51
|
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 2017; 128:288-305. [PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Turkey.
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Gülfer Yakıcı
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Çukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
52
|
Zarena D, Mishra B, Lushnikova T, Wang F, Wang G. The π Configuration of the WWW Motif of a Short Trp-Rich Peptide Is Critical for Targeting Bacterial Membranes, Disrupting Preformed Biofilms, and Killing Methicillin-Resistant Staphylococcus aureus. Biochemistry 2017; 56:4039-4043. [PMID: 28731688 PMCID: PMC5603908 DOI: 10.1021/acs.biochem.7b00456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tryptophan-rich peptides, being short and suitable for large-scale chemical synthesis, are attractive candidates for developing a new generation of antimicrobials to combat antibiotic-resistant bacteria (superbugs). Although there are numerous pictures of the membrane-bound structure of a single tryptophan (W), how multiple Trp amino acids assemble themselves and interact with bacterial membranes is poorly understood. This communication presents the three-dimensional structure of an eight-residue Trp-rich peptide (WWWLRKIW-NH2 with 50% W) determined by the improved two-dimensional nuclear magnetic resonance method, which includes the measurements of 13C and 15N chemical shifts at natural abundance. This peptide forms the shortest two-turn helix with a distinct amphipathic feature. A unique structural arrangement is identified for the Trp triplet, WWW, that forms a π configuration with W2 as the horizontal bar and W1/W3 forming the two legs. An arginine scan reveals that the WWW motif is essential for killing methicillin-resistant Staphylococcus aureus USA300 and disrupting preformed bacterial biofilms. This unique π configuration for the WWW motif is stabilized by aromatic-aromatic interactions as evidenced by ring current shifts as well as nuclear Overhauser effects. Because the WWW motif is maintained, a change of I7 to R led to a potent antimicrobial and antibiofilm peptide with 4-fold improvement in cell selectivity. Collectively, this study elucidated the structural basis of antibiofilm activity of the peptide, identified a better peptide candidate via structure-activity relationship studies, and laid the foundation for engineering future antibiotics based on the WWW motif.
Collapse
Affiliation(s)
- D. Zarena
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Department of Physics, JNTUA College of Engineering, Anantapur 515002, India
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Fangyu Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
53
|
Boge L, Umerska A, Matougui N, Bysell H, Ringstad L, Davoudi M, Eriksson J, Edwards K, Andersson M. Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability. Int J Pharm 2017; 526:400-412. [PMID: 28476579 DOI: 10.1016/j.ijpharm.2017.04.082] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 11/27/2022]
Abstract
Novel antibiotics, such as antimicrobial peptides (AMPs), have recently attended more and more attraction. In this work, dispersed cubic liquid crystalline gel (cubosomes) was used as drug delivery vehicles for three AMPs (AP114, DPK-060 and LL-37). Association of peptides onto cubosomes was studied at two cubosome/peptide ratios using high performance liquid chromatography, ζ-potential and circular dichroism measurements. AMPs impact on the cubosome structure was investigated using small angle x-ray scattering and cryogenic transmission electron microscopy. The antimicrobial effect of the AMP loaded cubosomes was studied in vitro by minimum inhibitory concentration and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay. Different association efficacy onto the cubosomes was observed among the AMPs, with LL-37 showing greatest association (>60%). AP114 loaded cubosomes displayed a preserved antimicrobial effect, whereas for LL-37 the broad spectrum bacterial killing was reduced to only comprise Gram-negative bacteria. Interestingly, DPK-060 loaded cubosomes showed a slight enhanced effect against S. aureus and E. coli strains. Moreover, the cubosomes were found to protect LL-37 from proteolytic degradation, resulting in a significantly better bactericidal effect after being subjected to elastase, compared to unformulated peptide.
Collapse
Affiliation(s)
- Lukas Boge
- RISE Research Institutes of Sweden, Drottning Kristinas väg 45 Box 5607 Stockholm SE 11486, Sweden; Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Kemigården 4 Göteborg SE-41296, Sweden.
| | - Anita Umerska
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', Angers, France; Université Angers, UMR-S1066 Angers, France
| | - Nada Matougui
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', Angers, France; Université Angers, UMR-S1066 Angers, France
| | - Helena Bysell
- RISE Research Institutes of Sweden, Drottning Kristinas väg 45 Box 5607 Stockholm SE 11486, Sweden
| | - Lovisa Ringstad
- RISE Research Institutes of Sweden, Drottning Kristinas väg 45 Box 5607 Stockholm SE 11486, Sweden
| | - Mina Davoudi
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Jonny Eriksson
- Department of Chemistry - BMC, Uppsala University, Husargatan 3 Box 579 Uppsala SE-75123, Sweden
| | - Katarina Edwards
- Department of Chemistry - BMC, Uppsala University, Husargatan 3 Box 579 Uppsala SE-75123, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Kemigården 4 Göteborg SE-41296, Sweden
| |
Collapse
|
54
|
Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci 2017; 242:17-34. [PMID: 28159168 DOI: 10.1016/j.cis.2017.01.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration, or through achieving co-localization with intracellular pathogens. Here, an overview is provided of the current understanding of delivery systems for antimicrobial peptides, with special focus on AMP-carrier interactions, as well as consequences of these interactions for antimicrobial and related biological effects of AMP-containing formulations.
Collapse
|
55
|
Singh S, Datta A, Schmidtchen A, Bhunia A, Malmsten M. Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects. Sci Rep 2017; 7:212. [PMID: 28303012 PMCID: PMC5427892 DOI: 10.1038/s41598-017-00188-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
The objective of the present study is the investigation of possibilities for boosting peptide anti-inflammatory effects by tryptophan end-tagging, including identification of underlying mechanisms for this. In doing so, effects of tryptophan end-tagging of KYE21 (KYEITTIHNLFRKLTHRLFRR), a peptide derived from heparin co-factor II, on membrane and lipopolysaccharide (LPS) interactions were investigated by ellipsometry, NMR, fluorescence spectroscopy, and circular dichroism measurements. Through its N-terminal W stretch, WWWKYE21 displays higher membrane binding, liposome rupture, and bacterial killing than unmodified KYE21. Analogously, W-tagging promotes binding to E. coli LPS and to its endotoxic lipid A moiety. Furthermore, WWWKYE21 causes more stable peptide/LPS complexes than KYE21, as evidenced by detailed NMR studies, adopting a pronounced helical conformation, with a large hydrophobic surface at the N-terminus due to the presence of W-residues, and a flexible C-terminus due to presence of several positively charged arginine residues. Mirroring its increased affinity for LPS and lipid A, WWWKYE21 displays strongly increased anti-inflammatory effect due to a combination of direct lipid A binding, peptide-induced charge reversal of cell membranes for LPS scavenging, and peptide-induced fragmentation of LPS aggregates for improved phagocytosis. Importantly, potent anti-inflammatory effects were observed at low cell toxicity, demonstrated for both monocytes and erythrocytes.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Pharmacy, Uppsala University, SE-75232, Uppsala, Sweden.
| | - Aritreyee Datta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11, Mandalay Road, 308232, Singapore
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75232, Uppsala, Sweden
| |
Collapse
|
56
|
Yu HY, Chen YA, Yip BS, Wang SY, Wei HJ, Chih YH, Chen KH, Cheng JW. Role of β-naphthylalanine end-tags in the enhancement of antiendotoxin activities: Solution structure of the antimicrobial peptide S1-Nal-Nal in complex with lipopolysaccharide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1114-1123. [PMID: 28288781 DOI: 10.1016/j.bbamem.2017.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS, endotoxin) is the major component of Gram-negative bacterial outer surface membrane. LPS released from bacteria into bloodstream during infection may cause serious unwanted stimulation of host's immune system and lead to septic shock of the patient. Recently, we have developed a strategy to increase salt resistance and LPS neutralization of short antimicrobial peptides by adding β-naphthylalanine end-tags to their termini. Herein, correlations between membrane immersion depth, orientation, and antiendotoxin activities of the antimicrobial peptides S1 and S1-Nal-Nal have been investigated via solution structure, paramagnetic resonance enhancement, and saturation transfer difference NMR studies. Unlike the parent peptide S1, S1-Nal-Nal rotated its two terminal β-naphthylalanine residues into the hydrophobic lipid A motif of LPS micelles. The LPS-induced inflammation may then be prohibited by the blocked lipid A motif.
Collapse
Affiliation(s)
- Hui-Yuan Yu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-An Chen
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Siou-Ying Wang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiu-Ju Wei
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kuan-Hao Chen
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
57
|
Effects of chain length and hydrophobicity/charge ratio of AMP on its antimicrobial activity. Sci China Chem 2017. [DOI: 10.1007/s11426-016-0415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
58
|
Chen C, Yang C, Chen Y, Wang F, Mu Q, Zhang J, Li Z, Pan F, Xu H, Lu JR. Surface Physical Activity and Hydrophobicity of Designed Helical Peptide Amphiphiles Control Their Bioactivity and Cell Selectivity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26501-26510. [PMID: 27644109 DOI: 10.1021/acsami.6b08297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
G(IIKK)3I-NH2 has been recently shown to be highly effective at killing bacteria and inhibiting cancer cell growth while remaining benign to normal host mammalian cells. The aim of this work is to evaluate how residue substitutions of Ala (A), Val (V), Glu (E), and Lys (K) for the N-terminal Gly (G) or C-terminal Ile (I) of G(IIKK)3I-NH2 affect the physiochemical properties and bioactivity of the variants. All substitutions caused the reduction of peptide hydrophobicity, while N-terminal substitutions had a less noticeable effect on the surface activity and helix-forming ability than C-terminal substitutions. N-terminal variants held potent anticancer activity but exhibited reduced hemolytic activity; these actions were related to the maintenance of their moderate surface pressures (12-16 mN m-1), while their hydrophobicity was reduced. Thus, N-terminal substitutions enhanced the cell selectivity of the mutants relative to the control peptide G(IIKK)3I-NH2. In contrast, C-terminal variants exhibited lower anticancer activity and much lower hemolytic activity except for G(IIKK)3V-NH2. These features were correlated well with their lower surface pressures (≤10 mN m-1) and decreased hydrophobicity. In spite of its very low helical content, the C-terminal variant G(IIKK)3V-NH2 still displayed potent anticancer activity while retaining high hemolytic activity as well, again correlating well with its relatively high surface pressure and hydrophobicity. These results together indicated that surface activity governs the anticancer activity of the peptides, but hydrophobicity influences their hemolytic activity. In contrast, helicity appears to be poorly correlated to their bioactivity. This work has demonstrated that N-terminal modifications provide a useful strategy to optimize the anticancer activity of helical anticancer peptides (ACPs) against its potential toxicity to mammalian host cells.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | - Cheng Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | - Yucan Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | - Fang Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | - Quanmeng Mu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | - Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Fang Pan
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| |
Collapse
|
59
|
Setty SC, Horam S, Pasupuleti M, Haq W. Modulating the Antimicrobial Activity of Temporin L Through Introduction of Fluorinated Phenylalanine. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9553-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Abstract
Fungal organisms are ubiquitous in the environment. Pathogenic fungi, although relatively few in the whole gamut of microbial pathogens, are able to cause disease with varying degrees of severity in individuals with normal or impaired immunity. The disease state is an outcome of the fungal pathogen's interactions with the host immunity, and therefore, it stands to reason that deep/invasive fungal diseases be amenable to immunotherapy. Therefore, antifungal immunotherapy continues to be attractive as an adjunct to the currently available antifungal chemotherapy options for a number of reasons, including the fact that existing antifungal drugs, albeit largely effective, are not without limitations, and that morbidity and mortality associated with invasive mycoses are still unacceptably high. For several decades, intense basic research efforts have been directed at development of fungal immunotherapies. Nevertheless, this approach suffers from a severe bench-bedside disconnect owing to several reasons: the chemical and biological peculiarities of the fungal antigens, the complexities of host-pathogen interactions, an under-appreciation of the fungal disease landscape, the requirement of considerable financial investment to bring these therapies to clinical use, as well as practical problems associated with immunizations. In this general, non-exhaustive review, we summarize the features of ongoing research efforts directed towards devising safe and effective immunotherapeutic options for mycotic diseases, encompassing work on antifungal vaccines, adoptive cell transfers, cytokines, antimicrobial peptides (AMPs), monoclonal antibodies (mAbs), and other agents.
Collapse
Affiliation(s)
- Kausik Datta
- a Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD , USA , and
| | - Mawieh Hamad
- b Department of Medical Laboratory Sciences and the Sharjah Institute for Medical Research , University of Sharjah , Sharjah , UAE
| |
Collapse
|
61
|
Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 2016; 475:161-170. [DOI: 10.1016/j.jcis.2016.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022]
|
62
|
Björn C, Mahlapuu M, Mattsby-Baltzer I, Håkansson J. Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r. Peptides 2016; 81:21-8. [PMID: 27155369 DOI: 10.1016/j.peptides.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs) have emerged as a new class of drug candidates for the treatment of infectious diseases. Here we describe a novel AMP, HLR1r, which is structurally derived from the human milk protein lactoferrin and demonstrates a broad spectrum microbicidal action in vitro. The minimum concentration of HLR1r needed for killing ≥99% of microorganisms in vitro, was in the range of 3-50μg/ml for common Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and for the yeast Candida albicans, when assessed in diluted brain-heart infusion medium. We found that HLR1r also possesses anti-inflammatory properties as evidenced by inhibition of tumor necrosis factor alpha (TNF-α) secretion from human monocyte-derived macrophages and by repression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) secretion from human mesothelial cells, without any cytotoxic effect observed at the concentration range tested (up to 400μg/ml). HLR1r demonstrated pronounced anti-infectious effect in in vivo experimental models of cutaneous candidiasis in mice and of excision wounds infected with MRSA in rats as well as in an ex vivo model of pig skin infected with S. aureus. In conclusion, HLR1r may constitute a new therapeutic alternative for local treatment of skin infections.
Collapse
Affiliation(s)
- Camilla Björn
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; SP Technical Research Institute of Sweden, Medical Device Technology, Box 857, SE-501 15 Borås, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Blå stråket 5, SE-413 45 Gothenburg, Sweden
| | - Margit Mahlapuu
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Blå stråket 5, SE-413 45 Gothenburg, Sweden
| | - Inger Mattsby-Baltzer
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Joakim Håkansson
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; SP Technical Research Institute of Sweden, Medical Device Technology, Box 857, SE-501 15 Borås, Sweden.
| |
Collapse
|
63
|
Datta A, Bhattacharyya D, Singh S, Ghosh A, Schmidtchen A, Malmsten M, Bhunia A. Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control. J Biol Chem 2016; 291:13301-17. [PMID: 27137928 DOI: 10.1074/jbc.m116.719575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 01/11/2023] Open
Abstract
KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYT-LR), the representative sequence of helix D of heparin co-factor II, was demonstrated to be potent against agronomically important Gram-negative plant pathogens Xanthomonas vesicatoria and Xanthomonas oryzae, capable of inhibiting disease symptoms in detached tomato leaves. NMR studies in the presence of lipopolysaccharide provided structural insights into the mechanisms underlying this, notably in relationship to outer membrane permeabilization. The three-dimensional solution structure of KYE28 in LPS is characterized by an N-terminal helical segment, an intermediate loop followed by another short helical stretch, and an extended C terminus. The two termini are in close proximity to each other via aromatic packing interactions, whereas the positively charged residues form an exterior polar shell. To further demonstrate the importance of the aromatic residues for this, a mutant peptide KYE28A, with Ala substitutions at Phe(11), Phe(19), Phe(23), and Tyr(25) was designed, which showed attenuated antimicrobial activity at high salt concentrations, as well as lower membrane disruption and LPS binding abilities compared with KYE28. In contrast to KYE28, KYE28A adopted an extended helical structure in LPS with extended N and C termini. Aromatic packing interactions were completely lost, although hydrophobic interaction between the side chains of hydrophobic residues were still partly retained, imparting an amphipathic character and explaining its residual antimicrobial activity and LPS binding as observed from ellipsometry and isothermal titration calorimetry. We thus present key structural aspects of KYE28, constituting an aromatic zipper, of potential importance for the development of novel plant protection agents and therapeutic agents.
Collapse
Affiliation(s)
- Aritreyee Datta
- From the Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Dipita Bhattacharyya
- From the Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Shalini Singh
- the Department of Pharmacy, Uppsala University, SE-75232 Uppsala, Sweden
| | - Anirban Ghosh
- From the Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Artur Schmidtchen
- the Department of Clinical Sciences, Division of Dermatology and Venereology, Lund University, SE-221 84 Lund, Sweden, and the Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232
| | - Martin Malmsten
- the Department of Pharmacy, Uppsala University, SE-75232 Uppsala, Sweden,
| | - Anirban Bhunia
- From the Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India,
| |
Collapse
|
64
|
Duong DT, Singh S, Bagheri M, Verma NK, Schmidtchen A, Malmsten M. Pronounced peptide selectivity for melanoma through tryptophan end-tagging. Sci Rep 2016; 6:24952. [PMID: 27117225 PMCID: PMC4847013 DOI: 10.1038/srep24952] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Effects of oligotryptophan end-tagging on the uptake of arginine-rich peptides into melanoma cells was investigated under various conditions and compared to that into non-malignant keratinocytes, fibroblasts, and erythrocytes, also monitoring resulting cell toxicity. In parallel, biophysical studies on peptide binding to, and destabilization of, model lipid membranes provided mechanistic insight into the origin of the selectivity between melanoma and non-malignant cells. Collectively, the results demonstrate that W-tagging represents a powerful way to increase selective peptide internalization in melanoma cells, resulting in toxicity against these, but not against the non-malignant cells. These effects were shown to be due to increased peptide adsorption to the outer membrane in melanoma cells, caused by the presence of anionic lipids such as phosphatidylserine and ganglioside GM1, and to peptide effects on mitochondria membranes and resulting apoptosis. In addition, the possibility of using W-tagged peptides for targeted uptake of nanoparticles/drug carriers in melanoma was demonstrated, as was the possibility to open up the outer membrane of melanoma cells in order to facilitate uptake of low Mw anticancer drugs, here demonstrated for doxorubicin.
Collapse
Affiliation(s)
- Dinh Thuy Duong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232
| | - Shalini Singh
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| | - Mojtaba Bagheri
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232
| | - Artur Schmidtchen
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
65
|
Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids Surf B Biointerfaces 2016; 143:194-205. [PMID: 27011349 DOI: 10.1016/j.colsurfb.2016.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 01/30/2023]
Abstract
Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes.
Collapse
|
66
|
Chen C, Chen Y, Yang C, Zeng P, Xu H, Pan F, Lu JR. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2015. [PMID: 26204061 DOI: 10.1021/acsami.5b04547] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Short designed peptide amphiphiles are attractive at killing bacteria and inhibiting cancer cell growth, and the flexibility in their structural design offers a great potential for improving their potency and biocompatibility to mammalian host cells. Amino acid sequences such as G(IIKK)nI-NH2 (n≥3) have been shown to be membrane lytic, but terminal amino acid modifications could impose a huge influence on their performance. We report in this work how terminal amino acid modifications to G(IIKK)3I-NH2 influence its α-helical structure, membrane penetrating ability, and selective actions against different cell types. Deletion of an N-terminal Gly or a C-terminal Ile did not affect their antibacterial activity much, an observation consistent with their binding behavior to negatively charged membrane lipid monolayers. However, the cytotoxicity against mammalian cells was much worsened by the N-terminal Gly deletion, consistent with an increase in its helical content. Despite little impact on the antibacterial activity of G(IIKK)3I-NH2, deletion of both terminal amino acids greatly reduced its antitumor activity. Cholesterol present in tumor cell membrane-mimic was thought to constrain (IIKK)3-NH2 from penetrating into the cancerous membranes, evident from its lowest surface physical activity at penetrating model lipid membranes. On the other hand, its low toxicity to normal mammalian cells and high antibacterial activity in vitro and in vivo made it an attractive antibacterial agent. Thus, terminal modifications can help rebalance the different interactions involved and are highly effective at manipulating their selective membrane responses.
Collapse
Affiliation(s)
- Cuixia Chen
- †Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yucan Chen
- †Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cheng Yang
- †Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Ping Zeng
- †Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- †Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Fang Pan
- ‡Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Manchester M13 9PL, United Kingdom
| | - Jian Ren Lu
- ‡Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Manchester M13 9PL, United Kingdom
| |
Collapse
|
67
|
Cutró AC, Disalvo EA. Phenylalanine Blocks Defects Induced in Gel Lipid Membranes by Osmotic Stress. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b05590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. C. Cutró
- Laboratorio
de Biointerfases
y Sistemas Biomiméticos, Laboratorios Centrales, Centro de
Investigaciones y Transferencia Santiago del Estero, Universidad Nacional de Santiago del Estero, CP 4206 Santiago del Estero, Argentina
| | - E. A. Disalvo
- Laboratorio
de Biointerfases
y Sistemas Biomiméticos, Laboratorios Centrales, Centro de
Investigaciones y Transferencia Santiago del Estero, Universidad Nacional de Santiago del Estero, CP 4206 Santiago del Estero, Argentina
| |
Collapse
|
68
|
Chu HL, Yip BS, Chen KH, Yu HY, Chih YH, Cheng HT, Chou YT, Cheng JW. Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS One 2015; 10:e0126390. [PMID: 25970292 PMCID: PMC4430538 DOI: 10.1371/journal.pone.0126390] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/01/2015] [Indexed: 01/08/2023] Open
Abstract
We describe a strategy to boost anticancer activity and reduce normal cell toxicity of short antimicrobial peptides by adding positive charge amino acids and non-nature bulky amino acid β-naphthylalanine residues to their termini. Among the designed peptides, K4R2-Nal2-S1 displayed better salt resistance and less toxicity to hRBCs and human fibroblast than Nal2-S1 and K6-Nal2-S1. Fluorescence microscopic studies indicated that the FITC-labeled K4R2-Nal2-S1 preferentially binds cancer cells and causes apoptotic cell death. Moreover, a significant inhibition in human lung tumor growth was observed in the xenograft mice treated with K4R2-Nal2-S1. Our strategy provides new opportunities in the development of highly effective and selective antimicrobial and anticancer peptide-based therapeutics.
Collapse
Affiliation(s)
- Hung-Lun Chu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300, Taiwan
| | - Kuan-Hao Chen
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hui-Yuan Yu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hsi-Tsung Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
- * E-mail: (JWC); (YTC)
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, 300, Taiwan
- * E-mail: (JWC); (YTC)
| |
Collapse
|
69
|
Jahnsen RO, Sandberg-Schaal A, Frimodt-Møller N, Nielsen HM, Franzyk H. End group modification: Efficient tool for improving activity of antimicrobial peptide analogues towards Gram-positive bacteria. Eur J Pharm Biopharm 2015; 95:40-6. [PMID: 25622790 DOI: 10.1016/j.ejpb.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/02/2015] [Accepted: 01/14/2015] [Indexed: 01/26/2023]
Abstract
Increased incidence of infections with multidrug-resistant bacterial strains warrants an intensive search for novel potential antimicrobial agents. Here, an antimicrobial peptide analogue with a cationic/hydrophobic alternating design displaying only moderate activity against Gram-positive pathogens was optimized. Generally, introduction of hydrophobic moieties at the N-terminus resulted in analogues with remarkably increased activity against multidrug-resistant Staphylococcus aureus and Enterococcus faecium. Interestingly, the potency against Escherichia coli strains was unaffected, whereas modification with hydrophobic moieties led to increased activity towards the Gram-negative Acinetobacter baumannii. Despite increased cytotoxicity against murine fibroblasts and human umbilical vein endothelial cells, the optimized peptide analogues exhibited significantly improved cell selectivity. Overall, the most favorable hydrophobic activity-inducing moieties were found to be cyclohexylacetyl and pentafluorophenylacetyl groups, while the presence of a short PEG-like chain had no significant effect on activity. Introduction of cationic moieties conferred no effect or merely a moderate activity-promoting effect to the analogues.
Collapse
Affiliation(s)
- Rasmus O Jahnsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne Sandberg-Schaal
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Hanne Mørck Nielsen
- Dept. Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
70
|
Forde E, Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules 2015; 20:1210-27. [PMID: 25591121 PMCID: PMC6272668 DOI: 10.3390/molecules20011210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their clinical development, not least the issue of host toxicity. An approach that may allow otherwise cytotoxic AMPs to be used is to deliver them as a prodrug, targeting antimicrobial activity and limiting toxic effects on the host. The varied library of AMPs is complemented by a selection of different possible pro-moieties, each with their own characteristics. This review deals with the different pro-moieties that have been used with AMPs and discusses the merits of each.
Collapse
Affiliation(s)
- Eanna Forde
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | - Marc Devocelle
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
71
|
Abou-Zied OK, Barbour A, Al-Sharji NA, Philip K. Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan: perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa. RSC Adv 2015. [DOI: 10.1039/c4ra15246h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of peptide interaction with bacterial membranes can be studied effectively by using the intrinsic fluorescence of tryptophan.
Collapse
Affiliation(s)
- Osama K. Abou-Zied
- Department of Chemistry
- Faculty of Science
- Sultan Qaboos University
- Muscat
- Sultanate of Oman
| | - Abdelahhad Barbour
- Division of Microbiology
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
| | - Nada A. Al-Sharji
- Department of Chemistry
- Faculty of Science
- Sultan Qaboos University
- Muscat
- Sultanate of Oman
| | - Koshy Philip
- Division of Microbiology
- Institute of Biological Sciences
- Faculty of Science
- University of Malaya
- 50603 Kuala Lumpur
| |
Collapse
|
72
|
Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 2014; 78:28-45. [PMID: 25453271 DOI: 10.1016/j.addr.2014.10.013] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs) which predominantly act via membrane active mechanisms have emerged as an exciting class of antimicrobial agents with tremendous potential to overcome the global epidemic of antibiotics-resistant infections. The first generation of AMPs derived from natural sources as diverse as plants, insects and humans has provided a wealth of compositional and structural information to design novel synthetic AMPs with enhanced antimicrobial potencies and selectivities, reduced cost of production due to shorter sequences and improved stabilities under physiological conditions. In this review, we will first discuss the common strategies employed in the design and optimization of synthetic AMPs, followed by highlighting the various approaches utilized to enhance the therapeutic potentials of designed AMPs under physiological conditions. Lastly, future perspectives on the development of improved AMPs for therapeutic applications will be presented.
Collapse
|
73
|
Abstract
With increasing antibiotics resistance, there is an urgent need for novel infection therapeutics. Since antimicrobial peptides provide opportunities for this, identification and optimization of such peptides have attracted much interest during recent years. Here, a brief overview of antimicrobial peptides is provided, with focus placed on how selected hydrophobic modifications of antimicrobial peptides can be employed to combat also more demanding pathogens, including multi-resistant strains, without conferring unacceptable toxicity.
Collapse
|
74
|
Thirumalai MK, Roy A, Sanikommu S, Arockiaraj J, Pasupuleti M. A simple, robust enzymatic-based high-throughput screening method for antimicrobial peptides discovery against Escherichia coli. J Pept Sci 2014; 20:341-8. [DOI: 10.1002/psc.2619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Arpita Roy
- SRM Research Institute; SRM University; Chennai Tamil Nadu India
| | - Suma Sanikommu
- Department of Biochemistry; Chaitanya PG College; Kishanpura, Hanamkonda, Warangal 506001 India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities; SRM University; Kattankulathur, Chennai 603 203 India
| | - Mukesh Pasupuleti
- Central Drug Research Institute; B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 India
| |
Collapse
|
75
|
Hamon C, Bizien T, Artzner F, Even-Hernandez P, Marchi V. Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties. J Colloid Interface Sci 2014; 424:90-7. [PMID: 24767503 DOI: 10.1016/j.jcis.2014.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
Herein, we describe the self-assembling of gold nanorods (GNRs) induced during the ligand exchange at their surface. An exchange reaction between tricysteine PEGylated peptidic ligands and cetyltrimethylammonium bromide (CTAB)-protected gold nanorods is conducted. We demonstrated that the terminal group charge (positively or negatively charged) and the hydrophobicity of the peptidic ligands (bearing or not an undecanoyl chain) strongly affects the self-organization of the GNRs occurring in solution. Adjusting the amount of short PEGylated peptides causes a self-organization of the gold nanorods in solution, resulting in a red- or blue-shift of the plasmon bands. The decrease of their surface charge and the self-assembling in solution were first shown by zetametry, by Dynamic Light Scattering and UV-spectroscopy. Thanks to Small Angle X-ray Scattering experiments and Transmission Electron Microscopy images, the self-organization of the nanorods in solution was clearly demonstrated and correlated to the spectroscopic change in absorbance. Conversely, in the case of longer PEGylated peptidic ligands including an undecanoyl chain, the GNRs are particularly stable against aggregation for several days after purification. By controlled drying on a substrate, we showed their ability to self-organize into well-defined ordered structures making them very attractive as building blocks to design optical materials.
Collapse
Affiliation(s)
- C Hamon
- Institut des Sciences Chimiques de Rennes, University Rennes 1, UMR 6226 C.N.R.S., Campus de Beaulieu, 35042 Rennes Cedex, France
| | - T Bizien
- Institut des Sciences Chimiques de Rennes, University Rennes 1, UMR 6226 C.N.R.S., Campus de Beaulieu, 35042 Rennes Cedex, France; Institut de Physique de Rennes, University Rennes 1, UMR 6251 C.N.R.S., Campus de Beaulieu, 35042 Rennes Cedex, France
| | - F Artzner
- Institut de Physique de Rennes, University Rennes 1, UMR 6251 C.N.R.S., Campus de Beaulieu, 35042 Rennes Cedex, France
| | - P Even-Hernandez
- Institut des Sciences Chimiques de Rennes, University Rennes 1, UMR 6226 C.N.R.S., Campus de Beaulieu, 35042 Rennes Cedex, France
| | - V Marchi
- Institut des Sciences Chimiques de Rennes, University Rennes 1, UMR 6226 C.N.R.S., Campus de Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
76
|
Singh S, Papareddy P, Mörgelin M, Schmidtchen A, Malmsten M. Effects of PEGylation on Membrane and Lipopolysaccharide Interactions of Host Defense Peptides. Biomacromolecules 2014; 15:1337-45. [DOI: 10.1021/bm401884e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shalini Singh
- Department
of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| | - Praveen Papareddy
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Matthias Mörgelin
- Division
of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Division
of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
- Lee
Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay
Road, Singapore 308232
| | - Martin Malmsten
- Department
of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
77
|
Schmidtchen A, Pasupuleti M, Malmsten M. Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 2014; 205:265-74. [PMID: 23910480 DOI: 10.1016/j.cis.2013.06.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022]
Abstract
With increasing resistance development against conventional antibiotics, there is an urgent need to identify novel approaches for infection treatment. Antimicrobial peptides may offer opportunities in this context, hence there has been considerable interest in identification and optimization of such peptides during the last decade in particular, with the long-term aim of developing these to potent and safe therapeutics. In the present overview, focus is placed on hydrophobic modifications of antimicrobial peptides, and how these may provide opportunities to combat also more demanding pathogens, including multi-resistant strains, yet not provoking unacceptable toxic responses. In doing so, physicochemical factors affecting peptide interactions with bacterial and eukaryotic cell membranes are discussed. Throughout, an attempt is made to illustrate how physicochemical studies on model lipid membranes can be correlated to result from bacterial and cell assays, and knowledge from this translated into therapeutic considerations.
Collapse
Affiliation(s)
- Artur Schmidtchen
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Mukesh Pasupuleti
- Section of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
78
|
Briceño DF, Quinn JP, Villegas MV. Treatment options for multidrug-resistant nonfermenters. Expert Rev Anti Infect Ther 2014; 8:303-15. [DOI: 10.1586/eri.09.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
79
|
Singh S, Papareddy P, Kalle M, Schmidtchen A, Malmsten M. Effects of linear amphiphilicity on membrane interactions of C-terminal thrombin peptides. RSC Adv 2014. [DOI: 10.1039/c4ra05420b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly amphiphilic WFF25 forms aggregates in solution and at membranes. The terminal W/F stretch provides membrane selectivity for WFF25. Pronounced LTA and LPS interactions influence bactericidal effects.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Pharmacy
- Uppsala University
- Uppsala, Sweden
| | - Praveen Papareddy
- Division of Dermatology and Venereology
- Department of Clinical Sciences
- Lund University
- SE-221 84 Lund, Sweden
| | - Martina Kalle
- Division of Dermatology and Venereology
- Department of Clinical Sciences
- Lund University
- SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology
- Department of Clinical Sciences
- Lund University
- SE-221 84 Lund, Sweden
- Dermatology
| | | |
Collapse
|
80
|
Yu HY, Yip BS, Tu CH, Chen HL, Chu HL, Chih YH, Cheng HT, Sue SC, Cheng JW. Correlations between membrane immersion depth, orientation, and salt-resistance of tryptophan-rich antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2720-8. [DOI: 10.1016/j.bbamem.2013.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/01/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022]
|
81
|
Improving the antibacterial activity and selectivity of an ultra short peptide by hydrophobic and hydrophilic amino acid stretches. Bioorg Med Chem Lett 2013; 23:4657-62. [DOI: 10.1016/j.bmcl.2013.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
|
82
|
Structure-activity relationship of synthetic variants of the milk-derived antimicrobial peptide αs2-casein f(183-207). Appl Environ Microbiol 2013; 79:5179-85. [PMID: 23793637 DOI: 10.1128/aem.01394-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Template-based studies on antimicrobial peptide (AMP) derivatives obtained through manipulation of the amino acid sequence are helpful to identify properties or residues that are important for biological activity. The present study sheds light on the importance of specific amino acids of the milk-derived αs2-casein f(183-207) peptide to its antibacterial activity against the food-borne pathogens Listeria monocytogenes and Cronobacter sakazakii. Trimming of the peptide revealed that residues at the C-terminal end of the peptide are important for activity. Removal of the last 5 amino acids at the C-terminal end and replacement of the Arg at position 23 of the peptide sequence by an Ala residue significantly decreased activity. These findings suggest that Arg23 is very important for optimal activity of the peptide. Substitution of the also positively charged Lys residues at positions 15 and 17 of the αs2-casein f(183-207) peptide also caused a significant reduction of the effectiveness against C. sakazakii, which points toward the importance of the positive charge of the peptide for its biological activity. Indeed, simultaneous replacement of various positively charged amino acids was linked to a loss of bactericidal activity. On the other hand, replacement of Pro residues at positions 14 and 20 resulted in a significantly increased antibacterial potency, and hydrophobic end tagging of αs2-casein f(193-203) and αs2-casein f(197-207) peptides with multiple Trp or Phe residues significantly increased their potency against L. monocytogenes. Finally, the effect of pH (4.5 to 7.4), temperature (4°C to 37°C), and addition of sodium and calcium salts (1% to 3%) on the activity of the 15-amino-acid αs2-casein f(193-207) peptide was also determined, and its biological activity was shown to be completely abolished in high-saline environments.
Collapse
|
83
|
Abstract
The efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid β-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine end-tagged variants were less affected.
Collapse
|
84
|
Viegas de Souza RHF, Takaki M, de Oliveira Pedro R, dos Santos Gabriel J, Tiera MJ, de Oliveira Tiera VA. Hydrophobic effect of amphiphilic derivatives of chitosan on the antifungal activity against Aspergillus flavus and Aspergillus parasiticus. Molecules 2013; 18:4437-50. [PMID: 23591924 PMCID: PMC6269962 DOI: 10.3390/molecules18044437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 01/17/2023] Open
Abstract
Low molecular weight amphiphilic derivatives of chitosan were synthesized, characterized and their antifungal activities against Aspergillus flavus and Aspergillus parasiticus were tested. The derivatives were synthesized using as starting material a deacetylated chitosan sample in a two step process: the reaction with propyltrimethyl-ammonium bromide (Pr), followed by reductive amination with dodecyl aldehyde. Aiming to evaluate the effect of the hydrophobic modification of the derivatives on the antifungal activity against the pathogens, the degree of substitution (DS₁) by Pr groups was kept constant and the proportion of dodecyl (Dod) groups was varied from 7 to 29% (DS₂). The derivatives were characterized by ¹H-NMR and FTIR and their antifungal activities against the pathogens were tested by the radial growth of the colony and minimum inhibitory concentration (MIC) methods. The derivatives substituted with only Pr groups exhibited modest inhibition against A. flavus and A. parasiticus, like that obtained with deacetylated chitosan. Results revealed that the amphiphilic derivatives grafted with Dod groups exhibited increasing inhibition indexes, depending on polymer concentration and hydrophobic content. At 0.6 g/L, all amphiphilic derivatives having from 7.0 to 29% of Dod groups completely inhibited fungal growth and the MIC values were found to decrease from 4.0 g/L for deacetylated chitosan to 0.25-0.50 g/L for the derivatives. These new derivatives open up the possibility of new applications and avenues to develop effective biofungicides based on chitosan.
Collapse
Affiliation(s)
| | | | | | | | | | - Vera Ap. de Oliveira Tiera
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences–IBILCE, São Paulo State University–UNESP, São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
85
|
Singh S, Kalle M, Papareddy P, Schmidtchen A, Malmsten M. Lipopolysaccharide Interactions of C-Terminal Peptides from Human Thrombin. Biomacromolecules 2013; 14:1482-92. [DOI: 10.1021/bm400150c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shalini Singh
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala,
Sweden
| | - Martina Kalle
- Division of Dermatology
and
Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Praveen Papareddy
- Division of Dermatology
and
Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology
and
Venereology, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala,
Sweden
| |
Collapse
|
86
|
Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. Mol Biol Evol 2013; 30:1397-408. [DOI: 10.1093/molbev/mst054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
87
|
Gopal R, Lee JK, Lee JH, Kim YG, Oh GC, Seo CH, Park Y. Effect of repetitive lysine-tryptophan motifs on the eukaryotic membrane. Int J Mol Sci 2013; 14:2190-202. [PMID: 23340654 PMCID: PMC3565372 DOI: 10.3390/ijms14012190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/17/2022] Open
Abstract
In a previous study, we synthesized a series of peptides containing simple sequence repeats, (KW)n–NH2 (n = 2,3,4 and 5) and determined their antimicrobial and hemolytic activities, as well as their mechanism of antimicrobial action. However, (KW)5 showed undesirable cytotoxicity against RBC cells. In order to identify the mechanisms behind the hemolytic and cytotoxic activities of (KW)5, we measured the ability of these peptides to induce aggregation of liposomes. In addition, their binding and permeation activities were assessed by Trp fluorescence, calcein leakage and circular dichrorism using artificial phospholipids that mimic eukaryotic liposomes, including phosphatidylcholine (PC), PC/sphingomyelin (SM) (2:1, w/w) and PC/cholesterol (CH) (2:1, w/w). Experiments confirmed that only (KW)5 induced aggregation of all liposomes; it formed much larger aggregates with PC:CH (2:1, w/w) than with PC or PC:SM (2:1, w/w). Longer peptide (KW)5, but not (KW)3 or (KW)4, strongly bound and partially inserted into PC:CH compared to PC or PC:SM (2:1, w/w). Calcein release experiments showed that (KW)5 induced calcein leakage from the eukaryotic membrane. Greater calcein leakage was induced by (KW)5 from PC:CH than from PC:SM (2:1, w/w) or PC, whereas (KW)4 did not induce calcein leakage from any of the liposomes. Circular dichroism measurements indicated that (KW)5 showed higher conformational transition compared to (KW)4 due to peptide-liposome interactions. Taken together, our results suggest that (KW)5 reasonably mediates the aggregation and permeabilization of eukaryotic membranes, which could in turn explain why (KW)5 displays efficient hemolytic activity.
Collapse
Affiliation(s)
- Ramamourthy Gopal
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails: (R.G.); (J.K.L.)
| | - Jong Kook Lee
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails: (R.G.); (J.K.L.)
| | - Jun Ho Lee
- Department of Biotechnology, Chosun University, Gwangju 501-759, Korea; E-Mails: (J.H.L.); (Y.G.K.)
| | - Young Gwon Kim
- Department of Biotechnology, Chosun University, Gwangju 501-759, Korea; E-Mails: (J.H.L.); (Y.G.K.)
| | - Gwang Chae Oh
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea; E-Mails: (G.C.O.); (C.H.S.)
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju 314-701, Korea; E-Mails: (G.C.O.); (C.H.S.)
| | - Yoonkyung Park
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea; E-Mails: (R.G.); (J.K.L.)
- Department of Biotechnology, Chosun University, Gwangju 501-759, Korea; E-Mails: (J.H.L.); (Y.G.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-62-230-6854; Fax: +82-62-225-6758
| |
Collapse
|
88
|
Björn C, Håkansson J, Myhrman E, Sjöstrand V, Haug T, Lindgren K, Blencke HM, Stensvåg K, Mahlapuu M. Anti-infectious and anti-inflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis. AMB Express 2012; 2:67. [PMID: 23237525 PMCID: PMC3561256 DOI: 10.1186/2191-0855-2-67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 01/05/2023] Open
Abstract
Bacterial resistance against antibiotic treatment has become a major threat to public health. Antimicrobial peptides (AMPs) have emerged as promising alternative agents for treatment of infectious diseases. This study characterizes novel synthetic peptides sequentially derived from the AMP centrocin 1, isolated from the green sea urchin, for their applicability as anti-infective agents. The microbicidal effect of centrocin 1 heavy chain (CEN1 HC-Br), its debrominated analogue (CEN1 HC), the C-terminal truncated variants of both peptides, i.e. CEN1 HC-Br (1–20) and CEN1 HC (1–20), as well as the cysteine to serine substituted equivalent CEN1 HC (Ser) was evaluated using minimal microbicidal concentration assay. The anti-inflammatory properties were assessed by measuring the inhibition of secretion of pro-inflammatory cytokines. All the peptides tested exhibited marked microbicidal and anti-inflammatory properties. No difference in efficacy was seen comparing CEN1 HC-Br and CEN1 HC, while the brominated variant had higher cytotoxicity. C-terminal truncation of both peptides reduced salt-tolerability of the microbicidal effect as well as anti-inflammatory actions. Also, serine substitution of cysteine residue decreased the microbicidal effect. Thus, from the peptide variants tested, CEN1 HC showed the best efficacy and safety profile. Further, CEN1 HC significantly reduced bacterial counts in two different animal models of infected wounds, while Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) failed to develop resistance against this peptide under continued selection pressure. In summary, CEN1 HC appears a promising new antimicrobial agent, and clinical studies are warranted to evaluate the applicability of this AMP for local treatment of infections in man.
Collapse
|
89
|
Kalle M, Papareddy P, Kasetty G, Mörgelin M, van der Plas MJA, Rydengård V, Malmsten M, Albiger B, Schmidtchen A. Host defense peptides of thrombin modulate inflammation and coagulation in endotoxin-mediated shock and Pseudomonas aeruginosa sepsis. PLoS One 2012; 7:e51313. [PMID: 23272096 PMCID: PMC3521733 DOI: 10.1371/journal.pone.0051313] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/31/2012] [Indexed: 01/25/2023] Open
Abstract
Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies. Thus, the peptides abrogate pro-inflammatory cytokine responses to endotoxin in vitro and in vivo. Furthermore, they interfere with coagulation by modulating contact activation and tissue factor-mediated clotting in vitro, leading to normalization of coagulation responses in vivo, a previously unknown function of host defense peptides. In a mouse model of Pseudomonas aeruginosa sepsis, the peptide GKY25, while mediating a modest antimicrobial effect, significantly inhibited the pro-inflammatory response, decreased fibrin deposition and leakage in the lungs, as well as reduced mortality. Taken together, the capacity of such thrombin-derived peptides to simultaneously modulate bacterial levels, pro-inflammatory responses, and coagulation, renders them attractive therapeutic candidates for the treatment of invasive infections and sepsis.
Collapse
Affiliation(s)
- Martina Kalle
- Division of Dermatology and Venereology, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone: Effects of hydrogen bonding and α-chirality in the β-peptoid residues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2660-8. [DOI: 10.1016/j.bbamem.2012.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 04/08/2012] [Accepted: 05/02/2012] [Indexed: 11/20/2022]
|
91
|
The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections. Appl Microbiol Biotechnol 2012; 97:3085-96. [PMID: 23053090 PMCID: PMC3602619 DOI: 10.1007/s00253-012-4439-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/24/2022]
Abstract
Dramatic increase in bacterial resistance towards conventional antibiotics emphasises the importance to identify novel, more potent antimicrobial therapies. Antimicrobial peptides (AMPs) have emerged as a promising new group to be evaluated in therapeutic intervention of infectious diseases. Here we describe a novel AMP, PXL150, which demonstrates in vitro a broad spectrum microbicidal action against both Gram-positive and Gram-negative bacteria, including resistant strains. The potent microbicidal activity and broad antibacterial spectrum of PXL150 were not associated with any hemolytic activity. Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) failed to develop resistance towards PXL150 during continued selection pressure. PXL150 caused a rapid depolarisation of cytoplasmic membrane of S. aureus, and dissipating membrane potential is likely one mechanism for PXL150 to kill its target bacteria. Studies in human cell lines indicated that PXL150 has anti-inflammatory properties, which might be of additional benefit. PXL150 demonstrated pronounced anti-infectious effect in an in vivo model of full thickness wounds infected with MRSA in rats and in an ex vivo model of pig skin infected with S. aureus. Subcutaneous or topical application of the peptide in rats did not lead to any adverse reactions. In conclusion, PXL150 may constitute a new therapeutic alternative for local treatment of infections, and further studies are warranted to evaluate the applicability of this AMP in clinical settings.
Collapse
|
92
|
Sonesson A, Kasetty G, Olin AI, Malmsten M, Mörgelin M, Sørensen OE, Schmidtchen A. Thymic stromal lymphopoietin exerts antimicrobial activities. Exp Dermatol 2012; 20:1004-10. [PMID: 22092577 DOI: 10.1111/j.1600-0625.2011.01391.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-7-like cytokine expressed by epithelial cells and reported to be involved in allergic diseases and atopic eczema. The presence of several predicted α-helical regions in TSPL, a structure characterizing many classical antimicrobial peptides (AMPs), prompted us to investigate whether TSLP exerts antimicrobial activities. Recombinant human TSLP exerted antimicrobial activity, particularly against Gram-negative bacteria. Using synthetic overlapping peptide 20-mers of TSLP, it was demonstrated that the antimicrobial effect is primarily mediated by the C-terminal region of the protein. MKK34 (MKKRRKRKVTTNKCLEQVSQLQGLWRRFNRPLLK), a peptide spanning a C-terminal α-helical region in TSLP, showed potent antimicrobial activities, in physiological salt conditions and in the presence of human plasma. Fluorescent studies of peptide-treated bacteria, electron microscopy and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of the classical AMP LL-37. Moreover, TSLP was degraded into multiple fragments by staphylococcal V8 proteinase. One major antimicrobial degradation fragment was found to encompass the C-terminal antimicrobial region defined by the MKK34 peptide. We here describe a novel antimicrobial role for TSLP. The antimicrobial activity is primarily mediated by the C-terminal part of the protein. In combination with the previously known cytokine function of TSLP, our result indicates dual functions of the molecule and a previously unknown role in host defense.
Collapse
Affiliation(s)
- Andreas Sonesson
- Divisions of Dermatology and Venereology Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
93
|
Edström Hägerwall AML, Rydengård V, Fernlund P, Mörgelin M, Baumgarten M, Cole AM, Malmsten M, Kragelund BB, Sørensen OE. β-Microseminoprotein endows post coital seminal plasma with potent candidacidal activity by a calcium- and pH-dependent mechanism. PLoS Pathog 2012; 8:e1002625. [PMID: 22496651 PMCID: PMC3320615 DOI: 10.1371/journal.ppat.1002625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/22/2012] [Indexed: 12/13/2022] Open
Abstract
The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70–75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as β-microseminoprotein. At neutral pH, the fungicidal activity of β-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β-microseminoprotein family. By electron microscopy, β-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that β-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify β-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida. The innate immune factors controlling Candida albicans are mostly unknown. Sexual transmission of Candida during vaginal intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained innate immune factors active against Candida. We found potent candidacidal activity of acidic post coital seminal plasma mediated by β-microseminoprotein, while seminal plasma did not possess any fungicidal activity prior to acidification. The fungicidal effect of β-microseminoprotein was regulated by a novel calcium and pH-dependent mechanism uniquely suited for the post coital vaginal environment. At neutral pH, the fungicidal activity of β-microseminoprotein was inhibited by calcium. The acidic vaginal pH, on the other hand, unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The fungicidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. Experiments with a homologous fragment from porcine β-microseminoprotein demonstrating calcium-dependent fungicidal activity suggest this to be a common feature for members of the β-microseminoprotein family. These data may help explain the low transmission rate of Candida after vaginal sexual intercourse.
Collapse
Affiliation(s)
| | - Victoria Rydengård
- Division of Dermatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Per Fernlund
- Division of Clinical Chemistry, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Alexander M. Cole
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | | | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole E. Sørensen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
94
|
Jing X, Kasimova MR, Simonsen AH, Jorgensen L, Malmsten M, Franzyk H, Foged C, Nielsen HM. Interaction of peptidomimetics with bilayer membranes: biophysical characterization and cellular uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5167-75. [PMID: 22339375 DOI: 10.1021/la204033u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Enzymatically stable cell-penetrating α-peptide/β-peptoid peptidomimetics constitute promising drug delivery vehicles for the transport of therapeutic biomacromolecules across membrane barriers. The aim of the present study was to elucidate the mechanism of peptidomimetic-lipid bilayer interactions. A series of peptidomimetics consisting of alternating cationic and hydrophobic residues displaying variation in length and N-terminal end group were applied to fluid-phase, anionic lipid bilayers, and their interaction was investigated using isothermal titration calorimetry (ITC) and ellipsometry. Titration of lipid vesicles into solutions of peptidomimetics resulted in exothermic adsorption processes, and the interaction of all studied peptidomimetics with anionic lipid membranes was found to be enthalpy-driven. The enthalpy and Gibbs free energy (ΔG) proved more favorable with increasing chain length. However, not all charges contribute equally to the interaction, as evidenced by the charge-normalized ΔG being inversely correlated to the sequence length. Ellipsometry data suggested that the hydrophobic residues also played an important role in the interaction process. Furthermore, ΔG extracted from ellipsometry data showed good agreement with that obtained with ITC. To further elucidate their interaction with biological membranes, quantitative uptake and cellular distribution were studied in proliferating HeLa cells by flow cytometry and confocal microscopy. The cellular uptake of carboxyfluorescein-labeled peptidomimetics showed a similar ranking as that obtained from the adsorbed amount, and binding energy to model membranes demonstrated that the initial interaction with the membrane is of key importance for the cellular uptake.
Collapse
Affiliation(s)
- Xiaona Jing
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med Chem 2012; 3:1209-31. [PMID: 21806382 DOI: 10.4155/fmc.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of life-threatening viral and microbial infections has dramatically increased over recent decades. Despite significant developments in anti-infective chemotherapy, many issues have increasingly narrowed the therapeutic options, making it imperative to discover new effective molecules. Among them, small peptides are arousing great interest. This review will focus in particular on a killer peptide, engineered from an anti-idiotypic recombinant antibody that mimics the activity of a wide-spectrum antimicrobial yeast killer toxin targeting β-glucan cell-wall receptors. The in vitro and in vivo antimicrobial, antiviral and immunomodulatory activities of killer peptide and its ability to spontaneously and reversibly self-assemble and slowly release its active dimeric form over time will be discussed as a novel paradigm of targeted auto-delivering drugs.
Collapse
|
96
|
Papareddy P, Mörgelin M, Walse B, Schmidtchen A, Malmsten M. Antimicrobial activity of peptides derived from human ß-amyloid precursor protein. J Pept Sci 2012; 18:183-91. [PMID: 22249992 DOI: 10.1002/psc.1439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/03/2011] [Accepted: 11/15/2011] [Indexed: 11/07/2022]
Abstract
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin-binding disulfide-constrained loop region of human ß-amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C-terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL-37, these peptides efficiently killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop-structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Biomedical Center, Tornavägen 10, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
97
|
Schiopu I, Mereuta L, Apetrei A, Park Y, Hahm KS, Luchian T. The role of tryptophan spatial arrangement for antimicrobial-derived, membrane-active peptides adsorption and activity. MOLECULAR BIOSYSTEMS 2012; 8:2860-3. [DOI: 10.1039/c2mb25221j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
98
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
99
|
Sonesson A, Nordahl EA, Malmsten M, Schmidtchen A. Antifungal activities of peptides derived from domain 5 of high-molecular-weight kininogen. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:761037. [PMID: 21941573 PMCID: PMC3173955 DOI: 10.1155/2011/761037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/16/2011] [Indexed: 11/18/2022]
Abstract
In both immunocompromised and immunocompetent patients, Candida and Malassezia are causing or triggering clinical manifestations such as cutaneous infections and atopic eczema. The innate immune system provides rapid responses to microbial invaders, without requiring prior stimulation, through a sophisticated system of antimicrobial peptides (AMPs). High molecular weight kininogen (HMWK) and components of the contact system have previously been reported to bind to Candida and other pathogens, leading to activation of the contact system. A cutaneous Candida infection is characterized by an accumulation of neutrophils, leading to an inflammatory response and release of enzymatically active substances. In the present study we demonstrate that antifungal peptide fragments are generated through proteolytic degradation of HMWK. The recombinant domain 5 (rD5) of HMWK, D5-derived peptides, as well as hydrophobically modified D5-derived peptides efficiently killed Candida and Malassezia. Furthermore, the antifungal activity of modified peptides was studied at physiological conditions. Binding of a D5-derived peptide, HKH20 (His(479)-His(498)), to the fungal cell membrane was visualized by fluorescence microscopy. Our data disclose a novel antifungal activity of D5-derived peptides and also show that proteolytic cleavage of HMWK results in fragments exerting antifungal activity. Of therapeutic interest is that structurally modified peptides show an enhanced antifungal activity.
Collapse
Affiliation(s)
- Andreas Sonesson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Emma Andersson Nordahl
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
100
|
Schmidtchen A, Ringstad L, Kasetty G, Mizuno H, Rutland MW, Malmsten M. Membrane selectivity by W-tagging of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1081-91. [DOI: 10.1016/j.bbamem.2010.12.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|