51
|
Carter RL, Grisanti LA, Yu JE, Repas AA, Woodall M, Ibetti J, Koch WJ, Jacobson MA, Tilley DG. Dynamic mass redistribution analysis of endogenous β-adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharmacol Res Perspect 2014; 2. [PMID: 24683488 PMCID: PMC3968527 DOI: 10.1002/prp2.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Label-free systems for the agnostic assessment of cellular responses to receptor stimulation have been shown to provide a sensitive method to dissect receptor signaling. β-adenergic receptors (βAR) are important regulators of normal and pathologic cardiac function and are expressed in cardiomyocytes as well as cardiac fibroblasts, where relatively fewer studies have explored their signaling responses. Using label-free whole cell dynamic mass redistribution (DMR) assays we investigated the response patterns to stimulation of endogenous βAR in primary neonatal rat cardiac fibroblasts (NRCF). The EPIC-BT by Corning was used to measure DMR responses in primary isolated NRCF treated with various βAR and EGFR ligands. Additional molecular assays for cAMP generation and receptor internalization responses were used to correlate the DMR findings with established βAR signaling pathways. Catecholamine stimulation of NRCF induced a concentration-dependent negative DMR deflection that was competitively blocked by βAR blockade and non-competitively blocked by irreversible uncoupling of Gs proteins. Subtype-selective βAR ligand profiling revealed a dominant role for β2AR in mediating the DMR responses, consistent with the relative expression levels of β2AR and β1AR in NRCF. βAR-mediated cAMP generation profiles revealed similar kinetics to DMR responses, each of which were enhanced via inhibition of cAMP degradation, as well as dynamin-mediated receptor internalization. Finally, G protein-independent βAR signaling through epidermal growth factor receptor (EGFR) was assessed, revealing a smaller but significant contribution of this pathway to the DMR response to βAR stimulation. Measurement of DMR responses in primary cardiac fibroblasts provides a sensitive readout for investigating endogenous βAR signaling via both G protein-dependent and –independent pathways.
Collapse
Affiliation(s)
- Rhonda L Carter
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Laurel A Grisanti
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Justine E Yu
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Ashley A Repas
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Meryl Woodall
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Marlene A Jacobson
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| |
Collapse
|
52
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013. [PMID: 24265619 DOI: 10.3389/fphys.2013.00324.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013; 4:324. [PMID: 24265619 PMCID: PMC3820966 DOI: 10.3389/fphys.2013.00324] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
54
|
In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation. Exp Cell Res 2013; 319:2718-27. [DOI: 10.1016/j.yexcr.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/15/2022]
|
55
|
George AJ, Hannan RD, Thomas WG. Unravelling the molecular complexity of GPCR-mediated EGFR transactivation using functional genomics approaches. FEBS J 2013; 280:5258-68. [PMID: 23992425 DOI: 10.1111/febs.12509] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
To influence physiology and pathophysiology, G protein-coupled receptors (GPCRs) have evolved to appropriate additional signalling modalities, such as activation of adjacent membrane receptors. Epidermal growth factor receptors (EGFRs) mediate growth and remodelling actions of GPCRs, although the precise network of gene products and molecular cascades linking GPCRs to EGFRs (termed EGFR transactivation) remains incomplete. In this review, we describe the current view of GPCR-EGFR transactivation, identifying the established models of receptor cross-talk. We consider the limitations in our current knowledge, and propose that recent advances in molecular and cell biology technology, including functional genomics approaches, will allow a renewed focus of efforts to understand the mechanism underlying EGFR transactivation. Using an unbiased approach for identification of the molecules required for GPCR-mediated EGFR transactivation will provide a contemporary and more complete representation from which to extrapolate therapeutic control in diseases from cardiovascular remodelling to cancer.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia; Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia; Department of Pathology, The University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
56
|
Light A, Hammes SR. Membrane receptor cross talk in steroidogenesis: recent insights and clinical implications. Steroids 2013; 78:633-8. [PMID: 23380369 DOI: 10.1016/j.steroids.2012.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/17/2012] [Accepted: 12/31/2012] [Indexed: 11/19/2022]
Abstract
Steroid production by all three major steroidogenic tissues, the adrenals, testes, and ovaries, is critical for survival and reproduction of all animals. As such, the pathways that regulate steroidogenesis are conserved between these tissues, from the steroidogenic enzymes and cofactors that synthesize steroids, to the intracellular signaling molecules and Gαs-coupled receptors that mediate the activity of these enzymes. Recent work has revealed another important conserved pathway in steroidogenesis: crosstalk between membrane G protein-coupled receptors and membrane receptor tyrosine kinases. Luteinizing hormone (LH) or adrencorticotropic hormone (ACTH) binding to their cognate Gαs-coupled membrane receptors in the gonads and adrenals, respectively, leads to cAMP-induced trans-activation of the epidermal growth factor (EGF) receptor, followed by activation of Akt and Erk signaling. These kinase signals then activate Steroidogenic Acute Regulatory (StAR) protein, which promotes steroid production. Inhibition of this pathway abrogates both LH- and ACTH-induced steroidogenesis. Interestingly, LH-induced transactivation of the EGF receptor in the ovary uniquely requires matrix metalloproteinase-mediated release of EGF receptor ligands, and inhibition of these proteases blocks LH-induced steroidogenesis. Given this unique need for matrix metalloproteinases in ovarian steroidogenesis, MMP inhibition may prove to be useful when treating diseases of excess ovarian steroid production, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Allison Light
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | |
Collapse
|
57
|
Fu X, Koller S, Abd Alla J, Quitterer U. Inhibition of G-protein-coupled receptor kinase 2 (GRK2) triggers the growth-promoting mitogen-activated protein kinase (MAPK) pathway. J Biol Chem 2013; 288:7738-7755. [PMID: 23362259 DOI: 10.1074/jbc.m112.428078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inhibition of G-protein-coupled receptor kinase 2 (GRK2) is an emerging treatment option for heart failure. Because GRK2 is also indispensable for growth and development, we analyzed the impact of GRK2 inhibition on cell growth and proliferation. Inhibition of GRK2 by the dominant-negative GRK2-K220R did not affect the proliferation of cultured cells. In contrast, upon xenograft transplantation of cells into immunodeficient mice, the dominant-negative GRK2-K220R or a GRK2-specific peptide inhibitor increased tumor mass. The enhanced tumor growth upon GRK2 inhibition was attributed to the growth-promoting MAPK pathway because dual inhibition of the GRK2 and RAF-MAPK axis by the Raf kinase inhibitor protein (RKIP) did not increase tumor mass. The MAPK cascade contributed to the cardioprotective profile of GRK2 inhibition by preventing cardiomyocyte death, whereas dual inhibition of RAF/MAPK and GRK2 by RKIP induced cardiomyocyte apoptosis, cardiac dysfunction, and signs of heart failure. Thus, cardioprotective signaling induced by GRK2 inhibition is overlapping with tumor growth promotion.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zuerich, CH-8057 Zuerich, Switzerland
| | - Samuel Koller
- Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zuerich, CH-8057 Zuerich, Switzerland
| | - Joshua Abd Alla
- Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zuerich, CH-8057 Zuerich, Switzerland
| | - Ursula Quitterer
- Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zuerich, CH-8057 Zuerich, Switzerland; Department of Medicine, Institute of Pharmacology and Toxicology, University of Zuerich, CH-8057 Zuerich, Switzerland.
| |
Collapse
|
58
|
Arrestins in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:297-334. [PMID: 23764059 DOI: 10.1016/b978-0-12-394440-5.00012-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.
Collapse
|
59
|
G Protein-Coupled Receptors in cancer: biochemical interactions and drug design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:143-73. [PMID: 23415094 DOI: 10.1016/b978-0-12-394587-7.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.
Collapse
|
60
|
Berthouze-Duquesnes M, Lucas A, Saulière A, Sin YY, Laurent AC, Galés C, Baillie G, Lezoualc'h F. Specific interactions between Epac1, β-arrestin2 and PDE4D5 regulate β-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling. Cell Signal 2012; 25:970-80. [PMID: 23266473 DOI: 10.1016/j.cellsig.2012.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
β1 and β2 adrenergic receptors (βARs) are highly homologous but fulfill distinct physiological and pathophysiological roles. Here we show that both βAR subtypes activate the cAMP-binding protein Epac1, but they differentially affect its signaling. The distinct effects of βARs on Epac1 downstream effectors, the small G proteins Rap1 and H-Ras, involve different modes of interaction of Epac1 with the scaffolding protein β-arrestin2 and the cAMP-specific phosphodiesterase (PDE) variant PDE4D5. We found that β-arrestin2 acts as a scaffold for Epac1 and is necessary for Epac1 coupling to H-Ras. Accordingly, knockdown of β-arrestin2 prevented Epac1-induced histone deacetylase 4 (HDAC4) nuclear export and cardiac myocyte hypertrophy upon β1AR activation. Moreover, Epac1 competed with PDE4D5 for interaction with β-arrestin2 following β2AR activation. Dissociation of the PDE4D5-β-arrestin2 complex allowed the recruitment of Epac1 to β2AR and induced a switch from β2AR non-hypertrophic signaling to a β1AR-like pro-hypertrophic signaling cascade. These findings have implications for understanding the molecular basis of cardiac myocyte remodeling and other cellular processes in which βAR subtypes exert opposing effects.
Collapse
MESH Headings
- Animals
- Arrestins/antagonists & inhibitors
- Arrestins/genetics
- Arrestins/metabolism
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Fluorescence Resonance Energy Transfer
- Guanine Nucleotide Exchange Factors/metabolism
- HEK293 Cells
- Humans
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Protein Interaction Maps
- Proto-Oncogene Proteins p21(ras)/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Magali Berthouze-Duquesnes
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 31432 Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Spadaro F, Salvati E, Biroccio AM, Natali PG, Bagnato A. β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene 2012. [DOI: 10.1038/onc.2012.527] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
62
|
Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol 2012; 166:1225-43. [PMID: 22364165 DOI: 10.1111/j.1476-5381.2012.01917.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs)] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system.
Collapse
Affiliation(s)
- A Rietz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
63
|
Cotecchia S, Stanasila L, Diviani D. Protein-protein interactions at the adrenergic receptors. Curr Drug Targets 2012; 13:15-27. [PMID: 21777184 PMCID: PMC3290771 DOI: 10.2174/138945012798868489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 01/07/2023]
Abstract
The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. In this review we will briefly summarize the main features of βarrestin binding to the adrenergic receptor subtypes and we will review more in detail the main proteins found to selectively interact with distinct AR subtype. At the end, we will review the main findings on oligomerization of the AR subtypes.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Départment de Pharmacologie et de Toxicologie, Université de Lausanne, Switzerland.
| | | | | |
Collapse
|
64
|
Belmonte SL, Blaxall BC. Conducting the G-protein Coupled Receptor (GPCR) Signaling Symphony in Cardiovascular Diseases: New Therapeutic Approaches. ACTA ACUST UNITED AC 2012; 9:e85-e90. [PMID: 23162605 DOI: 10.1016/j.ddmod.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a virtually ubiquitous class of membrane-bound receptors, which functionally couple hormone or neurotransmitter signals to physiological responses. Dysregulation of GPCR signaling contributes to the pathophysiology of a host of cardiovascular disorders. Pharmacological agents targeting GPCRs have been established as therapeutic options for decades. Nevertheless, the persistent burden of cardiovascular diseases necessitates improved treatments. To that end, exciting drug development efforts have begun to focus on novel compounds that discriminately activate particular GPCR signaling pathways.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
65
|
Rigo A, Gottardi M, Damiani E, Bonifacio M, Ferrarini I, Mauri P, Vinante F. CXCL12 and [N33A]CXCL12 in 5637 and HeLa cells: regulating HER1 phosphorylation via calmodulin/calcineurin. PLoS One 2012; 7:e34432. [PMID: 22529914 PMCID: PMC3329496 DOI: 10.1371/journal.pone.0034432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/28/2012] [Indexed: 02/07/2023] Open
Abstract
In the human neoplastic cell lines 5637 and HeLa, recombinant CXCL12 elicited, as expected, downstream signals via both G-protein-dependent and β-arrestin-dependent pathways responsible for inducing a rapid and a late wave, respectively, of ERK1/2 phosphorylation. In contrast, the structural variant [N33A]CXCL12 triggered no β-arrestin-dependent phosphorylation of ERK1/2, and signaled via G protein-dependent pathways alone. Both CXCL12 and [N33A]CXCL12, however, generated signals that transinhibited HER1 phosphorylation via intracellular pathways. 1) Prestimulation of CXCR4/HER1-positive 5637 or HeLa cells with CXCL12 modified the HB-EGF-dependent activation of HER1 by delaying the peak phosphorylation of tyrosine 1068 or 1173. 2) Prestimulation with the synthetic variant [N33A]CXCL12, while preserving CXCR4-related chemotaxis and CXCR4 internalization, abolished HER1 phosphorylation. 3) In cells knockdown of β-arrestin 2, CXCL12 induced a full inhibition of HER1 like [N33A]CXCL12 in non-silenced cells. 4) HER1 phosphorylation was restored as usual by inhibiting PCK, calmodulin or calcineurin, whereas the inhibition of CaMKII had no discernable effect. We conclude that both recombinant CXCL12 and its structural variant [N33A]CXCL12 may transinhibit HER1 via G-proteins/calmodulin/calcineurin, but [N33A]CXCL12 does not activate β-arrestin-dependent ERK1/2 phosphorylation and retains a stronger inhibitory effect. Therefore, we demonstrated that CXCL12 may influence the magnitude and the persistence of signaling downstream of HER1 in turn involved in the proliferative potential of numerous epithelial cancer. In addition, we recognized that [N33A]CXCL12 activates preferentially G-protein-dependent pathways and is an inhibitor of HER1.
Collapse
Affiliation(s)
- Antonella Rigo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Michele Gottardi
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Ernesto Damiani
- Department of Experimental Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Isacco Ferrarini
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, CNR, Milan, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
66
|
Engagement of β-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proc Natl Acad Sci U S A 2012; 109:E1028-37. [PMID: 22493236 DOI: 10.1073/pnas.1112422109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been shown to activate the mitogen-activated protein kinases, ERK1/2, through both G protein-dependent and -independent mechanisms. Here, we describe a G protein-independent mechanism that unravels an unanticipated role for β-arrestins. Stimulation of the V2 vasopressin receptor (V2R) in cultured cells or in vivo in rat kidney medullar collecting ducts led to the activation of ERK1/2 through the metalloproteinase-mediated shedding of a factor activating the insulin-like growth factor receptor (IGFR). This process was found to be both Src- and β-arrestin-dependent. Whereas Src was found to act upstream of the metalloproteinase activation and be required for the release of the IGFR-activating factor, β-arrestins were found to act downstream of the IGFR transactivation. Unexpectedly, the engagement of β-arrestins by the IGFR but not by the V2R was needed to promote the vasopressin-stimulated ERK1/2 activation, indicating that a pool of β-arrestins distinct from those β-arrestins recruited to the V2R acts downstream of the receptor tyrosine kinase to activate ERK1/2. Such a dual site of action for β-arrestins helps explain the pleiotropic actions of this scaffolding protein. Given the role that V2R-stimulated ERK1/2 plays in kidney cell proliferation, this transactivation mechanism may have important implications for renal pathophysiology. Still, the role of β-arrestins downstream of a transactivation event is not limited to the V2R, because we observed a similar involvement for an unrelated GPCR (the platelet-activating factor receptor), indicating that it may be a general mechanism shared among GPCRs.
Collapse
|
67
|
Cellular signals underlying β-adrenergic receptor mediated salivary gland enlargement. Differentiation 2012; 83:68-76. [DOI: 10.1016/j.diff.2011.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/25/2011] [Accepted: 09/10/2011] [Indexed: 01/01/2023]
|
68
|
Jindal E, Goswami SK. In cardiac myoblasts, cellular redox regulates FosB and Fra-1 through multiple cis-regulatory modules. Free Radic Biol Med 2011; 51:1512-21. [PMID: 21820506 DOI: 10.1016/j.freeradbiomed.2011.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
Depending on the dose, norepineprine (NE) can induce hypertrophy or apoptosis in cardiac myocytes. Reactive oxygen species (ROS) play a key role in mediating both responses, but the mechanisms are not understood as yet. Earlier we demonstrated that the two pathways are marked by the differential induction of FosB and Fra-1, two members of the AP-1 family of transcription factors. We now demonstrate that NE induces both fosB and fra-1 at the transcriptional level. Catalase and MnTMPyP (a superoxide dismutase mimetic) suppress their activation by NE. In contrast, in cells without NE treatment, MnTMPyP upregulates their expression, whereas catalase inhibits it. Thus, regulation of fosB and fra-1 by ROS is context specific. To delineate the mechanisms, the 1493- and 2689-bp upstream regions of the fosB and fra-1 genes were cloned into the luciferase vector and assayed for transient expression. Catalase and MnTMPyP regulated both promoters the same as their endogenous counterparts in NE-treated and untreated cells. Deletion, mutation, and ChIP analyses suggested that multiple cis-elements including SP-1, CEBP, and AP-1 in the fosB promoter make discrete contributions to mediating the redox response. A gel mobility-shift-based oxidation-reduction assay suggested that, whereas SP-1 is a direct sensor of cellular redox state, CEBP is not. This study suggests that multiple redox signals generate gene-specific modules affecting their expression.
Collapse
Affiliation(s)
- Ekta Jindal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
69
|
Andresen BT. A pharmacological primer of biased agonism. Endocr Metab Immune Disord Drug Targets 2011; 11:92-8. [PMID: 21476970 PMCID: PMC3182416 DOI: 10.2174/187153011795564179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/15/2011] [Indexed: 01/14/2023]
Abstract
Biased agonism is one of the fastest growing topics in G protein-coupled receptor pharmacology; moreover, biased agonists are used in the clinic today: carvedilol (Coreg®) is a biased agonist of beta-adrenergic receptors. However, there is a general lack of understanding of biased agonism when compared to traditional pharmacological terminology. Therefore, this review is designed to provide a basic introduction to classical pharmacology as well as G protein-coupled receptor signal transduction in order to clearly explain biased agonism for the non-scientist clinician and pharmacist. Special emphasis is placed on biased agonists of the beta-adrenergic receptors, as these drugs are highly prescribed, and a hypothetical scenario based on current clinical practices and proposed mechanisms for treating disease is discussed in order to demonstrate the need for a more thorough understanding of biased agonism in clinical settings. Since biased agonism provides a novel mechanism for treating disease, greater emphasis is being placed to develop biased agonists; therefore, it is important for biased agonism to be understood in equal measure of traditional pharmacological concepts. This review, along with many others, can be used to teach the basic concepts of biased agonism, and this review also serves to introduce the subsequent reviews that examine, in more depth, the relevance of biased agonism towards the angiotensin type 1 receptor, parathyroid hormone receptor, and natural biased ligands towards chemokine receptors.
Collapse
Affiliation(s)
- Bradley T Andresen
- Department of Internal Medicine, Division of Endocrinology, University of Missouri, MO 65201, USA.
| |
Collapse
|
70
|
Tilley DG. Functional relevance of biased signaling at the angiotensin II type 1 receptor. Endocr Metab Immune Disord Drug Targets 2011; 11:99-111. [PMID: 21476968 DOI: 10.2174/187153011795564133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/07/2011] [Indexed: 01/04/2023]
Abstract
Angiotensin II type 1 receptor antagonists (AT1R blockers, or ARBs) are used commonly in the treatment of cardiovascular disorders such as heart failure and hypertension. Their clinical success arises from their ability to prevent deleterious Gα(q) protein activation downstream of AT1R, which leads to a decrease in morbidity and mortality. Recent studies have identified AT1R ligands that concurrently inhibit Gα(q) protein-dependent signaling and activate Gα(q) protein-independent/β-arrestin-dependent signaling downstream of AT1R, events that may actually improve cardiovascular performance more than conventional ARBs. The ability of such ligands to induce intracellular signaling events in an AT1R-β-arrestin-dependent manner while preventing AT1R-Gα(q) protein activity defines them as biased AT1R ligands. This mini-review will highlight recent studies that have defined biased signaling at the AT1R and discuss the possible clinical relevance of β-arrestin-biased AT1R ligands in the cardiovascular system.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA 1917, USA.
| |
Collapse
|
71
|
Tilley DG. G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res 2011; 109:217-30. [PMID: 21737817 DOI: 10.1161/circresaha.110.231225] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors signal through a variety of mechanisms that impact cardiac function, including contractility and hypertrophy. G protein-dependent and G protein-independent pathways each have the capacity to initiate numerous intracellular signaling cascades to mediate these effects. G protein-dependent signaling has been studied for decades and great strides continue to be made in defining the intricate pathways and effectors regulated by G proteins and their impact on cardiac function. G protein-independent signaling is a relatively newer concept that is being explored more frequently in the cardiovascular system. Recent studies have begun to reveal how cardiac function may be regulated via G protein-independent signaling, especially with respect to the ever-expanding cohort of β-arrestin-mediated processes. This review primarily focuses on the impact of both G protein-dependent and β-arrestin-dependent signaling pathways on cardiac function, highlighting the most recent data that illustrate the comprehensive nature of these mechanisms of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, and Center for Translational Medicine, Thomas Jefferson University, 1025 Walnut Street, 402 College Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
72
|
Vaniotis G, Allen BG, Hébert TE. Nuclear GPCRs in cardiomyocytes: an insider's view of β-adrenergic receptor signaling. Am J Physiol Heart Circ Physiol 2011; 301:H1754-64. [PMID: 21890692 DOI: 10.1152/ajpheart.00657.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling.
Collapse
|
73
|
Zajac M, Law J, Cvetkovic DD, Pampillo M, McColl L, Pape C, Di Guglielmo GM, Postovit LM, Babwah AV, Bhattacharya M. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 2011; 6:e21599. [PMID: 21738726 PMCID: PMC3125256 DOI: 10.1371/journal.pone.0021599] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 06/04/2011] [Indexed: 11/25/2022] Open
Abstract
Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.
Collapse
Affiliation(s)
- Mateusz Zajac
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Jeffrey Law
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Dragana Donna Cvetkovic
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Macarena Pampillo
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - Lindsay McColl
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Cynthia Pape
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Gianni M. Di Guglielmo
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Lynne M. Postovit
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Andy V. Babwah
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- The Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
74
|
Xu Q, Dalic A, Fang L, Kiriazis H, Ritchie RH, Sim K, Gao XM, Drummond G, Sarwar M, Zhang YY, Dart AM, Du XJ. Myocardial oxidative stress contributes to transgenic β₂-adrenoceptor activation-induced cardiomyopathy and heart failure. Br J Pharmacol 2011; 162:1012-28. [PMID: 20955367 DOI: 10.1111/j.1476-5381.2010.01043.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE While maintaining cardiac performance, chronic β-adrenoceptor activation eventually exacerbates the progression of cardiac remodelling and failure. We examined the adverse signalling pathways mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and reactive oxygen species (ROS) after chronic β₂-adrenoceptor activation. EXPERIMENTAL APPROACH Mice with transgenic β₂-adrenoceptor overexpression (β₂-TG) and non-transgenic littermates were either untreated or treated with an antioxidant (N-acetylcysteine, NAC) or NADPH oxidase inhibitors (apocynin, diphenyliodonium). Levels of ROS, phosphorylated p38 mitogen-activated protein kinase (MAPK), pro-inflammatory cytokines and collagen content in the left ventricle (LV) and LV function were measured and compared. KEY RESULTS β₂-TG mice showed increased ROS production, phosphorylation of p38 MAPK and heat shock protein 27 (HSP27), expression of pro-inflammatory cytokines and collagen, and progressive ventricular dysfunction. β₂-adrenoceptor stimulation similarly increased ROS production and phosphorylation of p38 MAPK and HSP27 in cultured cardiomyocytes. Treatment with apocynin, diphenyliodonium or NAC reduced phosphorylation of p38 MAPK and HSP27 in both cultured cardiomyocytes and the LV of β₂-TG mice. NAC treatment (500 mg·kg⁻¹ ·day⁻¹) for 2 weeks eliminated the up-regulated expression of pro-inflammatory cytokines and collagen in the LV of β₂-TG mice. Chronic NAC treatment to β₂-TG mice from 7 to 10 months of age largely prevented progression of ventricular dilatation, preserved contractile function (fractional shortening 37 ± 5% vs. 25 ± 3%, ejection fraction 52 ± 5% vs. 32 ± 4%, both P < 0.05), reduced cardiac fibrosis and suppressed matrix metalloproteinase activity. CONCLUSION AND IMPLICATIONS β₂-adrenoceptor stimulation provoked NADPH oxidase-derived ROS production in the heart. Elevated ROS activated p38 MAPK and contributed significantly to cardiac inflammation, remodelling and failure.
Collapse
Affiliation(s)
- Q Xu
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Carbajal L, Biswas A, Niswander LM, Prizant H, Hammes SR. GPCR/EGFR cross talk is conserved in gonadal and adrenal steroidogenesis but is uniquely regulated by matrix metalloproteinases 2 and 9 in the ovary. Mol Endocrinol 2011; 25:1055-65. [PMID: 21454403 DOI: 10.1210/me.2010-0410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous work has demonstrated that cross talk between G protein-coupled LH receptors and epidermal growth factor receptors (EGFR) is essential for LH-induced steroid production in ovarian follicles and testicular Leydig cells. Here we demonstrate that G protein-coupled receptor (GPCR)/EGFR cross talk is also required for ACTH-induced steroidogenesis in Y1 adrenal cells. Moreover, we confirm that the signaling pathway from GPCR to Erk activation is conserved in all three steroidogenic tissues. ACTH or LH induces Gα(s), resulting in elevated cAMP and protein kinase A activation. cAMP/protein kinase A then triggers EGFR trans-activation, which promotes Erk signaling and subsequent steroidogenesis. Interestingly, although EGFR trans-activation is conserved in all three tissues, the specific mechanisms regulating this receptor cross talk differ. ACTH and LH trigger matrix metalloproteinase (MMP)-mediated release of EGFR ligands in adrenal and gonadal cells, respectively. However, this extracellular, ligand-dependent EGFR transactivation is required only for LH-induced steroidogenesis in ovarian follicles, reflecting the unique requirement of cell-cell cross talk for ovarian steroid production. Furthermore, MMP2 and MMP9 appear to regulate LH-induced steroidogenesis in mouse ovarian follicles, because a specific MMP2/9 inhibitor as well as the MMP2/9 inhibitor doxycycline suppress LH-induced follicular steroid production in vitro. Notably, although EGFR or MMP inhibition minimally affects estrous cycling in female mice, they attenuate ovarian steroidogenesis in response to LHR overstimulation in vivo. These results may have implications with regard to EGFR inhibitor use in various cancers as well as in polycystic ovarian syndrome, where excess LH-driven ovarian androgen production might be controlled by MMP2/9 inhibition.
Collapse
Affiliation(s)
- Liliana Carbajal
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
76
|
Wang QT, Zhang LL, Wu HX, Wei W. The expression change of β-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:511-516. [PMID: 20965243 DOI: 10.1016/j.jep.2010.10.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 10/09/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY To investigate the expression of β-arrestins in fibroblast-like synoviocytes (FLS) from collagen-induced arthritis (CIA) rats and the effect of total glucosides of paeony (TGP). MATERIALS AND METHODS TGP and glucosides of tripterygium wilfordii (GTW) were intragastriclly administrated to collagen-induced arthritis (CIA) rats after immunization. The secondary inflammatory reaction was evaluated by hind paw swelling, polyarthritis index and histopathological changes. Antibodies to type II collagen (CII) were determined by enzyme-linked immunosorbent assay (ELISA). Synoviocyte proliferations were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of β-arrestins in synoviocytes from CIA rats was measured by western blot. RESULTS The administration of TGP (25, 50, 100 mg/kg) depressed hind paw swelling and decreased the arthritis scores of CIA rats. TGP improved the pathologic manifestations of CIA. Serum anti-CII antibodies level increased significantly in CIA rats, while TGP had no effect on it. Fibroblast-like synoviocytes (FLS) proliferation was inhibited by TGP (50, 100 mg/kg). On d14, d28 after immunization, β-arrestins expression greatly up-regulated in synoviocytes from CIA rats and then returned to baseline levels on d42 after immunization. TGP (50, 100 mg/kg) significantly reduced the expression of β-arrestins. CONCLUSION An inflammatory process in vivo induces an up-regulation of β-arrestins in synoviocytes from CIA rats while TGP can inhibit this change, which might be one of the important mechanisms for TGP to produce a marked therapeutic effect on RA.
Collapse
Affiliation(s)
- Qing-Tong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, Meishan Road, Hefei 230032, Anhui Province, China
| | | | | | | |
Collapse
|
77
|
Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, Lloyd M, Coppola D, Haura E, Chellappan SP. ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst 2011; 103:317-33. [PMID: 21212384 DOI: 10.1093/jnci/djq541] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nicotine induces the proliferation of non-small cell lung cancer (NSCLC) cells via nicotinic acetylcholine receptors and the arrestin, β1 (ARRB1) protein. However, whether ARRB1 translocates to the nucleus upon nicotinic acetylcholine receptor activation and how it regulates growth of human NSCLCs are not known. METHODS We investigated nuclear localization of ARRB1 in human NSCLC cell lines (A549 and H1650), normal lung cell lines (NHBE and SAEC), and lung cancer tissue microarray. A549 cells were transfected with ARRB1-specific short hairpin RNA (A549-sh) to knockdown ARRB1 expression, or with empty vector (A549-EV), to examine the role of ARRB1 in the mitogenic and antiapoptotic effects of nicotine, binding of ARRB1 to E2F transcription factors, and the role of ARRB1 in nicotine-induced expression of E2F-regulated survival and proliferative genes cell division cycle 6 homolog (CDC6), thymidylate synthetase (TYMS), and baculoviral IAP repeat-containing 5 (BIRC5). Real-time polymerase chain reaction was performed for quantitative analysis of mRNA expression. Chromatin immunoprecipitation assays were performed on A549 cells and fresh-frozen human NSCLC tumors (n = 8) to examine the binding of ARRB1, E1A binding protein (EP300), and acetylated histone 3 (Ac-H3) on the E2F-regulated genes. All statistical tests were two-sided. RESULTS Nicotine induced the nuclear translocation of ARRB1 in NSCLC and normal lung cells, and lung tumor tissues from smokers showed an increased nuclear localization. The mitogenic and antiapoptotic effects of nicotine were reduced in A549-sh cells. Nuclear ARRB1 bound to E2F transcription factors in normal lung cells, NSCLC cells, and tumors. Nicotine treatment induced a statistically significant increased expression of E2F-regulated genes in A549-EV but not in A549-sh cells; the maximum difference being observed in BIRC5 (A549-EV vs A549-sh, mean fold-increase in mRNA level upon nicotine treatment = 20.7-fold, 95% confidence interval = 19.2- to 22.2-fold, vs mean = 0.8-fold, 95% confidence interval= 0.78- to 0.82-fold, P < .001). Furthermore, nicotine induced the binding of ARRB1, EP300, and Ac-H3 on E2F-regulated genes. CONCLUSION Nicotine induced the nuclear translocation of ARRB1 and showed increased expression of proliferative and survival genes, thereby contributing to the growth and progression of NSCLCs.
Collapse
Affiliation(s)
- Piyali Dasgupta
- Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Shenoy SK. β-arrestin-biased signaling by the β-adrenergic receptors. CURRENT TOPICS IN MEMBRANES 2011; 67:51-78. [PMID: 21771485 DOI: 10.1016/b978-0-12-384921-2.00003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sudha K Shenoy
- Departments of Medicine and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
79
|
Β-arrestin: a signaling molecule and potential therapeutic target for heart failure. J Mol Cell Cardiol 2010; 51:534-41. [PMID: 21074538 DOI: 10.1016/j.yjmcc.2010.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023]
Abstract
Currently, some of the most effective treatments for heart failure target GPCRs such as the beta-adrenergic receptors (β1AR and β2AR) and angiotensin II type IA receptors (AT1aR). Ligands for these receptors not only function by blocking the deleterious G-protein mediated pathway leading to heart failure, but also signal via G-protein independent pathways that involve receptor phosphorylation by G-protein receptor kinases (GRKs) leading to recruitment of the multifunctional protein, β-arrestin. Originally thought to play a role in GPCR desensitization and internalization, β-arrestin has recently been shown to mediate signaling independent of classical second messengers in a way that is often protective to the heart. The multi-functionality of β-arrestin makes it an intriguing molecule in the development of the next generation of drugs for cardiac diseases with the potential to simultaneously inhibit deleterious G-protein dependent pathways while activating beneficial β-arrestin mediated signaling. In this review, we explore various facets of β-arrestin signaling and offer a perspective on its potential role as a key signaling molecule in the treatment of heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
|
80
|
Rakesh K, Yoo B, Kim IM, Salazar N, Kim KS, Rockman HA. beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal 2010; 3:ra46. [PMID: 20530803 DOI: 10.1126/scisignal.2000769] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
beta-Arrestins, which were originally characterized as terminators of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) signaling, also act as important signal transducers. An emerging concept in GPCR signaling is beta-arrestin-biased agonism, in which specific ligand-activated GPCR conformational states selectively signal through beta-arrestins, rather than through G proteins. Here, we show that mechanical stretch induced beta-arrestin-biased signaling downstream of angiotensin II type I receptors (AT1Rs) in the absence of ligand or G protein activation. Mechanical stretch triggered an AT1R-mediated conformational change in beta-arrestin similar to that induced by a beta-arrestin-biased ligand to selectively stimulate receptor signaling in the absence of detectable G protein activation. Hearts from mice lacking beta-arrestin or AT1Rs failed to induce responses to mechanical stretch, as shown by blunted extracellular signal-regulated kinase and Akt activation, impaired transactivation of the epidermal growth factor receptor, and enhanced myocyte apoptosis. These data show that the heart responds to acute increases in mechanical stress by activating beta-arrestin-mediated cell survival signals.
Collapse
Affiliation(s)
- Kriti Rakesh
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
81
|
Tilley DG, Nguyen AD, Rockman HA. Troglitazone stimulates beta-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1A receptor. Biochem Biophys Res Commun 2010; 396:921-6. [PMID: 20460106 DOI: 10.1016/j.bbrc.2010.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 01/14/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR gamma-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR gamma activity, thus we hypothesized that a PPAR gamma agonist may exert physiologic effects via the angiotensin II type 1(A) receptor (AT1(A)R). In AT1(A)R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR gamma agonist troglitazone (Trog) enhanced AT1(A)R internalization and recruitment of endogenous beta-arrestin 1/2 (beta arr1/2) to the AT1(A)R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1(A)R-G(q) protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of beta arr1/2 was selective to AT1(A)R as the response was prevented by an ARB- and Trog-mediated beta arr1/2 recruitment to beta1-adrenergic receptor (beta 1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be beta arr2-dependent, as cardiomyocytes isolated from beta arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR gamma agonist Trog acts at the AT1(A)R to simultaneously block G(q) protein activation and induce the recruitment of beta arr1/2, which leads to an increase in cardiomyocyte contractility.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
82
|
Grossmann C, Husse B, Mildenberger S, Schreier B, Schuman K, Gekle M. Colocalization of mineralocorticoid and EGF receptor at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:584-90. [DOI: 10.1016/j.bbamcr.2010.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 02/22/2010] [Indexed: 01/06/2023]
|
83
|
O'Dell TJ, Connor SA, Gelinas JN, Nguyen PV. Viagra for your synapses: Enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cell Signal 2010; 22:728-36. [PMID: 20043991 PMCID: PMC2826554 DOI: 10.1016/j.cellsig.2009.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/04/2009] [Accepted: 12/18/2009] [Indexed: 02/08/2023]
Abstract
Beta-adrenergic receptors (beta-ARs) critically modulate long-lasting synaptic plasticity and long-term memory storage in the mammalian brain. Synaptic plasticity is widely believed to mediate memory storage at the cellular level. Long-term potentiation (LTP) is one type of synaptic plasticity that has been linked to memory storage. Activation of beta-ARs can enhance LTP and facilitate long-term memory storage. Interestingly, many of the molecular signaling pathways that are critical for beta-adrenergic modulation of LTP mirror those required for the persistence of memory. In this article, we review the roles of signaling cascades and translation regulation in enabling beta-ARs to control expression of long-lasting LTP in the rodent hippocampus. These include the cyclic-AMP/protein kinase-A (cAMP-PKA) and extracellular signal-regulated protein kinase cascades, two key pathways known to link transmitter receptors with translation regulation. Future research directions are discussed, with emphasis on defining the roles of signaling complexes (e.g. PSD-95) and glutamatergic receptors in controlling the efficacy of beta-AR modulation of LTP.
Collapse
Affiliation(s)
- Thomas J. O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Center for the Health Sciences, Box 951751, Los Angeles, CA 90095-1751, USA
| | - Steven A. Connor
- Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alberta, T6G 2H7, Canada
| | - Jennifer N. Gelinas
- Division of Neurology, Department of Pediatrics, University of British Columbia, Faculty of Medicine, Vancouver, BC, V6H 3V4, Canada
| | - Peter V. Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta, T6G 2H7, Canada
- Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
84
|
Kilpatrick LE, Briddon SJ, Hill SJ, Holliday ND. Quantitative analysis of neuropeptide Y receptor association with beta-arrestin2 measured by bimolecular fluorescence complementation. Br J Pharmacol 2010; 160:892-906. [PMID: 20438572 PMCID: PMC2901518 DOI: 10.1111/j.1476-5381.2010.00676.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE beta-Arrestins are critical scaffold proteins that shape spatiotemporal signalling from seven transmembrane domain receptors (7TMRs). Here, we study the association between neuropeptide Y (NPY) receptors and beta-arrestin2, using bimolecular fluorescence complementation (BiFC) to directly report underlying protein-protein interactions. EXPERIMENTAL APPROACH Y1 receptors were tagged with a C-terminal fragment, Yc, of yellow fluorescent protein (YFP), and beta-arrestin2 fused with the complementary N-terminal fragment, Yn. After Y receptor-beta-arrestin association, YFP fragment refolding to regenerate fluorescence (BiFC) was examined by confocal microscopy in transfected HEK293 cells. Y receptor/beta-arrestin2 BiFC responses were also quantified by automated imaging and granularity analysis. KEY RESULTS NPY stimulation promoted association between Y1-Yc and beta-arrestin2-Yn, and the specific development of BiFC in intracellular compartments, eliminated when using non-interacting receptor and arrestin mutants. Responses developed irreversibly and were slower than for downstream Y1 receptor-YFP internalization, a consequence of delayed maturation and stability of complemented YFP. However, beta-arrestin2 BiFC measurements delivered appropriate ligand pharmacology for both Y1 and Y2 receptors, and demonstrated higher affinity of Y1 compared to Y2 receptors for beta-arrestin2. Receptor mutagenesis combined with beta-arrestin2 BiFC revealed that alternative arrangements of Ser/Thr residues in the Y1 receptor C tail could support beta-arrestin2 association, and that Y2 receptor-beta-arrestin2 interaction was enhanced by the intracellular loop mutation H155P. CONCLUSIONS AND IMPLICATIONS The BiFC approach quantifies Y receptor ligand pharmacology focused on the beta-arrestin2 pathway, and provides insight into mechanisms of beta-arrestin2 recruitment by activated and phosphorylated 7TMRs, at the level of protein-protein interaction.
Collapse
Affiliation(s)
- L E Kilpatrick
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|