51
|
Carver PI, Anguiano V, D'Armiento JM, Shiomi T. Mmp1a and Mmp1b are not functional orthologs to human MMP1 in cigarette smoke induced lung disease. ACTA ACUST UNITED AC 2014; 67:153-9. [PMID: 25497407 DOI: 10.1016/j.etp.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
Matrix Metalloproteinase 1 (MMP1, collagenase-1) expression is implicated in a number of diseased states including emphysema and malignant tumors. The cigarette-smoke induced expression of this interstitial collegenase has been studied extensively and its inhibition proposed as a novel therapeutic treatment for tobacco related diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer. However, a limitation in MMP1 research is the inability to take advantage of natural in vivo studies as most research has been performed in vitro or via animal models expressing human forms of the gene due to the lack of a rodent ortholog of MMP1. The present study examines the function of two possible mouse orthologs of human MMP1 known as Mmp1a and Mmp1b. Using genomic sequence analysis and expression analysis of these enzymes, the data demonstrate that neither MMP1a nor MMP1b behave in the same manner as human MMP1 in the presence of cigarette smoke. These findings establish that the two commonly proposed orthologs of MMP1, Mmp1a and Mmp1b, provide substantial limitations for use in examining MMP1 induced lung disease in mouse models of cigarette smoke emphysema.
Collapse
Affiliation(s)
- Phillip I Carver
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, P&S 12-402, New York, NY 10032 USA
| | - Vincent Anguiano
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, P&S 12-402, New York, NY 10032 USA
| | - Jeanine M D'Armiento
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, P&S 12-402, New York, NY 10032 USA
| | - Takayuki Shiomi
- Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, P&S 12-402, New York, NY 10032 USA.
| |
Collapse
|
52
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 379] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
53
|
Foley CJ, Kuliopulos A. Mouse matrix metalloprotease-1a (Mmp1a) gives new insight into MMP function. J Cell Physiol 2014; 229:1875-80. [PMID: 24737602 DOI: 10.1002/jcp.24650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/18/2023]
Abstract
Matrix metalloprotease-1 (MMP1) has been implicated in many human disease processes, however the lack of a well characterized murine homologue has significantly limited the study of MMP1 and the development of MMP-targeted therapeutics. The discovery of murine Mmp1a in 2001, the functional mouse homologue of MMP1, offers a valuable tool for modeling MMP1-mediated processes in mice. Variation in physiologic expression levels of Mmp1a in mice as compared to MMP1 in humans highlights the importance of understanding the similarities and differences between the homologues. Recent studies have demonstrated tumor growth-, invasion-, and angiogenesis-promoting functions of Mmp1a in lung cancer models, consistent with the analogous functions observed for human MMP1. Biochemical investigations have shown that point mutations in the pro-domain of mouse Mmp1a weaken docking between the pro- and catalytic domains, generating an unstable zymogen primed for activation. The difficulty to effectively maintain Mmp1a in the zymogen form may account for the tight control of Mmp1a expression and reduced expression in normal tissue as compared to inflammatory states or cancer. This discovery raises important questions about the activation mechanisms and regulation of the MMP family in general.
Collapse
Affiliation(s)
- Caitlin J Foley
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts; Program in Genetics, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
54
|
Meides A, Gutschalk CM, Devel L, Beau F, Czarny B, Hensler S, Neugebauer J, Dive V, Angel P, Mueller MM. Effects of selective MMP-13 inhibition in squamous cell carcinoma depend on estrogen. Int J Cancer 2014; 135:2749-59. [PMID: 24676718 DOI: 10.1002/ijc.28866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/11/2013] [Accepted: 12/06/2013] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases like MMP-13 cleave and remodel the extracellular matrix and thereby play a crucial role in tumor progression in vivo. Using a highly selective inhibitor to block MMP-13 protein activity, we demonstrate a striking inhibitory effect on invasive tumor growth and vascularization in murine skin squamous cell carcinoma (SCC). Therapy outcome critically depends on animal age in C57Bl/6 mice and was successful in old female but not in young female mice. Treatment success was recovered by ovariectomy in young and abolished by 17ß-estradiol supplementation in old mice, suggesting a hormone dependent inhibitor effect. Responsiveness of the tumorigenic keratinocytes BDVII and fibroblasts to 17ß-estradiol was confirmed in vitro, where MMP-13 inhibitor treatment led to a reduction of cell invasion and vascular endothelial growth factor (VEGF) release. This correlated well with a less invasive and vascularized tumor in treated mice in vivo. 17ß-estradiol supplementation also reduced invasion and VEGF release in vitro with no additional reduction on MMP-13 inhibitor treatment. This suggests that low 17ß-estradiol levels in old mice in vivo lead to enhanced MMP-13 levels and VEGF release, allowing a more effective inhibitor treatment compared to young mice. In our study, we present a strong link between lower estrogen levels in old female mice, an elevated MMP-13 level, which results in a more effective MMP-13 inhibitor treatment in fibroblasts and SCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Meides
- Group Tumor and Microenvironment, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong X, Yang J, Cai G. Redefining the modular organization of the core Mediator complex. Cell Res 2014; 24:796-808. [PMID: 24810298 PMCID: PMC4085763 DOI: 10.1038/cr.2014.64] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023] Open
Abstract
The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.
Collapse
Affiliation(s)
- Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Qianqian Sun
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Zhenrui Ding
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jinhua Ji
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jianye Wang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Xiao Kong
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jianghong Yang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Gang Cai
- 1] School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China [2] Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, 443 Huang-Shan Road, Hefei, Anhui 230027, China [3] Center for Biomedical Engineering, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| |
Collapse
|
56
|
Iyer RP, de Castro Brás LE, Jin YF, Lindsey ML. Translating Koch's postulates to identify matrix metalloproteinase roles in postmyocardial infarction remodeling: cardiac metalloproteinase actions (CarMA) postulates. Circ Res 2014; 114:860-71. [PMID: 24577966 DOI: 10.1161/circresaha.114.301673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first matrix metalloproteinase (MMP) was described in 1962; and since the 1990s, cardiovascular research has focused on understanding how MMPs regulate many aspects of cardiovascular pathology from atherosclerosis formation to myocardial infarction and stroke. Although much information has been gleaned by these past reports, to a large degree MMP cardiovascular biology remains observational, with few studies homing in on cause and effect relationships. Koch's postulates were first developed in the 19th century as a way to establish microorganism function and were modified in the 20th century to include methods to establish molecular causality. In this review, we outline the concept for establishing a similar approach to determine causality in terms of MMP functions. We use left ventricular remodeling postmyocardial infarction as an example, but this approach will have broad applicability across both the cardiovascular and the MMP fields.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- From the San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research (R.P.I., L.E.d.C.B., Y.-F.J., M.L.L.) and Department of Biophysics and Physiology (R.P.I., L.E.d.C.B., M.L.L.), University of Mississippi Medical Center, Jackson; Department of Electrical and Computer Engineering, University of Texas at San Antonio (Y.-F.J.); and Research Service, G.V. (Sonny) Department of Physiology and Biophysics, Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | | | | | | |
Collapse
|
57
|
Almodóvar-García K, Kwon M, Samaras SE, Davidson JM. ANKRD1 acts as a transcriptional repressor of MMP13 via the AP-1 site. Mol Cell Biol 2014; 34:1500-11. [PMID: 24515436 PMCID: PMC3993579 DOI: 10.1128/mcb.01357-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 01/21/2023] Open
Abstract
The transcriptional cofactor ANKRD1 is sharply induced during wound repair, and its overexpression enhances healing. We recently found that global deletion of murine Ankrd1 impairs wound contraction and enhances necrosis of ischemic wounds. A quantitative PCR array of Ankrd1(-/-) (KO) fibroblasts indicated that ANKRD1 regulates MMP genes. Yeast two-hybrid and coimmunoprecipitation analyses associated ANKRD1 with nucleolin, which represses AP-1 activation of MMP13. Ankrd1 deletion enhanced both basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP13 promoter activity; conversely, Ankrd1 overexpression in control cells decreased PMA-induced MMP13 promoter activity. Ankrd1 reconstitution in KO fibroblasts decreased MMP13 mRNA, while Ankrd1 knockdown increased these levels. MMP13 mRNA and protein were elevated in intact skin and wounds of KO versus Ankrd1(fl/fl) (FLOX) mice. Electrophoretic mobility shift assay gel shift patterns suggested that additional transcription factors bind to the MMP13 AP-1 site in the absence of Ankrd1, and this concept was reinforced by chromatin immunoprecipitation analysis as greater binding of c-Jun to the AP-1 site in extracts from FLOX versus KO fibroblasts. We propose that ANKRD1, in association with factors such as nucleolin, represses MMP13 transcription. Ankrd1 deletion additionally relieved MMP10 transcriptional repression. Nuclear ANKRD1 appears to modulate extracellular matrix remodeling by MMPs.
Collapse
Affiliation(s)
- Karinna Almodóvar-García
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Minjae Kwon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Susan E. Samaras
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
58
|
Mogami H, Keller PW, Shi H, Word RA. Effect of thrombin on human amnion mesenchymal cells, mouse fetal membranes, and preterm birth. J Biol Chem 2014; 289:13295-307. [PMID: 24652285 DOI: 10.1074/jbc.m114.550541] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we investigated the effects of thrombin on matrix metalloproteinases (MMPs) and prostaglandin (PG) synthesis in fetal membranes. Thrombin activity was increased in human amnion from preterm deliveries. Treatment of mesenchymal, but not epithelial, cells with thrombin resulted in increased MMP-1 and MMP-9 mRNA and enzymatic activity. Thrombin also increased COX2 mRNA and PGE2 in these cells. Protease-activated receptor-1 (PAR-1) was localized to amnion mesenchymal and decidual cells. PAR-1-specific inhibitors and activating peptides indicated that thrombin-induced up-regulation of MMP-9 was mediated via PAR-1. In contrast, thrombin-induced up-regulation of MMP-1 and COX-2 was mediated through Toll-like receptor-4, possibly through thrombin-induced release of soluble fetal fibronectin. In vivo, thrombin-injected pregnant mice delivered preterm. Mmp8, Mmp9, and Mmp13, and PGE2 content was increased significantly in fetal membranes from thrombin-injected animals. These results indicate that thrombin acts through multiple mechanisms to activate MMPs and PGE2 synthesis in amnion.
Collapse
Affiliation(s)
- Haruta Mogami
- From the Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | | |
Collapse
|
59
|
Cdc42 inhibits ERK-mediated collagenase-1 (MMP-1) expression in collagen-activated human keratinocytes. J Invest Dermatol 2013; 134:1230-1237. [PMID: 24352036 PMCID: PMC3989453 DOI: 10.1038/jid.2013.499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 11/08/2022]
Abstract
Following injury, keratinocytes switch gene expression programs from the one that promotes differentiation to the one that supports migration. A common feature of human wounds and ulcerations of any form is the expression of matrix metalloproteinase 1 (MMP-1; collagenase-1) by leading-edge basal keratinocytes migrating across the dermal or provisional matrix. Induction of MMP-1 occurs by signaling from the α2β1 integrin in contact with dermal fibrillar type I collagen, and the activity of MMP-1 is required for human keratinocytes to migrate on collagen. Thus, MMP-1 serves a critical role in the repair of damaged human skin. Here, we evaluated the mechanisms controlling MMP-1 expression in primary human keratinocytes from neonatal foreskin and adult female skin. Our results demonstrate that shortly following contact with type I collagen extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase were markedly activated, whereas c-Jun N-terminal kinase (JNK) phosphorylation remained at basal levels. ERK inhibition markedly blocked collagen-stimulated MMP-1 expression in keratinocytes. In contrast, inhibiting p38 or JNK pathways had no effect on MMP-1 production. Moreover, investigating the role of Rho GTPases revealed that Cdc42 attenuates MMP-1 expression by suppressing ERK activity. Thus, our data indicate that injured keratinocytes induce MMP-1 expression through ERK activation, and this process is negatively regulated by Cdc42 activity.
Collapse
|
60
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
61
|
Decicco-Skinner KL, Jung SA, Tabib T, Gwilliam JC, Alexander H, Goodheart SE, Merchant AS, Shan M, Garber C, Wiest JS. Tpl2 knockout keratinocytes have increased biomarkers for invasion and metastasis. Carcinogenesis 2013; 34:2789-98. [PMID: 24067898 DOI: 10.1093/carcin/bgt319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skin cancer is the most common form of cancer in the USA, with an estimated two million cases diagnosed annually. Tumor progression locus 2 (Tpl2), also known as MAP3K8, is a serine/threonine protein kinase in the mitogen-activated protein kinase signal transduction cascade. Tpl2 was identified by our laboratory as having a tumor suppressor function in skin carcinogenesis, with the absence of this gene contributing to heightened inflammation and increased skin carcinogenesis. In this study, we used gene expression profiling to compare expression levels between Tpl2 (+/+) and Tpl2 (-) (/-) keratinocytes. We identified over 2000 genes as being differentially expressed between genotypes. Functional annotation analysis identified cancer, cell growth/proliferation, cell death, cell development, cell movement and cell signaling as the top biological processes to be differentially regulated between genotypes. Further microarray analysis identified several candidate genes, including Mmp1b, Mmp2, Mmp9 and Mmp13, involved in migration and invasion to be upregulated in Tpl2 (-) (/-) keratinocytes. Moreover, Tpl2 (-/-) keratinocytes had a significant downregulation in the matrix metalloproteinase (MMP) inhibitor Timp3. Real-time PCR validated the upregulation of the MMPs in Tpl2 (-/-) keratinocytes and zymography confirmed that MMP2 and MMP9 activity was higher in conditioned media from Tpl2 (-/-) keratinocytes. Immunohistochemistry confirmed higher MMP9 staining in 12-O-tetradecanoylphorbol-13-acetate-treated skin from Tpl2 (-/-) mice and grafted tumors formed from v-ras(Ha) retrovirus-infected Tpl2 (-/-) keratinocytes. Additionally, Tpl2 (-/-) keratinocytes had significantly higher invasion, malignant conversion rates and increased endothelial cell tube formation when compared with Tpl2 (+/+) keratinocytes. In summary, our studies reveal that keratinocytes from Tpl2 (-/-) mice demonstrate a higher potential to be invasive and metastatic.
Collapse
|
62
|
Larsson M, Uvell H, Sandström J, Rydén P, Selth LA, Björklund S. Functional studies of the yeast med5, med15 and med16 mediator tail subunits. PLoS One 2013; 8:e73137. [PMID: 23991176 PMCID: PMC3750046 DOI: 10.1371/journal.pone.0073137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature-sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when Med5/15 or Med15/16 are inactivated together. We identify 25 genes in each double mutant that show a significant change in expression when compared to the corresponding single mutants and to the wild type strain. Importantly, 13 of the 25 identified genes are common for both double mutants. We also find that all strains in which MED15 is inactivated show down-regulation of genes that have been identified as targets for the Ace2 transcriptional activator protein, which is important for progression through the G1 phase of the cell cycle. Supporting this observation, we demonstrate that loss of Med15 leads to a G1 arrest phenotype. Collectively, these findings provide insight into the function of the Mediator Tail module.
Collapse
Affiliation(s)
- Miriam Larsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Hanna Uvell
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jenny Sandström
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Statistics, Umeå University, Umeå, Sweden
| | - Luke A. Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, United Kingdom
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
63
|
Larivière L, Plaschka C, Seizl M, Petrotchenko EV, Wenzeck L, Borchers CH, Cramer P. Model of the Mediator middle module based on protein cross-linking. Nucleic Acids Res 2013; 41:9266-73. [PMID: 23939621 PMCID: PMC3814369 DOI: 10.1093/nar/gkt704] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The essential core of the transcription coactivator Mediator consists of two conserved multiprotein modules, the head and middle modules. Whereas the structure of the head module is known, the structure of the middle module is lacking. Here we report a 3D model of a 6-subunit Mediator middle module. The model was obtained by arranging crystal structures and homology models of parts of the module based on lysine-lysine cross-links obtained by mass spectrometric analysis. The model contains a central tetramer formed by the heterodimers Med4/Med9 and Med7/Med21. The Med7/Med21 heterodimer is flanked by subunits Med10 and Med31. The model is highly extended, suggests that the middle module is flexible and contributes to a molecular basis for detailed structure-function studies of RNA polymerase II regulation.
Collapse
Affiliation(s)
- Laurent Larivière
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany and Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, No. 3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, BC V8Z7X8, Canada
| | | | | | | | | | | | | |
Collapse
|
64
|
Herrera I, Cisneros J, Maldonado M, Ramírez R, Ortiz-Quintero B, Anso E, Chandel NS, Selman M, Pardo A. Matrix metalloproteinase (MMP)-1 induces lung alveolar epithelial cell migration and proliferation, protects from apoptosis, and represses mitochondrial oxygen consumption. J Biol Chem 2013; 288:25964-25975. [PMID: 23902766 DOI: 10.1074/jbc.m113.459784] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a devastating lung disorder of unknown etiology. Although its pathogenesis is unclear, considerable evidence supports an important role of aberrantly activated alveolar epithelial cells (AECs), which produce a large variety of mediators, including several matrix metalloproteases (MMPs), which participate in fibroblast activation and lung remodeling. MMP-1 has been shown to be highly expressed in AECs from idiopathic pulmonary fibrosis lungs although its role is unknown. In this study, we explored the role of MMP-1 in several AECs functions. Mouse lung epithelial cells (MLE12) transfected with human Mmp-1 showed significantly increased cell growth and proliferation at 36 and 48 h of culture (p < 0.01). Also, MMP-1 promoted MLE12 cell migration through collagen I, accelerated wound closing, and protected cells from staurosporine- and bleomycin-induced apoptosis compared with mock cells (p < 0.01). MLE12 cells expressing human MMP-1 showed a significant repression of oxygen consumption ratio compared with the cells with the empty vector. As under hypoxic conditions hypoxia-inducible factor-1α (HIF-1α) mediates a transition from oxidative to glycolytic metabolism, we analyzed activation of HIF-1α. Ηigher activation of this factor was detected in MMP-1-transfected cells under normoxia and hypoxia. Likewise, a significant decrease of both total and mitochondrial reactive oxygen species was observed in MMP-1-transfected cells. Paralleling these findings, attenuation of MMP-1 expression by shRNA in A549 (human) AECs markedly reduced proliferation and migration (p < 0.01) and increased the oxygen consumption ratio. These findings indicate that epithelial expression of MMP-1 inhibits mitochondrial function, increases HIF-1α expression, decreases reactive oxygen species production, and contributes to a proliferative, migratory, and anti-apoptotic AEC phenotype.
Collapse
Affiliation(s)
- Iliana Herrera
- From the Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México
| | - José Cisneros
- the Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF 14080, México, and
| | - Mariel Maldonado
- From the Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Remedios Ramírez
- From the Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Blanca Ortiz-Quintero
- the Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF 14080, México, and
| | - Elena Anso
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Navdeep S Chandel
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Moisés Selman
- the Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México DF 14080, México, and
| | - Annie Pardo
- From the Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México,.
| |
Collapse
|
65
|
Immunoexpression of matrix metalloproteinase–2 (MMP–2) in epithelial ovarian cancers (EOCs). ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60134-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
66
|
Foley CJ, Fanjul-Fernández M, Bohm A, Nguyen N, Agarwal A, Austin K, Koukos G, Covic L, López-Otín C, Kuliopulos A. Matrix metalloprotease 1a deficiency suppresses tumor growth and angiogenesis. Oncogene 2013; 33:2264-72. [PMID: 23708660 DOI: 10.1038/onc.2013.157] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/14/2023]
Abstract
Matrix metalloprotease-1 (MMP1) is an important mediator of tumorigenesis, inflammation and tissue remodeling through its ability to degrade critical matrix components. Recent studies indicate that stromal-derived MMP1 may exert direct oncogenic activity by signaling through protease-activated receptor-1 (PAR1) in carcinoma cells; however, this has not been established in vivo. We generated an Mmp1a knockout mouse to ascertain whether stromal-derived Mmp1a affects tumor growth. Mmp1a-deficient mice are grossly normal and born in Mendelian ratios; however, deficiency of Mmp1a results in significantly decreased growth and angiogenesis of lung tumors. Coimplantation of lung cancer cells with wild-type Mmp1a(+/+) fibroblasts completely restored tumor growth in Mmp1a-deficient animals, highlighting the critical role of stromal-derived Mmp1a. Silencing of PAR1 expression in the lung carcinoma cells phenocopied stromal Mmp1a-deficiency, thus validating tumor-derived PAR1 as an Mmp1a target. Mmp1a secretion is controlled by the ability of its prodomain to facilitate autocleavage, whereas human MMP1 is efficiently secreted because of stable pro- and catalytic domain interactions. Taken together, these data demonstrate that stromal Mmp1a drives in vivo tumorigenesis and provide proof of concept that targeting the MMP1-PAR1 axis may afford effective treatments of lung cancer.
Collapse
Affiliation(s)
- C J Foley
- 1] Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA [2] Program in Genetics at the Sackler School of Graduate Biomedical Sciences, Departments of Biochemistry and Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - M Fanjul-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - A Bohm
- Program in Genetics at the Sackler School of Graduate Biomedical Sciences, Departments of Biochemistry and Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - N Nguyen
- Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - A Agarwal
- Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - K Austin
- 1] Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA [2] Program in Genetics at the Sackler School of Graduate Biomedical Sciences, Departments of Biochemistry and Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - G Koukos
- 1] Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA [2] Program in Genetics at the Sackler School of Graduate Biomedical Sciences, Departments of Biochemistry and Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - L Covic
- 1] Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA [2] Program in Genetics at the Sackler School of Graduate Biomedical Sciences, Departments of Biochemistry and Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - C López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - A Kuliopulos
- 1] Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA [2] Program in Genetics at the Sackler School of Graduate Biomedical Sciences, Departments of Biochemistry and Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
67
|
Fanjul-Fernández M, Folgueras AR, Fueyo A, Balbín M, Suárez MF, Fernández-García MS, Shapiro SD, Freije JMP, López-Otín C. Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J Biol Chem 2013; 288:14647-14656. [PMID: 23548910 DOI: 10.1074/jbc.m112.439893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human MMP-1 is a matrix metalloproteinase repeatedly associated with many pathological conditions, including cancer. Thus, MMP1 overexpression is a poor prognosis marker in a variety of advanced cancers, including colorectal, breast, and lung carcinomas. Moreover, MMP-1 plays a key role in the metastatic behavior of melanoma, breast, and prostate cancer cells. However, functional and mechanistic studies on the relevance of MMP-1 in cancer have been hampered by the absence of an in vivo model. In this work, we have generated mice deficient in Mmp1a, the murine ortholog of human MMP1. Mmp1a(-/-) mice are viable and fertile and do not exhibit obvious abnormalities, which has facilitated studies of cancer susceptibility. These studies have shown a decreased susceptibility to develop lung carcinomas induced by chemical carcinogens in Mmp1a(-/-) mice. Histopathological analysis indicated that tumors generated in Mmp1a(-/-) mice are smaller than those of wild-type mice, consistently with the idea that the absence of Mmp-1a hampers tumor progression. Proteomic analysis revealed decreased levels of chitinase-3-like 3 and accumulation of the receptor for advanced glycation end-products and its ligand S100A8 in lung samples from Mmp1a(-/-) mice compared with those from wild-type. These findings suggest that Mmp-1a could play a role in tumor progression by modulating the polarization of a Th1/Th2 inflammatory response to chemical carcinogens. On the basis of these results, we propose that Mmp1a knock-out mice provide an excellent in vivo model for the functional analysis of human MMP-1 in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Miriam Fanjul-Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alicia R Folgueras
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Antonio Fueyo
- Biología Funcional, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Milagros Balbín
- Servicio de Oncología Molecular, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - María F Suárez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - José M P Freije
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
68
|
Tocchi A, Parks WC. Functional interactions between matrix metalloproteinases and glycosaminoglycans. FEBS J 2013; 280:2332-41. [PMID: 23421805 DOI: 10.1111/febs.12198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/03/2013] [Accepted: 02/15/2013] [Indexed: 01/10/2023]
Abstract
Similar to most proteinases, matrix metalloproteinases (MMP) do not recognize a consensus cleavage site. Thus, it is not surprising that, in a defined in vitro reaction, most MMPs can act on a wide range of proteins, including many extracellular matrix proteins. However, the findings obtained from in vivo studies with genetic models have demonstrated that individual MMPs act on just a few extracellular protein substrates, typically not matrix proteins. The limited, precise functions of an MMP imply that mechanisms have evolved to control the specificity of proteinase:substrate interactions. We discuss the possibility that interactions with the glycosaminoglycan chains of proteoglycans may function as allosteric regulators or accessory factors directing MMP catalysis to specific substrates. We propose that understanding how the activity of specific MMPs is confined to discreet compartments and targeted to defined substrates via interactions with other macromolecules may provide a means of blocking potentially deleterious MMP-mediated processes at the same time as sparing any beneficial functions.
Collapse
Affiliation(s)
- Autumn Tocchi
- Department of Medicine (Pulmonary and Critical Care Medicine), Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
69
|
Abstract
Transmission of Mycobacterium tuberculosis (Mtb) continues uninterrupted. Pre-exposure vaccination remains a central focus of tuberculosis research but 25 years of follow up is needed to determine whether a novel childhood vaccination regime protects from adult disease, or like BCG assists Mtb dissemination by preventing childhood illness but not infective adult pulmonary tuberculosis. Therefore, different strategies to interrupt the life cycle of Mtb need to be explored. This personal perspective discusses alternative approaches that may be delivered in a shorter time frame.
Collapse
|
70
|
Mould A, Morgan MAJ, Li L, Bikoff EK, Robertson EJ. Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes Dev 2012; 26:2063-74. [PMID: 22987638 DOI: 10.1101/gad.199828.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developmental arrest of Blimp1/Prdm1 mutant embryos at around embryonic day 10.5 (E10.5) has been attributed to placental disturbances. Here we investigate Blimp1/Prdm1 requirements in the trophoblast cell lineage. Loss of function disrupts specification of the invasive spiral artery-associated trophoblast giant cells (SpA-TGCs) surrounding maternal blood vessels and severely compromises the ability of the spongiotrophoblast layer to expand appropriately, secondarily causing collapse of the underlying labyrinth layer. Additionally, we identify a population of proliferating Blimp1(+) diploid cells present within the spongiotrophoblast layer. Lineage tracing experiments exploiting a novel Prdm1.Cre-LacZ allele demonstrate that these Blimp1(+) cells give rise to the mature SpA-TGCs, canal TGCs, and glycogen trophoblasts. In sum, the transcriptional repressor Blimp1/Prdm1 is required for terminal differentiation of SpA-TGCs and defines a lineage-restricted progenitor cell population contributing to placental growth and morphogenesis.
Collapse
Affiliation(s)
- Arne Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
71
|
Abstract
Gene transcription by RNA polymerase (Pol) II requires the coactivator complex Mediator. Mediator connects transcriptional regulators and Pol II, and is linked to human disease. Mediator from the yeast Saccharomyces cerevisiae has a molecular mass of 1.4 megadaltons and comprises 25 subunits that form the head, middle, tail and kinase modules. The head module constitutes one-half of the essential Mediator core, and comprises the conserved subunits Med6, Med8, Med11, Med17, Med18, Med20 and Med22. Recent X-ray analysis of the S. cerevisiae head module at 4.3 Å resolution led to a partial architectural model with three submodules called neck, fixed jaw and moveable jaw. Here we determine de novo the crystal structure of the head module from the fission yeast Schizosaccharomyces pombe at 3.4 Å resolution. Structure solution was enabled by new structures of Med6 and the fixed jaw, and previous structures of the moveable jaw and part of the neck, and required deletion of Med20. The S. pombe head module resembles the head of a crocodile with eight distinct elements, of which at least four are mobile. The fixed jaw comprises tooth and nose domains, whereas the neck submodule contains a helical spine and one limb, with shoulder, arm and finger elements. The arm and the essential shoulder contact other parts of Mediator. The jaws and a central joint are implicated in interactions with Pol II and its carboxy-terminal domain, and the joint is required for transcription in vitro. The S. pombe head module structure leads to a revised model of the S. cerevisiae module, reveals a high conservation and flexibility, explains known mutations, and provides the basis for unravelling a central mechanism of gene regulation.
Collapse
|
72
|
Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Collapse
|
73
|
Ma Y, Yan X, Zhao H, Wang W. Effects of interleukin-1 receptor antagonist on collagen and matrix metalloproteinases in stress-shielded achilles tendons of rats. Orthopedics 2012; 35:e1238-44. [PMID: 22868612 DOI: 10.3928/01477447-20120725-26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Based on previous studies showing that interleukin-1 (IL-1) significantly increased after stress shielding, this article reports further research into the possible therapeutic applications of IL-1 receptor antagonist (IL-1Ra). Forty rats whose left Achilles tendons were denervated and completely stress shielded were divided into 5 groups: 2-week phosphate-buffered saline (PBS); 4-week PBS; 2-week IL-1Ra; 4-week IL-1Ra; and normal control. The Achilles tendons were tested morphologically, and the changes in collagen I and III, matrix metalloproteinases (MMP)-1 and -3, and tissue inhibitors of metalloproteinase (TIMP)-1 were determined. The collagen fibrils in the IL-1Ra groups were morphologically more similar to those in the control group than to those in the PBS groups. The collagen I levels increased in the 2-week groups. Significant differences existed between the PBS and IL-1Ra groups at 4 weeks. The MMP-1 level increased dramatically after stress shielding and increased less in the 2-week IL-1Ra group than in the 2-week PBS group. The degree of decrease of MMP-3 in the IL-1Ra groups was significantly less than that in the PBS groups. The collagen III and TIMP-1 levels continued to increase, and no difference was found between the PBS and IL-1Ra groups. Interleukin-1 receptor antagonist prevented morphological deterioration and collagen metabolism of the denervated Achilles tendons after stress shielding, likely by inhibiting the decline of MMP-3 and increasing MMP-1 levels at an early stage.
Collapse
Affiliation(s)
- Yanhong Ma
- Department of Rehabilitation Medicine, the Affiliated Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, China.
| | | | | | | |
Collapse
|
74
|
Fukasawa R, Tsutsui T, Hirose Y, Tanaka A, Ohkuma Y. Mediator CDK subunits are platforms for interactions with various chromatin regulatory complexes. J Biochem 2012; 152:241-9. [PMID: 22668559 DOI: 10.1093/jb/mvs065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Mediator complex consists of more than 20 subunits. This is composed of four modules: head, middle, tail and CDK/Cyclin. Importantly, Mediator complex is known to play pivotal roles in transcriptional regulation, but its molecular mechanisms are still elusive. Many studies, including our own, have revealed that CDK8, a kinase subunit of the CDK/Cyclin module, is one of the key subunits involved in these roles. Additionally, we previously demonstrated that a novel CDK component, CDK19, played similar roles. It is assumed that various factors that directly affect transcriptional regulation target these two CDKs; thus, we conducted yeast two-hybrid screenings to isolate the CDK19-interacting proteins. From a screening of 40 million colonies, we obtained 287 clones that provided positive results encoded mRNAs, and it turned out that 59 clones of them encoded nuclear proteins. We checked the reading frames of the candidate clones and obtained three positive clones, all of which encoded the transcriptional cofactors, Brahma-related gene 1, B-cell CLL/lymphoma 6 and suppressor of zeste 12 homolog. Intriguingly, these three cofactors are also related to chromatin regulation. Further studies demonstrated that those could bind not only to CDK19 but also to CDK8. These results help elucidate the functional mechanism for the mutual regulations between transcription and chromatin.
Collapse
Affiliation(s)
- Rikiya Fukasawa
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | |
Collapse
|
75
|
Foley CJ, Luo C, O'Callaghan K, Hinds PW, Covic L, Kuliopulos A. Matrix metalloprotease-1a promotes tumorigenesis and metastasis. J Biol Chem 2012; 287:24330-8. [PMID: 22573325 DOI: 10.1074/jbc.m112.356303] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Matrix metalloprotease-1 (MMP1), a collagenase and activator of the G protein-coupled protease activated receptor-1 (PAR1), is an emerging new target implicated in oncogenesis and metastasis in diverse cancers. However, the functional mouse homologue of MMP1 in cancer models has not yet been clearly defined. We report here that Mmp1a is a functional MMP1 homologue that promotes invasion and metastatic progression of mouse lung cancer and melanoma. LLC1 (Lewis lung carcinoma) and primary mouse melanoma cells harboring active BRAF express high levels of endogenous Mmp1a, which is required for invasion through collagen. Silencing of either Mmp1a or PAR1 suppressed invasive stellate growth of lung cancer cells in three-dimensional matrices. Conversely, ectopic expression of Mmp1a conferred an invasive phenotype in epithelial cells that do not express endogenous Mmp1a. Consistent with Mmp1a acting as a PAR1 agonist in an autocrine loop, inhibition or silencing of PAR1 resulted in a loss of the Mmp1a-driven invasive phenotype. Knockdown of Mmp1a on tumor cells resulted in significantly decreased tumorigenesis, invasion, and metastasis in xenograft models. Together, these data demonstrate that cancer cell-derived Mmp1a acts as a robust functional homologue of MMP1 by conferring protumorigenic and metastatic behavior to cells.
Collapse
Affiliation(s)
- Caitlin J Foley
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
76
|
Yurube T, Takada T, Suzuki T, Kakutani K, Maeno K, Doita M, Kurosaka M, Nishida K. Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration. Arthritis Res Ther 2012; 14:R51. [PMID: 22394620 PMCID: PMC3446417 DOI: 10.1186/ar3764] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 01/22/2023] Open
Abstract
Introduction The longitudinal degradation mechanism of extracellular matrix (ECM) in the interbertebral disc remains unclear. Our objective was to elucidate catabolic and anabolic gene expression profiles and their balances in intervertebral disc degeneration using a static compression model. Methods Forty-eight 12-week-old male Sprague-Dawley rat tails were instrumented with an Ilizarov-type device with springs and loaded statically at 1.3 MPa for up to 56 days. Experimental loaded and distal-unloaded control discs were harvested and analyzed by real-time reverse transcription-polymerase chain reaction (PCR) messenger RNA quantification for catabolic genes [matrix metalloproteinase (MMP)-1a, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5], anti-catabolic genes [tissue inhibitor of metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3], ECM genes [aggrecan-1, collagen type 1-α1, and collagen type 2-α1], and pro-inflammatory cytokine genes [tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, and IL-6]. Immunohistochemistry for MMP-3, ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-2, and TIMP-3 was performed to assess their protein expression level and distribution. The presence of MMP- and aggrecanase-cleaved aggrecan neoepitopes was similarly investigated to evaluate aggrecanolytic activity. Results Quantitative PCR demonstrated up-regulation of all MMPs and ADAMTS-4 but not ADAMTS-5. TIMP-1 and TIMP-2 were almost unchanged while TIMP-3 was down-regulated. Down-regulation of aggrecan-1 and collagen type 2-α1 and up-regulation of collagen type 1-α1 were observed. Despite TNF-α elevation, ILs developed little to no up-regulation. Immunohistochemistry showed, in the nucleus pulposus, the percentage of immunopositive cells of MMP-cleaved aggrecan neoepitope increased from 7 through 56 days with increased MMP-3 and decreased TIMP-1 and TIMP-2 immunopositivity. The percentage of immunopositive cells of aggrecanase-cleaved aggrecan neoepitope increased at 7 and 28 days only with decreased TIMP-3 immunopositivity. In the annulus fibrosus, MMP-cleaved aggrecan neoepitope presented much the same expression pattern. Aggrecanase-cleaved aggrecan neoepitope increased at 7 and 28 days only with increased ADAMTS-4 and ADAMTS-5 immunopositivity. Conclusions This rat tail sustained static compression model mimics ECM metabolic imbalances of MMPs, aggrecanases, and TIMPs in human degenerative discs. A dominant imbalance of MMP-3/TIMP-1 and TIMP-2 relative to ADAMTS-4 and ADAMTS-5/TIMP-3 signifies an advanced stage of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Walker NF, Clark SO, Oni T, Andreu N, Tezera L, Singh S, Saraiva L, Pedersen B, Kelly DL, Tree JA, D'Armiento JM, Meintjes G, Mauri FA, Williams A, Wilkinson RJ, Friedland JS, Elkington PT. Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am J Respir Crit Care Med 2012; 185:989-97. [PMID: 22345579 DOI: 10.1164/rccm.201110-1769oc] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RATIONALE Tuberculosis kills more than 1.5 million people per year, and standard treatment has remained unchanged for more than 30 years. Tuberculosis (TB) drives matrix metalloproteinase (MMP) activity to cause immunopathology. In advanced HIV infection, tissue destruction is reduced, but underlying mechanisms are poorly defined and no current antituberculous therapy reduces host tissue damage. OBJECTIVES To investigate MMP activity in patients with TB with and without HIV coinfection and to determine the potential of doxycycline to inhibit MMPs and decrease pathology. METHODS Concentrations of MMPs and cytokines were analyzed by Luminex array in a prospectively recruited cohort of patients. Modulation of MMP secretion and Mycobacterium tuberculosis growth by doxycycline was studied in primary human cells and TB-infected guinea pigs. MEASUREMENTS AND MAIN RESULTS HIV coinfection decreased MMP concentrations in induced sputum of patients with TB. MMPs correlated with clinical markers of tissue damage, further implicating dysregulated protease activity in TB-driven pathology. In contrast, cytokine concentrations were no different. Doxycycline, a licensed MMP inhibitor, suppressed TB-dependent MMP-1 and -9 secretion from primary human macrophages and epithelial cells by inhibiting promoter activation. In the guinea pig model, doxycycline reduced lung TB colony forming units after 8 weeks in a dose-dependent manner compared with untreated animals, and in vitro doxycycline inhibited mycobacterial proliferation. CONCLUSIONS HIV coinfection in patients with TB reduces concentrations of immunopathogenic MMPs. Doxycycline decreases MMP activity in a cellular model and suppresses mycobacterial growth in vitro and in guinea pigs. Adjunctive doxycycline therapy may reduce morbidity and mortality in TB.
Collapse
Affiliation(s)
- Naomi F Walker
- Infectious Diseases and Immunity, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Turner NA, Porter KE. Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. IUBMB Life 2012; 64:143-50. [PMID: 22215527 DOI: 10.1002/iub.594] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022]
Abstract
Cardiac fibroblasts (CF) play a key role in orchestrating the structural remodeling of the myocardium in response to injury or stress, in part through direct regulation of extracellular matrix (ECM) turnover. The matrix metalloproteinases (MMPs) are a family of over 25 zinc-dependent proteases that together have the capacity to degrade all the protein components of the ECM. Fibroblasts are a major source of several MMPs in the heart, thereby representing a viable therapeutic target for regulating ECM turnover in cardiac pathologies characterized by adverse remodeling, such as myocardial infarction, cardiomyopathy, hypertension and heart failure. This review summarizes current knowledge on the identity and regulation of MMPs expressed by CF and discusses future directions for reducing adverse myocardial remodeling by modulating the expression and/or activity of CF-derived MMPs.
Collapse
Affiliation(s)
- Neil A Turner
- Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics (LIGHT) and Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds, UK.
| | | |
Collapse
|
79
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
80
|
Roberts-Pilgrim AM, Makareeva E, Myles MH, Besch-Williford CL, Brodeur AC, Walker AL, Leikin S, Franklin CL, Phillips CL. Deficient degradation of homotrimeric type I collagen, α1(I)3 glomerulopathy in oim mice. Mol Genet Metab 2011; 104:373-82. [PMID: 21855382 PMCID: PMC3205245 DOI: 10.1016/j.ymgme.2011.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.
Collapse
Affiliation(s)
- Anna M. Roberts-Pilgrim
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Elena Makareeva
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Matthew H. Myles
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | | | - Amanda C. Brodeur
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
| | - Andrew L. Walker
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Sergey Leikin
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
- Correspondence and Reprint Requests: Charlotte L. Phillips, Ph.D., Associate Professor, Departments of Biochemistry and Child Health, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211 USA, Phone: 1-573-882-5122, Fax: 1-573-882-5635,
| |
Collapse
|
81
|
Lemaître V, Dabo AJ, D'Armiento J. Cigarette smoke components induce matrix metalloproteinase-1 in aortic endothelial cells through inhibition of mTOR signaling. Toxicol Sci 2011; 123:542-9. [PMID: 21742783 PMCID: PMC3179676 DOI: 10.1093/toxsci/kfr181] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/27/2011] [Indexed: 01/04/2023] Open
Abstract
Smoking is a major risk factor for heart disease, but the molecular effects of cigarette smoke on vascular cells are poorly understood. In this study, we demonstrate that matrix metalloproteinase-1 (MMP-1), a collagenase expressed in atherosclerosis and aneurysms but not in the normal vessel wall, is induced in the aortic endothelium of rabbits exposed to cigarette smoke. In vitro cigarette smoke extract (CSE) and one of its components, acrolein, inhibit the mammalian target of rapamycin (mTOR)/p70S6K pathway in human endothelial cells, and chemical inhibition of this pathway by rapamycin resulted in elevated MMP-1. Moreover, the tissue inhibitor of metalloproteases-3 (TIMP-3), a major regulator of angiogenesis, is significantly downregulated in aortic endothelial cells treated with CSE, acrolein, or rapamycin. These data indicate that inhibition of mTOR by cigarette smoke components is a key event in the modulation of endothelial MMP-1 and TIMP-3 expression. Our study suggests that circulating smoke components, including acrolein, contribute to vascular diseases through enhanced MMP-1 and decreased TIMP-3 secretion in the endothelium, potentially leading to impaired angiogenesis, matrix disruption, and vessel injury.
Collapse
Affiliation(s)
| | | | - Jeanine D'Armiento
- Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
82
|
Concomitant lack of MMP9 and uPA disturbs physiological tissue remodeling. Dev Biol 2011; 358:56-67. [PMID: 21802414 DOI: 10.1016/j.ydbio.2011.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/15/2023]
Abstract
Urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9, gelatinase B) have separately been recognized to play important roles in various tissue remodeling processes. In this study, we demonstrate that deficiency for MMP9 in combination with ablation of either uPA- or tissue-type plasminogen activator (tPA)-catalyzed plasminogen activation is critical to accomplish normal gestation in mice. Gestation was also affected by simultaneous lack of MMP9 and the uPA receptor (uPAR). Interestingly, uPA-deficiency additionally exacerbated the effect of MMP9-deficiency on bone growth and an additive effect caused by combined lack in MMP9 and uPA was observed during healing of cutaneous wounds. By comparison, MMP9-deficiency combined with absence of either tPA or uPAR resulted in no significant effect on wound healing, indicating that the role of uPA during wound healing is independent of uPAR, when MMP9 is absent. Notably, compensatory upregulation of uPA activity was seen in wounds from MMP9-deficient mice. Taken together, these studies reveal essential functional dependency between MMP9 and uPA during gestation and tissue repair.
Collapse
|
83
|
Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:133-45. [PMID: 21777704 DOI: 10.1016/j.bbapap.2011.06.020] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 12/21/2022]
Abstract
Osteoarthritis is a common joint disease for which there are currently no disease-modifying drugs available. Degradation of the cartilage extracellular matrix is a central feature of the disease and is widely thought to be mediated by proteinases that degrade structural components of the matrix, primarily aggrecan and collagen. Studies on transgenic mice have confirmed the central role of Adamalysin with Thrombospondin Motifs 5 (ADAMTS-5) in aggrecan degradation, and the collagenolytic matrix metalloproteinase MMP-13 in collagen degradation. This review discusses recent advances in current understanding of the mechanisms regulating expression of these key enzymes, as well as reviewing the roles of other proteinases in cartilage destruction. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Linda Troeberg
- The Kennedy Institute of Rheumatology Division, Imperial College London, London, UK.
| | | |
Collapse
|
84
|
Balasubramanian S, Fan M, Messmer-Blust AF, Yang CH, Trendel JA, Jeyaratnam JA, Pfeffer LM, Vestal DJ. The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein. J Biol Chem 2011; 286:20054-64. [PMID: 21502320 PMCID: PMC3103378 DOI: 10.1074/jbc.m111.249326] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 04/15/2011] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is important in numerous normal and pathological processes, including the angiogenic switch during tumor development and tumor metastasis. Whereas TNF-α and other cytokines up-regulate MMP-9 expression, interferons (IFNs) inhibit MMP-9 expression. We found that IFN-γ treatment or forced expression of the IFN-induced GTPase, mGBP-2, inhibit TNF-α-induced MMP-9 expression in NIH 3T3 fibroblasts, by inhibiting MMP-9 transcription. The NF-κB transcription factor is required for full induction of MMP-9 by TNF-α. Both IFN-γ and mGBP-2 inhibit the transcription of a NF-κB-dependent reporter construct, suggesting that mGBP-2 inhibits MMP-9 induction via inhibition of NF-κB-mediated transcription. Interestingly, mGBP-2 does not inhibit TNF-α-induced degradation of IκBα or p65/RelA translocation into the nucleus. However, mGBP-2 inhibits p65 binding to a κB oligonucleotide probe in gel shift assays and to the MMP-9 promoter in chromatin immunoprecipitation assays. In addition, TNF-α activation of NF-κB in NIH 3T3 cells is dependent on Rac activation, as evidenced by the inhibition of TNF-α induction of NF-κB-mediated transcription by a dominant inhibitory form of Rac1. A role for Rac in the inhibitory action of mGBP-2 on NF-κB is further shown by the findings that mGBP-2 inhibits TNF-α activation of endogenous Rac and constitutively activate Rac can restore NF-κB transcription in the presence of mGBP-2. This is a novel mechanism by which IFNs can inhibit the cytokine induction of MMP-9 expression.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Meiyun Fan
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | - Chuan H. Yang
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jill A. Trendel
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Jonathan A. Jeyaratnam
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| | - Lawrence M. Pfeffer
- the Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Deborah J. Vestal
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606 and
| |
Collapse
|
85
|
Tressel SL, Kaneider NC, Kasuda S, Foley C, Koukos G, Austin K, Agarwal A, Covic L, Opal SM, Kuliopulos A. A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med 2011; 3:370-84. [PMID: 21591259 PMCID: PMC3394510 DOI: 10.1002/emmm.201100145] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a deadly disease characterized by the inability to regulate the inflammatory–coagulation response in which the endothelium plays a key role. The cause of this perturbation remains poorly understood and has hampered the development of effective therapeutics. Matrix metalloproteases (MMPs) are involved in the host response to pathogens, but can also cause uncontrolled tissue damage and contribute to mortality. We found that human sepsis patients had markedly elevated plasma proMMP-1 and active MMP-1 levels, which correlated with death at 7 and 28 days after diagnosis. Likewise, septic mice had increased plasma levels of the MMP-1 ortholog, MMP-1a. We identified mouse MMP-1a as an agonist of protease-activated receptor-1 (PAR1) on endothelial cells. MMP-1a was released from endothelial cells in septic mice. Blockade of MMP-1 activity suppressed endothelial barrier disruption, disseminated intravascular coagulation (DIC), lung vascular permeability as well as the cytokine storm and improved survival, which was lost in PAR1-deficient mice. Infusion of human MMP-1 increased lung vascular permeability in normal wild-type mice but not in PAR1-deficient mice. These findings implicate MMP-1 as an important activator of PAR1 in sepsis and suggest that therapeutics that target MMP1-PAR1 may prove beneficial in the treatment of sepsis.
Collapse
Affiliation(s)
- Sarah L Tressel
- Hemostasis and Thrombosis Laboratory, Departments of Medicine and Biochemistry, Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Gordon GM, Austin JS, Sklar AL, Feuer WJ, LaGier AJ, Fini ME. Comprehensive gene expression profiling and functional analysis of matrix metalloproteinases and TIMPs, and identification of ADAM-10 gene expression, in a corneal model of epithelial resurfacing. J Cell Physiol 2011; 226:1461-70. [PMID: 20625997 DOI: 10.1002/jcp.22306] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study provides a comprehensive expression analysis for the entire matrix metalloproteinase (MMP) gene family during the process of epithelial resurfacing following corneal abrasion injury in the mouse. The mRNA levels for all known MMP genes expressed in mouse, the related enzyme ADAM-10, and the known tissue inhibitors of metalloproteinases (TIMPs) were determined semi-quantitatively by reverse transcriptase-polymerase chain reaction (RT-PCR) in the uninjured epithelium, and in the epithelial tissue resurfacing the abraded area or residing in its periphery at two time points: during the epithelial migration phase and immediately following wound closure. The mRNA levels for MMP-1a, -1b, -9, -10, -12, and -13 as well as TIMP-1 were significantly up-regulated in the migrating corneal epithelium. After wound resurfacing, the mRNA levels for all of these MMPs were down-regulated, although MMP-1a, -1b, and -13 remained significantly elevated in comparison to the uninjured epithelium. The only gene found to be down-regulated was TIMP-3, which occurred throughout the wound-healing process. During resurfacing, MMP-9 was localized to the front of the migrating epithelium, MMP-10 and -13 were localized throughout the migrating epithelium, and MMP-13 could also be found in the periphery. Following epithelial closure, immunoreactive MMPs-9 and -10 became undetectable, but MMP-13 continued to be found throughout the epithelium. Functional analysis of MMP-10 revealed no effects on epithelial migration or cell proliferation. In conclusion, distinct MMP temporal-spatial profiles define the uninjured corneal epithelium and the corneal epithelium at different stages of regeneration. An extensive review of the literature is also provided in the discussion.
Collapse
Affiliation(s)
- Gabriel M Gordon
- Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90089-9034, USA
| | | | | | | | | | | |
Collapse
|
87
|
Elkington P, Shiomi T, Breen R, Nuttall RK, Ugarte-Gil CA, Walker NF, Saraiva L, Pedersen B, Mauri F, Lipman M, Edwards DR, Robertson BD, D'Armiento J, Friedland JS. MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Invest 2011; 121:1827-33. [PMID: 21519144 DOI: 10.1172/jci45666] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/09/2011] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium tuberculosis can cause lung tissue damage to spread, but the mechanisms driving this immunopathology are poorly understood. The breakdown of lung matrix involves MMPs, which have a unique ability to degrade fibrillar collagens at neutral pH. To determine whether MMPs play a role in the immunopathology of tuberculosis (TB), we profiled MMPs and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs), in sputum and bronchoalveolar lavage fluid from patients with TB and symptomatic controls. MMP-1 concentrations were significantly increased in both HIV-negative and HIV-positive patients with TB, while TIMP concentrations were lower in HIV-negative TB patients. In primary human monocytes, M. tuberculosis infection selectively upregulated MMP1 gene expression and secretion, and Ro32-3555, a specific MMP inhibitor, suppressed M. tuberculosis-driven MMP-1 activity. Since the mouse MMP-1 ortholog is not expressed in the lung and mice infected with M. tuberculosis do not develop tissue destruction equivalent to humans, we infected transgenic mice expressing human MMP-1 with M. tuberculosis to investigate whether MMP-1 caused lung immunopathology. In the MMP-1 transgenic mice, M. tuberculosis infection increased MMP-1 expression, resulting in alveolar destruction in lung granulomas and significantly greater collagen breakdown. In summary, MMP-1 may drive tissue destruction in TB and represents a therapeutic target to limit immunopathology.
Collapse
Affiliation(s)
- Paul Elkington
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Li H, Feng F, Bingham CO, Elisseeff JH. Matrix metalloproteinases and inhibitors in cartilage tissue engineering. J Tissue Eng Regen Med 2011; 6:144-54. [PMID: 21351376 DOI: 10.1002/term.408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 11/30/2010] [Indexed: 01/19/2023]
Abstract
Inhibiting matrix metalloproteinase (MMP) activity has been considered as a potential therapeutic treatment that may modify the outcome for osteoarthritis (OA), a disease governed by abnormalities in the balance between MMPs and their inhibitors. Due to unexpected tissue fibrosis in early-phase clinical trials with some MMP inhibitors, possible divergent effects of inhibiting MMP activity on different cells are hypothesized. Therefore, we evaluated the effects of MMP inhibition on cells relevant to cartilage tissue engineering by culturing them in vitro in poly(ethylene glycol) diacrylate hydrogels to create 3D representations of cartilage tissue while allowing for local and direct administration of inhibitors. Mesenchymal stem cells demonstrated an inhibitor concentration-dependent decrease in extracellular matrix (ECM) deposition, while normal chondrocytes were mainly affected at the highest concentration of inhibitors. In contrast, the concomitant treatment of chondrocytes from patients with OA resulted in an increase in glycosaminoglycan content only in the presence of both inhibitors and anabolic growth factors. The observed upregulation of bone markers, however, indicates a delicate balance that must be addressed to therapeutically treat OA chondrocytes to stimulate more ECM production without errant bone formation. In conclusion, this study suggests that MMPs have complex interactions in both pathobiology and homeostasis.
Collapse
Affiliation(s)
- Hanwei Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
89
|
Elkington PT, D'Armiento JM, Friedland JS. Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci Transl Med 2011; 3:71ps6. [PMID: 21346167 PMCID: PMC3717269 DOI: 10.1126/scitranslmed.3001847] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The extracellular matrix in the lung must be destroyed for Mycobacterium tuberculosis--the agent that causes tuberculosis (TB)--to spread. The current paradigm proposes that this destruction occurs as a result of the action of proinflammatory cytokines, chemokines, immune cells, and lipids that mediate TB-associated necrosis in the lung. However, this view neglects the fact that lung matrix can only be degraded by proteases. We propose an original conceptual framework of TB immunopathology that may lead directly to treatments that involve inhibition of matrix metalloproteinase activity to hinder matrix destruction and reduce the morbidity and mortality associated with TB.
Collapse
Affiliation(s)
- Paul T Elkington
- Department of Infectious Diseases and Immunity, Imperial College London, London W6 0DT, UK.
| | | | | |
Collapse
|
90
|
A stepwise approach to justify phase III randomized clinical trials and enhance the likelihood of a positive result. Crit Care Med 2011; 38:S523-7. [PMID: 21164392 DOI: 10.1097/ccm.0b013e3181f1fcae] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple time-consuming, expensive, and negative phase III clinical trials involving many thousands of patients have been undertaken in critical care and continue to be funded. The vast majority of these clinical trials are negative. Furthermore, phase III studies frequently fail to achieve their planned recruitment target. Often such studies are based on small pilot studies with inadequate phase II trial data and limited mechanistic data to provide a sound scientific rationale. The body of research required to justify undertaking a phase III trial in the critically ill population has not been defined adequately. In particular, guidance on the design of phase II studies for evaluating treatments in the critically ill population is needed. Research to inform critical care practice will progress more efficiently and effectively if this can be achieved. The following article presents a template on the minimum evidence required to justify phase III clinical trials in the critically ill population.
Collapse
|
91
|
Animal models of osteoarthritis. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
92
|
Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A (MMP-1) collagenase. Br J Cancer 2010; 103:1562-70. [PMID: 20959825 PMCID: PMC2990576 DOI: 10.1038/sj.bjc.6605926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Elastin peptides possess several biological activities and in vitro data suggest they could be involved in the early phase of melanoma growth. Methods: Using diverse in vitro and in vivo techniques (cell proliferation, invasion and migration assays, zymography, western blots, collagen degradation assay, reverse transcription PCR, melanoma allographs and immunohistochemistry), we analysed the effect of elastin-derived peptides (EDPs) on B16F1 melanoma growth and invasion, as well as on the proteolytic systems involved. Results: We found that EDPs dramatically promote in vivo tumour development of B16F1 melanoma, as well as their in vitro migration and invasion. The inhibition of serine proteases and matrix metalloproteinases (MMPs) activities, by aprotinin and galardin, respectively, demonstrated that these enzymes were involved in these processes. However, we found that EDPs did not increase urokinase-type plasminogen activator, tissue-type plasminogen activator or MMP-2 expression and/or activation, neither in vitro nor in vivo. Nevertheless, we observed a strong increase of pro-MMP-9 secretion in EDPs-treated tumours and, more importantly, an increase in the expression and activation of the murine counterpart of MMP-1, named murine collagenase-A (Mcol-A). Moreover, we show that plasminogen system inhibition decreases collagen degradation by this enzyme. Finally, the use of a specific blocking antibody against Mcol-A abolished EDP-induced B16F1 invasion in vitro, showing that this MMP was directly involved in this process. Conclusion: Our data show that in vivo, EDPs are involved in melanoma growth and invasion and reinforced the concept of elastin fragmentation as a predictive factor.
Collapse
|
93
|
O'Kane CM, Elkington PT, Jones MD, Caviedes L, Tovar M, Gilman RH, Stamp G, Friedland JS. STAT3, p38 MAPK, and NF-kappaB drive unopposed monocyte-dependent fibroblast MMP-1 secretion in tuberculosis. Am J Respir Cell Mol Biol 2010; 43:465-74. [PMID: 19915152 PMCID: PMC2951877 DOI: 10.1165/rcmb.2009-0211oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/27/2009] [Indexed: 01/15/2023] Open
Abstract
Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal-regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase-dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas. STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-κB-binding site abrogated promoter induction in response to CoMTb. TNF-α, IL-1β, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-κB, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.
Collapse
Affiliation(s)
- Cecilia M O'Kane
- Department of Infectious Diseases and Immunity, Hammersmith Campus, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Leong DJ, Li YH, Gu XI, Sun L, Zhou Z, Nasser P, Laudier DM, Iqbal J, Majeska RJ, Schaffler MB, Goldring MB, Cardoso L, Zaidi M, Sun HB. Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J 2010; 25:182-91. [PMID: 20826544 DOI: 10.1096/fj.10-164277] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both overuse and disuse of joints up-regulate matrix metalloproteinases (MMPs) in articular cartilage and cause tissue degradation; however, moderate (physiological) loading maintains cartilage integrity. Here, we test whether CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), a mechanosensitive transcriptional coregulator, mediates this chondroprotective effect of moderate mechanical loading. In vivo, hind-limb immobilization of Sprague-Dawley rats up-regulates MMP-1 and causes rapid, histologically detectable articular cartilage degradation. One hour of daily passive joint motion prevents these changes and up-regulates articular cartilage CITED2. In vitro, moderate (2.5 MPa, 1 Hz) intermittent hydrostatic pressure (IHP) treatment suppresses basal MMP-1 expression and up-regulates CITED2 in human chondrocytes, whereas high IHP (10 MPa) down-regulates CITED2 and increases MMP-1. Competitive binding and transcription assays demonstrate that CITED2 suppresses MMP-1 expression by competing with MMP transactivator, Ets-1 for its coactivator p300. Furthermore, CITED2 up-regulation in vitro requires the p38δ isoform, which is specifically phosphorylated by moderate IHP. Together, these studies identify a novel regulatory pathway involving CITED2 and p38δ, which may be critical for the maintenance of articular cartilage integrity under normal physical activity levels.
Collapse
Affiliation(s)
- Daniel J Leong
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, One Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Faria MR, Hoshida MS, Ferro EAV, Ietta F, Paulesu L, Bevilacqua E. Spatiotemporal patterns of macrophage migration inhibitory factor (Mif) expression in the mouse placenta. Reprod Biol Endocrinol 2010; 8:95. [PMID: 20684790 PMCID: PMC2922212 DOI: 10.1186/1477-7827-8-95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) has special pro-inflammatory roles, affecting the functions of macrophages and lymphocytes and counter-regulating the effects of glucocorticoids on the immune response. The conspicuous expression of MIF during human implantation and early embryonic development also suggests this factor acts in reproductive functions. The overall goal of this study was to evaluate Mif expression by trophoblast and embryo placental cells during mouse pregnancy. METHODS Mif was immunolocalized at implantation sites on gestation days (gd) 7.5, 10.5, 13.5 and 17.5. Ectoplacental cones and fetal placentas dissected from the maternal tissues were used for Western blotting and qRT-PCR assays on the same gestation days. RESULTS During the post-implantation period (gd7.5), trophoblast giant cells showed strong Mif reactivity. In later placentation phases (gds 10.5-17.5), Mif appeared to be concentrated in the junctional zone and trophoblast giant cells. Mif protein expression increased significantly from gd7.5 to 10.5 (p = 0.005) and from gd7.5 to 13.5 (p = 0.03), remaining at high concentration as gestation proceeded. Higher mRNA expression was found on gd10.5 and was significantly different from gd13.5 (p = 0.048) and 17.5 (p = 0.009). CONCLUSIONS The up-regulation of Mif on gd10.5 coincides with the stage in which the placenta assumes its three-layered organization (giant cells, spongiotrophoblast and labyrinth zones), fetal blood circulation begins and population of uNK cells reaches high proportions at the maternal counter part of the placenta, suggesting that Mif may play a role in either the placentation or in the adaptation of the differentiated placenta to the uterus or still in gestational immunomodulatory responses. Moreover, it reinforces the possibility of specific activities for Mif at the maternal fetal interface.
Collapse
Affiliation(s)
- Miriam R Faria
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mara S Hoshida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloisa AV Ferro
- Department of Morphology, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Luana Paulesu
- Department of Physiology, University of Siena, Siena, Italy
| | - Estela Bevilacqua
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
96
|
Lindsey ML, Zamilpa R. Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 2010; 30:31-41. [PMID: 20645986 DOI: 10.1111/j.1755-5922.2010.00207.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following a myocardial infarction (MI), the homeostatic balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) is disrupted as part of the left ventricle (LV) response to injury. The full complement of responses to MI has been termed LV remodeling and includes changes in LV size, shape and function. The following events encompass the LV response to MI: (1) inflammation and LV wall thinning and dilation, (2) infarct expansion and necrotic myocyte resorption, (3) accumulation of fibroblasts and scar formation, and (4) endothelial cell activation and neovascularization. In this review, we will summarize MMP and TIMP roles during these events, focusing on the spatiotemporal localization and MMP and TIMP effects on cellular and tissue-level responses. We will review MMP and TIMP structure and function, and discuss specific MMP roles during both the acute and chronic phases post-MI, which may provide insight into novel therapeutic targets to limit adverse remodeling in the MI setting.
Collapse
Affiliation(s)
- Merry L Lindsey
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
97
|
Koschubs T, Lorenzen K, Baumli S, Sandström S, Heck AJR, Cramer P. Preparation and topology of the Mediator middle module. Nucleic Acids Res 2010; 38:3186-95. [PMID: 20123732 PMCID: PMC2879511 DOI: 10.1093/nar/gkq029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/18/2022] Open
Abstract
Mediator is the central coactivator complex required for regulated transcription by RNA polymerase (Pol) II. Mediator consists of 25 subunits arranged in the head, middle, tail and kinase modules. Structural and functional studies of Mediator are limited by the availability of protocols for the preparation of recombinant modules. Here, we describe protocols for obtaining pure endogenous and recombinant complete Mediator middle module from Saccharomyces cerevisiae that consists of seven subunits: Med1, 4, 7, 9, 10, 21 and 31. Native mass spectrometry reveals that all subunits are present in equimolar stoichiometry. Ion-mobility mass spectrometry, limited proteolysis, light scattering and small-angle X-ray scattering all indicate a high degree of intrinsic flexibility and an elongated shape of the middle module. Protein-protein interaction assays combined with previously published data suggest that the Med7 and Med4 subunits serve as a binding platform to form the three heterodimeric subcomplexes, Med7N/21, Med7C/31 and Med4/9. The subunits, Med1 and Med10, which bridge to the Mediator tail module, bind to both Med7 and Med4.
Collapse
Affiliation(s)
- Tobias Koschubs
- Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Biochemistry, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Str. 25, 81377 Munich, Germany, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, Netherlands and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Kristina Lorenzen
- Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Biochemistry, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Str. 25, 81377 Munich, Germany, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, Netherlands and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sonja Baumli
- Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Biochemistry, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Str. 25, 81377 Munich, Germany, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, Netherlands and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Saana Sandström
- Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Biochemistry, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Str. 25, 81377 Munich, Germany, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, Netherlands and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Albert J. R. Heck
- Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Biochemistry, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Str. 25, 81377 Munich, Germany, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, Netherlands and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Patrick Cramer
- Gene Center Munich and Center for Integrated Protein Science Munich (CIPSM), Department of Biochemistry, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Str. 25, 81377 Munich, Germany, Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, Netherlands and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
98
|
Proshkina GM, Shpakovskiĭ GV. [The functional interaction of an RNA polymerase II Rpb11 subunit with the Med18 subunit (Srb5) of the Saccharomyces cerevisiae mediator complex]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 35:572-6. [PMID: 19928061 DOI: 10.1134/s1068162009040153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SRB5 gene encoding the Med18 (Srb5) subunit of the mediator complex of the Saccharomyces cerevisiae transcription apparatus was identified in the C-terminal region of the yeast RNA polymerase II Rpb11 subunit as a multicopy suppressor of the Leu111Ala (L111A) point mutation. Thus, the functional interaction between one of the mediator components and the core of the major transcription enzyme was first shown. It is also essential that the suppressed point mutation was located in the short C-terminal region of the Rpb11subunit, which plays an important role for the evolution of the eukaryotic transcription apparatus, as was demonstrated in our previous studies.
Collapse
|
99
|
Abstract
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell-matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds.
Collapse
Affiliation(s)
- Peter Chen
- Center for Lung Biology, Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | |
Collapse
|
100
|
Lin Y, Yamashita M, Zhang J, Ling C, Welham NV. Pulsed dye laser-induced inflammatory response and extracellular matrix turnover in rat vocal folds and vocal fold fibroblasts. Lasers Surg Med 2010; 41:585-94. [PMID: 19746432 DOI: 10.1002/lsm.20839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Disruption of the vocal fold extracellular matrix (ECM) can induce a profound and refractory dysphonia. Pulsed dye laser (PDL) irradiation has shown early promise as a treatment modality for disordered ECM in patients with chronic vocal fold scar; however, there are limited data addressing the mechanism by which this laser energy might induce cellular and extracellular changes in vocal fold tissues. In this study, we examined the inflammatory and ECM modulating effects of PDL irradiation on normal vocal fold tissues and cultured vocal fold fibroblasts (VFFs). STUDY DESIGN/MATERIALS AND METHODS We evaluated the effects of 585 nm PDL irradiation on inflammatory cytokine and collagen/collagenase gene transcription in normal rat vocal folds in vivo (3-168 hours following delivery of approximately 39.46 J/cm(2) fluence) and VFFs in vitro (3-72 hours following delivery of 4.82 or 9.64 J/cm(2) fluence). We also examined morphological vocal fold tissue changes 3 hours, 1 week, and 1 month post-irradiation. RESULTS PDL irradiation altered inflammatory cytokine and procollagen/collagenase expression at the transcript level, both in vitro and in vivo. Additionally, PDL irradiation induced an inflammatory repair process in vivo that was completed by 1 month with preservation of normal tissue morphology. CONCLUSIONS PDL irradiation can modulate ECM turnover in phenotypically normal vocal folds. Additional work is required to determine if these findings extend to disordered ECM, such as is seen in vocal fold scar. Lasers Surg. Med. 41:585-594, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ya Lin
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|