51
|
Synergistic effects between phosphorylation of phospholamban and troponin I promote relaxation at higher heart rate. J Biomed Biotechnol 2011; 2011:651627. [PMID: 21876643 PMCID: PMC3163139 DOI: 10.1155/2011/651627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/17/2011] [Indexed: 11/18/2022] Open
Abstract
We hypothesized that the extent of frequency-dependent acceleration of relaxation (FDAR) would be less than that of isoproterenol-(ISO-)dependent acceleration of relaxation (IDAR) at the same increment of heart rates, and ISO may improve FDAR. Cardiac function and phosphorylation of PLB and cTnI were compared in pacing, ISO treatment, and combined pacing and ISO treatment in isolated working heart. The increase in cardiac output and the degree of relaxation was less in pacing than in ISO treatment at the same increment of heart rates. The increasing stimulation frequency induced more significant relaxant effect in ISO perfusion than that in physiological salt perfusion. The pacing only phosphorylated PLB at Thr17, but ISO induced phosphorylation of cTnI and PLB at Ser16 and Thr17. Those results suggest that the synergistic effects of PLB and cTnI induce higher degree of relaxation which makes a sufficient diastolic filling of the ventricle at higher heart rate.
Collapse
|
52
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
AKT is a serine/threonine protein kinase, also known as protein kinase B, which regulates cardiac growth, myocardial angiogenesis, glucose metabolism, and cell death in cardiac myocytes. AKT is activated by its phosphorylation at Thr 308 and ser 473 by PDK1 and mTORC2, respectively, in response to trophic stimuli such as insulin and insulin growth factor. c-Jun N-Terminal Kinases (JNKs) phosphorylate AKT at Thr 450 and potentiate its interaction with its downstream effectors. The short-term activation of AKT promotes physiological hypertrophy and protection from myocardial injury; whereas, its long-term activation causes pathological hypertrophy and heart failure. In this review we will discuss the role of AKT in regulating signalling pathways in the heart with special emphasis on the role of AKT in modulating stress induced autophagic cell death in cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
54
|
Glaves JP, Trieber CA, Ceholski DK, Stokes DL, Young HS. Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump. J Mol Biol 2011; 405:707-23. [PMID: 21108950 PMCID: PMC3121535 DOI: 10.1016/j.jmb.2010.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
Phospholamban physically interacts with the sarcoplasmic reticulum calcium pump (SERCA) and regulates contractility of the heart in response to adrenergic stimuli. We studied this interaction using electron microscopy of 2D crystals of SERCA in complex with phospholamban. In earlier studies, phospholamban oligomers were found interspersed between SERCA dimer ribbons and a 3D model was constructed to show interactions with SERCA. In this study, we examined the oligomeric state of phospholamban and the effects of phosphorylation and mutation of phospholamban on the interaction with SERCA in the 2D crystals. On the basis of projection maps from negatively stained and frozen-hydrated crystals, phosphorylation of Ser16 selectively disordered the cytoplasmic domain of wild type phospholamban. This was not the case for a pentameric gain-of-function mutant (Lys27Ala), which retained inhibitory activity and remained ordered in the phosphorylated state. A partial loss-of-function mutation that altered the charge state of phospholamban (Arg14Ala) retained an ordered state, while a complete loss-of-function mutation (Asn34Ala) was also disordered. The functional state of phospholamban was correlated with an order-to-disorder transition of the phospholamban cytoplasmic domain in the 2D co-crystals. Furthermore, co-crystals of the gain-of-function mutant (Lys27Ala) facilitated data collection from frozen-hydrated crystals. An improved projection map was calculated to a resolution of 8 Å, which supports the pentamer as the oligomeric state of phospholamban in the crystals. The 2D co-crystals with SERCA require a functional pentameric form of phospholamban, which physically interacts with SERCA at an accessory site distinct from that used by the phospholamban monomer for the inhibitory association.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- National Institute for Nanotechnology University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Catharine A. Trieber
- Department of Biochemistry University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- National Institute for Nanotechnology University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Delaine K. Ceholski
- Department of Biochemistry University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - David L. Stokes
- Skirball Institute of Biomolecular Medicine, School of Medicine, New York University, New York, NY 10016, USA & New York Structural Biology Center, New York, NY 10027, USA
| | - Howard S. Young
- Department of Biochemistry University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- National Institute for Nanotechnology University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
55
|
LaRocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, Alvin Z, Champion HC, Haddad G, Hajjar RJ, Devi LA, Schecter AD, Tarzami ST. β2-Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J Cardiovasc Pharmacol 2010; 56:548-59. [PMID: 20729750 PMCID: PMC2978286 DOI: 10.1097/fjc.0b013e3181f713fe] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation, metastasis, and embryonic development. We previously demonstrated a nonchemotactic role for one such chemokine pair, stromal cell-derived factor-1α and its G-protein coupled receptor, CXCR4. Stromal cell-derived factor-1/CXCR4 are expressed on cardiac myocytes and have direct consequences on cardiac myocyte physiology by inhibiting contractility in response to the nonselective β-adrenergic receptor (βAR) agonist, isoproterenol. As a result of the importance of β-adrenergic signaling in heart failure pathophysiology, we investigated the underlying mechanism involved in CXCR4 modulation of βAR signaling. Our studies demonstrate activation of CXCR4 by stromal cell-derived factor-1 leads to a decrease in βAR-induced PKA activity as assessed by cAMP accumulation and PKA-dependent phosphorylation of phospholamban, an inhibitor of SERCA2a. We determined CXCR4 regulation of βAR downstream targets is β2AR-dependent. We demonstrated a physical interaction between CXCR4 and β2AR as determined by coimmunoprecipitation, confocal microscopy, and BRET techniques. The CXCR4-β2AR interaction leads to G-protein signal modulation and suggests the interaction is a novel mechanism for regulating cardiac myocyte contractility. Chemokines are physiologically and developmentally relevant to myocardial biology and represent a novel receptor class of cardiac modulators. The CXCR4-β2AR complex could represent a hitherto unknown target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas J. LaRocca
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York 10029
| | - Martina Schwarzkopf
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York 10029
| | - Perry Altman
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York 10029
| | - Shihong Zhang
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York 10029
| | - Achla Gupta
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York 10029
| | - Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York 10029
| | - Zikiar Alvin
- Department of Physiology and Biophysics, Howard University, Washington DC 20059
| | - Hunter C. Champion
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore 21205
| | - Georges Haddad
- Department of Physiology and Biophysics, Howard University, Washington DC 20059
| | - Roger J. Hajjar
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York 10029
| | - Lakshmi A. Devi
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York 10029
| | | | - Sima T. Tarzami
- Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York 10029
| |
Collapse
|
56
|
Affiliation(s)
- Stephan Gielen
- Department of Internal Medicine/Cardiology, University of Leipzig, Heart Center, Strümpellstraße 39, Leipzig, Germany
| | | | | |
Collapse
|
57
|
Dobrin JS, Lebeche D. Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 2010; 8:373-91. [PMID: 20222816 DOI: 10.1586/erc.10.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is the world's fastest growing disease with high morbidity and mortality rates, predominantly as a result of heart failure. A significant number of diabetic patients exhibit diabetic cardiomyopathy; that is, left ventricular dysfunction independent of coronary artery disease or hypertension. The pathogenesis of diabetic cardiomyopathy is complex, and is characterized by dysregulated lipid metabolism, insulin resistance, mitochondrial dysfunction and disturbances in adipokine secretion and signaling. These abnormalities lead to impaired calcium homeostasis, ultimately resulting in lusitropic and inotropic defects. This article discusses the impact of these hallmark factors in diabetic cardiomyopathy, and concludes with a survey of available and emerging therapeutic modalities.
Collapse
Affiliation(s)
- Joseph S Dobrin
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|