |
Collapse
|
88
|
GOTO YUKI, NIWA YUKI, SUZUKI TAKEHIRO, DOHMAE NAOSHI, UMEZAWA KAZUO, SIMIZU SIRO. C-mannosylation of human hyaluronidase 1: Possible roles for secretion and enzymatic activity. Int J Oncol 2014; 45:344-50. [DOI: 10.3892/ijo.2014.2438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/16/2014] [Indexed: 11/06/2022] Open
|
89
|
Olsen JG, Kragelund BB. Who climbs the tryptophan ladder? On the structure and function of the WSXWS motif in cytokine receptors and thrombospondin repeats. Cytokine Growth Factor Rev 2014; 25:337-41. [PMID: 24861947 DOI: 10.1016/j.cytogfr.2014.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
For decades, a spectacular structural motif has been the focus of research in two families of animal membrane proteins: the hematopoietic cytokine type I receptors (HCR) and the thrombospondin repeat type 1 (TSR-1) domain containing proteins. Although these families include some of the best-studied and pharmaceutically most interesting human proteins, the function of the motif remains elusive. Here we show that the molecular details of the motifs are the same; that it has arisen through convergent evolution, and we argue that the same ligand binding function is maintained and suggest that the ligand can be found in the extracellular matrix (ECM). We term the motif the tryptophan ladder and suggest a function based on a comparative analysis.
Collapse
Affiliation(s)
- Johan G Olsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
90
|
Sorvillo N, Kaijen PH, Matsumoto M, Fujimura Y, van der Zwaan C, Verbij FC, Pos W, Fijnheer R, Voorberg J, Meijer AB. Identification of N-linked glycosylation and putative O-fucosylation, C-mannosylation sites in plasma derived ADAMTS13. J Thromb Haemost 2014; 12:670-9. [PMID: 24977290 DOI: 10.1111/jth.12535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acquired deficiency of ADAMTS13 causes a rare and life-threatening disorder called thrombotic thrombocytopenic purpura (TTP). Several studies have shown that aberrant glycosylation can play an important role in the pathogenesis of autoimmune diseases.N-linked glycosylation and putative O-fucosylation sites have been predicted or identified in recombinant ADAMTS13. However, it is not known which of these sites are glycosylated in plasma derived ADAMTS13. OBJECTIVES Here we investigated the presence of putative O-fucosylation, C-mannosylation and N-linked glycosylation sites on plasma derived ADAMTS13. METHODS/RESULTS Sites of N-linked glycosylation were determined by the use of peptide N-glycosidase-F (PNGase F), which removes the entire carbohydrate from the side chain of asparagines. Nine of the 10 predicted N-linked glycosylation sites were identified in or near the metalloproteinase,spacer, thrombospondin type 1 repeat (TSR1) and the CUB domain of plasma ADAMTS13. Moreover, six putative O-fucosylated sites were identified in the TSR domains of plasma ADAMTS13 by performing searches of the tandem mass spectrometry (MS/MS) data for loss of hexose (162 Da), deoxyhexose (146 Da), or hexose deoxyhexose(308 Da). The use of electron transfer dissociation (ETD) allowed for unambiguous identification of the modified sites. In addition to putative O-fucosylation and N-linked glycosylation, two putative C-mannosylation sites were identified within the TSR1 and TSR4 domains of ADAMTS13. CONCLUSIONS Our data identify several glycosylation sites on plasma derived ADAMTS13. We anticipate that our findings may be relevant for the initiation of autoimmune reactivity against ADAMTS13 in patients with acquired TTP.
Collapse
|
91
|
Zheng XL. Structure-function and regulation of ADAMTS-13 protease. J Thromb Haemost 2013; 11 Suppl 1:11-23. [PMID: 23809107 PMCID: PMC3713533 DOI: 10.1111/jth.12221] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/03/2013] [Indexed: 12/11/2022]
Abstract
ADAMTS-13, a plasma reprolysin-like metalloprotease, cleaves von Willebrand factor (VWF). Severe deficiency of plasma ADAMTS-13 activity results in thrombotic thrombocytopenic purpura (TTP), while mild to moderate deficiencies of plasma ADAMTS-13 activity are emerging risk factors for developing myocardial and cerebral infarction, pre-eclampsia, and malignant malaria. Moreover, Adamts13(-/-) mice develop more severe inflammatory responses, leading to increased ischemia/perfusion injury and formation of atherosclerosis. Structure-function studies demonstrate that the N-terminal portion of ADAMTS-13 (MDTCS) is necessary and sufficient for proteolytic cleavage of VWF under various conditions and attenuation of arterial/venous thrombosis after oxidative injury. The more distal portion of ADAMTS-13 (TSP1 2-8 repeats and CUB domains) may function as a disulfide bond reductase to prevent an elongation of ultra-large VWF strings on activated endothelial cells and inhibit platelet adhesion/aggregation on collagen surface under flow. Remarkably, the proteolytic cleavage of VWF by ADAMTS-13 is accelerated by FVIII and platelets under fluid shear stress. A disruption of the interactions between FVIII (or platelet glycoprotein 1bα) and VWF dramatically impairs ADAMTS-13-dependent proteolysis of VWF in vitro and in vivo. These results suggest that FVIII and platelets may be physiological cofactors regulating VWF proteolysis. Finally, the structure-function and autoantibody mapping studies allow us to identify an ADAMTS-13 variant with increased specific activity but reduced inhibition by autoantibodies in patients with acquired TTP. Together, these findings provide novel insight into the mechanism of VWF proteolysis and tools for the therapy of acquired TTP and perhaps other arterial thrombotic disorders.
Collapse
Affiliation(s)
- X L Zheng
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
92
|
Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, Izquierdo L. Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of Plasmodium falciparum. J Biol Chem 2013; 288:16506-16517. [PMID: 23615908 DOI: 10.1074/jbc.m112.439828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-L-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.
Collapse
Affiliation(s)
- Sílvia Sanz
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Giulia Bandini
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Diego Ospina
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Maria Bernabeu
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Karina Mariño
- College of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, Dundee DD15EH, Scotland, United Kingdom
| | - Carmen Fernández-Becerra
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, CEK, 1a Planta, Rosselló 149-153, 08036, Barcelona, Spain.
| |
Collapse
|
93
|
C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell 2013; 50:295-302. [PMID: 23562325 DOI: 10.1016/j.molcel.2013.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/22/2013] [Accepted: 03/01/2013] [Indexed: 11/20/2022]
Abstract
Among the different types of protein glycosylation, C-mannosylation of tryptophan residues stands out because of the unique linkage formed between sugar and protein. Instead of the typical O- or N-glycosidic linkage, a C-C bond is used for attachment of a single mannose. C-mannose is characteristically found in thrombospondin type 1 repeats and in the WSXWS motif of type I cytokine receptors. The genetic base of the enzymatic activity catalyzing C-mannosylation was not known. Here we demonstrate that Caenorhabditis elegans DPY-19 is a C-mannosyltransferase. DPY-19 exhibits topological and sequential homology to the N-glycan oligosaccharyltransferase, highlighting an evolutionary link between N- and C-glycosylation. We show that the C. elegans surface receptors MIG-21 and UNC-5 are acceptor substrates of DPY-19 and that C-mannosylation is essential for the secretion of soluble MIG-21. Thereby, our data provide an explanation for the previously described identical Q neuroblast migration phenotypes of dpy-19 and mig-21 mutants.
Collapse
|
94
|
Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc Natl Acad Sci U S A 2012; 109:21420-5. [PMID: 23236185 DOI: 10.1073/pnas.1218581109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sporozoite gliding motility and invasion of mosquito and vertebrate host cells in malaria is mediated by thrombospondin repeat anonymous protein (TRAP). Tandem von Willebrand factor A (VWA) and thrombospondin type I repeat (TSR) domains in TRAP connect through proline-rich stalk, transmembrane, and cytoplasmic domains to the parasite actin-dependent motility apparatus. We crystallized fragments containing the VWA and TSR domains from Plasmodium vivax and Plasmodium falciparum in different crystal lattices. TRAP VWA domains adopt closed and open conformations, and bind a Mg(2+) ion at a metal ion-dependent adhesion site implicated in ligand binding. Metal ion coordination in the open state is identical to that seen in the open high-affinity state of integrin I domains. The closed VWA conformation associates with a disordered TSR domain. In contrast, the open VWA conformation crystallizes with an extensible β ribbon and ordered TSR domain. The extensible β ribbon is composed of disulfide-bonded segments N- and C-terminal to the VWA domain that are largely drawn out of the closed VWA domain in a 15 Å movement to the open conformation. The extensible β ribbon and TSR domain overlap at a conserved interface. The VWA, extensible β ribbon, and TSR domains adopt a highly elongated overall orientation that would be stabilized by tensile force exerted across a ligand-receptor complex by the actin motility apparatus of the sporozoite. Our results provide insights into regulation of "stick-and-slip" parasite motility and for development of sporozoite subunit vaccines.
Collapse
|
95
|
Al-Shareffi E, Chaubard JL, Leonhard-Melief C, Wang SK, Wong CH, Haltiwanger RS. 6-alkynyl fucose is a bioorthogonal analog for O-fucosylation of epidermal growth factor-like repeats and thrombospondin type-1 repeats by protein O-fucosyltransferases 1 and 2. Glycobiology 2012; 23:188-98. [PMID: 23045360 DOI: 10.1093/glycob/cws140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein O-fucosyltransferase 1 (Pofut1) and protein O-fucosyltransferase 2 (Pofut2) add O-linked fucose at distinct consensus sequences in properly folded epidermal growth factor (EGF)-like repeats and thrombospondin type-1 (TSR) repeats, respectively. Glycan chain elongation past O-fucose can occur to yield a tetrasaccharide on EGF repeats and a disaccharide on TSRs. Elimination of Pofut1 in mice causes embryonic lethality with Notch-like phenotypes demonstrating that O-fucosylation of Notch is essential for its function. Similarly, elimination of Pofut2 results in an early embryonic lethal phenotype in mice, although the molecular mechanism for the lethality is unknown. The recent development of sugar analogs has revolutionized the study of glycans by providing a convenient method for labeling and tracking glycosylation. In order to study O-fucosylation, we took advantage of the recently developed reporter, 6-alkynyl fucose. Using the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), or "click" reaction, azido-biotin allows tagging and detection of 6AF-modified proteins. Here we examine whether proteins containing EGF repeats or TSRs with O-fucose consensus sequences are specifically modified with 6AF in cell culture. Using mass spectrometry (MS), we demonstrate that 6AF is efficiently incorporated onto the appropriate consensus sequences on EGF repeats and TSRs. Furthermore, the elongation of the O-fucose monosaccharide on EGF repeats and TSRs is not hampered when 6AF is used. These results show that 6AF is efficiently utilized in a truly bioorthogonal manner by Pofut1, Pofut2 and the enzymes that elongate O-fucose, providing evidence that 6AF is a significant new tool in the study of protein O-fucosylation.
Collapse
Affiliation(s)
- Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, New York, NY 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
96
|
Chen CI, Keusch JJ, Klein D, Hess D, Hofsteenge J, Gut H. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. EMBO J 2012; 31:3183-97. [PMID: 22588082 PMCID: PMC3400009 DOI: 10.1038/emboj.2012.143] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/23/2012] [Indexed: 01/07/2023] Open
Abstract
Protein O-fucosylation is a post-translational modification found on serine/threonine residues of thrombospondin type 1 repeats (TSR). The fucose transfer is catalysed by the protein O-fucosyltransferase 2 (POFUT2) and >40 human proteins contain the TSR consensus sequence for POFUT2-dependent fucosylation. To better understand O-fucosylation on TSR, we carried out a structural and functional analysis of human POFUT2 and its TSR substrate. Crystal structures of POFUT2 reveal a variation of the classical GT-B fold and identify sugar donor and TSR acceptor binding sites. Structural findings are correlated with steady-state kinetic measurements of wild-type and mutant POFUT2 and TSR and give insight into the catalytic mechanism and substrate specificity. By using an artificial mini-TSR substrate, we show that specificity is not primarily encoded in the TSR protein sequence but rather in the unusual 3D structure of a small part of the TSR. Our findings uncover that recognition of distinct conserved 3D fold motifs can be used as a mechanism to achieve substrate specificity by enzymes modifying completely folded proteins of very wide sequence diversity and biological function.
Collapse
Affiliation(s)
- Chun-I Chen
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jeremy J Keusch
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Hofsteenge
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. Tel.:+41 61 696 70 38; Fax:+41 61 697 39 76; E-mail:
| |
Collapse
|
97
|
Abstract
Protein glycosylation is a ubiquitous post-translational modification found in all domains of life. Despite their significant complexity in animal systems, glycan structures have crucial biological and physiological roles, from contributions in protein folding and quality control to involvement in a large number of biological recognition events. As a result, they impart an additional level of 'information content' to underlying polypeptide structures. Improvements in analytical methodologies for dissecting glycan structural diversity, along with recent developments in biochemical and genetic approaches for studying glycan biosynthesis and catabolism, have provided a greater understanding of the biological contributions of these complex structures in vertebrates.
Collapse
|
98
|
Doud MB, Koksal AC, Mi LZ, Song G, Lu C, Springer TA. Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci U S A 2012; 109:7817-22. [PMID: 22547819 PMCID: PMC3356675 DOI: 10.1073/pnas.1205737109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an "αTSR" domain. The αTSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but αTSR does not. Interestingly, polymorphic T-cell epitopes map to specialized αTSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.
Collapse
Affiliation(s)
- Michael B. Doud
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Adem C. Koksal
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Li-Zhi Mi
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gaojie Song
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Chafen Lu
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Timothy A. Springer
- Immune Disease Institute, Children’s Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
99
|
Abstract
Glycosylation represents the most complex co- and post-translational modification of proteins. In addition to N- and O-glycans, almost all combinations, including the nature of the carbohydrate moiety and the amino-acid involved, but also the type of the chemical linkage, can be isolated from natural glycoconjugates. This diversity correlates with the importance and the variety of the biological processes (and consequently the diseases) glycosides are involved in. This review focuses on rare and unusual glycosylation of peptides and proteins.
Collapse
Affiliation(s)
- Pierre Lafite
- Institut de Chimie Organique et Analytique-ICOA, Université d'Orléans, UMR CNRS 7311, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | | |
Collapse
|
100
|
Hoffmann BR, Liu Y, Mosher DF. Modification of EGF-like module 1 of thrombospondin-1, an animal extracellular protein, by O-linked N-acetylglucosamine. PLoS One 2012; 7:e32762. [PMID: 22403705 PMCID: PMC3293841 DOI: 10.1371/journal.pone.0032762] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is known to be subject to three unusual carbohydrate modifications: C-mannosylation, O-fucosylation, and O-glucosylation. We now describe a fourth: O-β-N-acetylglucosaminylation. Previously, O-β-N-acetylglucosamine (O-β-GlcNAc) was found on a threonine in the loop between the fifth and sixth cysteines of the 20(th) epidermal growth factor (EGF)-like module of Drosophila Notch. A BLAST search based on the Drosophila Notch loop sequence identified a number of human EGF-like modules that contain a similar sequence, including EGF-like module 1 of TSP-1 and its homolog, TSP-2. TSP-1, which has a potentially modifiable serine in the loop, reacted in immuno-blots with the CTD110.6 anti-O-GlcNAc antibody. Antibody reactivity was diminished by treatment of TSP-1 with β-N-acetylhexosaminidase. TSP-2, which lacks a potentially modifiable serine/threonine in the loop, did not react with CTD110.6. Analysis of tandem modules of TSP-1 localized reactivity of CTD110.6 to EGF-like module 1. Top-down mass spectrometric analysis of EGF-like module 1 demonstrated the expected modifications with glucose (+162 Da) and xylose (+132 Da) separately from modification with N-acetyl hexosamine (+203 Da). Mass spectrometric sequence analysis localized the +203-Da modification to Ser580 in the sequence (575)CPPGYSGNGIQC(586). These results demonstrate that O-β-N-acetylglucosaminylation can occur on secreted extracellular matrix proteins as well as on cell surface proteins.
Collapse
Affiliation(s)
- Brian R. Hoffmann
- Departments of Medicine and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Yuanyuan Liu
- Departments of Medicine and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Departments of Medicine and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|