51
|
Molecular Principles for Decoding Homeostasis Disruptions in the Retinal Pigment Epithelium: Significance of Lipid Mediators to Retinal Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:385-91. [PMID: 26427436 DOI: 10.1007/978-3-319-17121-0_51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dysregulated neuroinflammatory signaling during impending disruption of homeostasis in retinal pigment epithelium (RPE) and photoreceptor cells (PRC) takes place in early stages of retinal degeneration. PRCs avidly retain and display the highest content in the human body of docosahexaenoic acid (DHA; an omega-3 essential fatty acid). Docosanoids are DHA-derived mediators, such as neuroprotectin D1 (NPD1), made on-demand that promote repair, phagocytic clearance, cell survival, and are active participants of effective, well-concerted homeostasis restoration. Here we develop the concept that there is a molecular logic that sustains PRC survival and that transcriptional signatures governed by NPD1 in the RPE may be engaged.
Collapse
|
52
|
Bhandari S, Lee JN, Kim YI, Nam IK, Kim SJ, Kim SJ, Kwak S, Oh GS, Kim HJ, Yoo HJ, So HS, Choe SK, Park R. The fatty acid chain elongase, Elovl1, is required for kidney and swim bladder development during zebrafish embryogenesis. Organogenesis 2016; 12:78-93. [PMID: 27078170 DOI: 10.1080/15476278.2016.1172164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Very long chain fatty acids are required for sphingolipid synthesis, lipid homeostasis, myelin formation, epidermal permeability, and retinal function. Seven different enzymes are known to be involved in the elongation cycle of fatty acids, with different chain-length specificities. Elovl1 is one of those enzymes whose function has been linked mainly to the synthesis of sphingolipids and the epidermal barrier. However, the role of Elovl1 in organogenesis is not clear. In zebrafish, 2 Elovl1 genes, elovl1a and elovl1b, are highly expressed in the swim bladder, and elovl1b is also expressed in the kidney. We found that both elovl1 knockdown embryos contain increased levels of long chain fatty acids from carbon number 14 to 20 as compared to control embryos. Oil-Red-O staining shows that yolk lipid consumption is greatly reduced, whereas lipid droplets accumulate within the swim bladder. Notably, knockdown of either elovl1a or elovl1b affects the expression of genes involved in swim bladder development and impairs inflation of the swim bladder. Consistent with its expression in the pronephros, knockdown of elovl1b alone affects the expression of genes required for kidney development and reduces renal clearance. Our findings strongly suggest that both elovl1 genes are a key determinant of swim bladder and kidney development in zebrafish, which may be comparatively applicable to lung and kidney development in humans.
Collapse
Affiliation(s)
- Sushil Bhandari
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Joon No Lee
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Young-Il Kim
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - In-Koo Nam
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Su-Jung Kim
- b Asan Institute of Life Sciences, University of Ulsan College of Medicine, Asan Medical Center , Seoul , Republic of Korea
| | - Se-Jin Kim
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - SeongAe Kwak
- c Zoonosis Research Center, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Gi-Su Oh
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Hyung-Jin Kim
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Hyun Ju Yoo
- b Asan Institute of Life Sciences, University of Ulsan College of Medicine, Asan Medical Center , Seoul , Republic of Korea
| | - Hong-Seob So
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Seong-Kyu Choe
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea.,d Institute of Wonkwang Medical Science, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Raekil Park
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea.,e Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Republic of Korea
| |
Collapse
|
53
|
Gorusupudi A, Liu A, Hageman GS, Bernstein PS. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers. J Lipid Res 2016; 57:499-508. [PMID: 26764040 DOI: 10.1194/jlr.p065540] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
The human retina is well-known to have unique lipid profiles enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain polyunsaturated fatty acids (VLC-PUFAs) that appear to promote normal retinal structure and function, but the influence of diet on retinal lipid profiles in health and disease remains controversial. In this study, we examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. We found that serum and red blood cell lipids, and to a lesser extent orbital fat, are indeed excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. These results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease.
Collapse
Affiliation(s)
- Aruna Gorusupudi
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Aihua Liu
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Gregory S Hageman
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132 Sharon Eccles Steele Center for Translational Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Paul S Bernstein
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132 Sharon Eccles Steele Center for Translational Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
54
|
Barabas P, Gorusupudi A, Bernstein PS, Krizaj D. Mouse Models of Stargardt 3 Dominant Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:137-43. [PMID: 26427404 DOI: 10.1007/978-3-319-17121-0_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stargardt type 3 macular degeneration is dependent on a dominant defect in a single gene, ELOVL4 (elongase of very long chain fatty acids 4). The encoded enzyme, ELOVL4, is required for the synthesis of very long chain polyunsaturated fatty acids (VLC-PUFAs), a rare class of > C24 lipids. In vitro expression studies suggest that mutated ELOVL4(STGD3) proteins fold improperly, resulting in ER stress and formation of cytosolic aggresomes of wild type and mutant ELOVL4. Although a number of mouse models have been developed to determine whether photoreceptor cell loss in STGD3 results from depletion of VLC-PUFAs, aggresome-dependent cell stress or a combination of these two factors, none of these models adequately recapitulates the disease phenotype in humans. Thus, the precise molecular mechanism by which ELOVL4 mutation causes photoreceptor degeneration in mice and in human patients remains to be characterized. This mini review compares and evaluates current STGD3 mouse models and determines what conclusions can be drawn from past work.
Collapse
Affiliation(s)
- Peter Barabas
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Institute, University of Utah School of Medicine, 84132, Salt Lake City, UT, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Institute, University of Utah School of Medicine, 84132, Salt Lake City, UT, USA.
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Institute, University of Utah School of Medicine, 84132, Salt Lake City, UT, USA.
| | - David Krizaj
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Institute, University of Utah School of Medicine, 84132, Salt Lake City, UT, USA.
| |
Collapse
|
55
|
Wijendran V, Brenna JT, Wang DH, Zhu W, Meng D, Ganguli K, Kothapalli KSD, Requena P, Innis S, Walker WA. Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced proinflammatory response in human fetal intestinal epithelial cells. Pediatr Res 2015; 78:626-33. [PMID: 26270575 PMCID: PMC5046822 DOI: 10.1038/pr.2015.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/13/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. METHODS Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate with NEC (NEC-IEC). Intestinal cell lines Caco2 and NCM460 in culture were used as models for mature IEC. IEC in culture were pretreated with 100 µmol/l palmitic acid (PAL), DHA, EPA, ARA, or ARA+DHA for 48 h and then stimulated with proinflammatory IL-1β. RESULTS DHA significantly attenuated IL-1β induced proinflammatory IL-8 and IL-6 protein and mRNA in fetal H4, NEC-IEC, and mature Caco2, NCM460 IEC, compared to control and PAL treatment. DHA downregulated IL-1R1 (IL-1β receptor) and NFk β1 mRNA expression in fetal and adult IEC. ARA had potent anti-inflammatory effects with lower IL-8 and IL-6 (protein and mRNA) in fetal H4 but not in NEC-IEC or adult IEC. CONCLUSION The present study provides evidence that DHA and ARA may have important anti-inflammatory functions for prevention of NEC in premature infants.
Collapse
Affiliation(s)
- Vasuki Wijendran
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - JT Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Weishu Zhu
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Di Meng
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Kriston Ganguli
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | | | - Pilar Requena
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sheila Innis
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - WA Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| |
Collapse
|
56
|
Current Progress in Deciphering Importance of VLC-PUFA in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 854:145-51. [DOI: 10.1007/978-3-319-17121-0_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
57
|
Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:456-68. [PMID: 25486530 PMCID: PMC4323855 DOI: 10.1016/j.bbalip.2014.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Oxidation of polyunsaturated fatty acids (PUFA) through enzymatic or non-enzymatic free radical-mediated reactions can yield an array of lipid metabolites including eicosanoids, octadecanoids, docosanoids and related species. In mammals, these oxygenated PUFA mediators play prominent roles in the physiological and pathological regulation of many key biological processes in the cardiovascular, renal, reproductive and other systems including their pivotal contribution to inflammation. Mass spectrometry-based technology platforms have revolutionized our ability to analyze the complex mixture of lipid mediators found in biological samples, with increased numbers of metabolites that can be simultaneously quantified from a single sample in few analytical steps. The recent development of high-sensitivity and high-throughput analytical tools for lipid mediators affords a broader view of these oxygenated PUFA species, and facilitates research into their role in health and disease. In this review, we illustrate current analytical approaches for a high-throughput lipidomic analysis of eicosanoids and related mediators in biological samples. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Giuseppe Astarita
- Waters Corporation, Milford, MA, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra C Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Edward A Dennis
- Department of Chemistry/Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA; Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
58
|
Purdy JG, Shenk T, Rabinowitz JD. Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. Cell Rep 2015; 10:1375-85. [PMID: 25732827 PMCID: PMC4354725 DOI: 10.1016/j.celrep.2015.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/23/2014] [Accepted: 01/29/2015] [Indexed: 11/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection rewires host cell metabolism, up-regulating flux from glucose into acetyl-CoA to feed fatty acid metabolism, with saturated very long-chain fatty acids (VLFCA) required for production of infectious virion progeny. The human genome encodes seven elongase enzymes (ELOVL) that extend long chain fatty acids into VLCFA. Here we identify ELOVL7 as pivotal for HCMV infection. HCMV induces ELOVL7 by more than 150-fold. This induction is dependent on mTOR and SREBP-1. ELOVL7 knockdown or mTOR inhibition impairs HCMV-induced fatty acid elongation, HCMV particle release, and infectivity per particle. ELOVL7 overexpression enhances HCMV replication. During HCMV infection, mTOR activity is maintained by the viral protein pUL38. Expression of pUL38 is sufficient to induce ELOVL7, and pUL38-deficient virus is partially defective in ELOVL7 induction and fatty acid elongation. Thus, through its ability to modulate mTOR and SREBP-1, HCMV induces ELOVL7 to synthesize the saturated VLCFA required for efficient virus replication.
Collapse
Affiliation(s)
- John G Purdy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
59
|
Samardzija M, Grimm C. Mouse models for cone degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:567-73. [PMID: 24664745 DOI: 10.1007/978-1-4614-3209-8_72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Loss of cone vision has devastating effects on everyday life. Even though much effort has been made to understand cone physiology and pathophysiology, no successful therapies are available for patients suffering from cone disorders. As complex retinal interactions cannot be studied in vitro, utilization of different animal models is inevitable. Due to recent advances in transgenesis, mice became the most popular animal model to study human diseases, also in ophthalmology. While there are similarities in retinal anatomy and pathophysiology between mice and humans, there are also differences, most importantly the lack of a cone-rich macula in mice. Instead, cones in mice are rare and distributed over the whole retina, which makes the analysis of cone pathophysiology very difficult in these animals. This hindrance is one of the reasons why our understanding of rod pathophysiological processes is much more advanced. Recently, however, the sparseness of cones was overcome by the generation of the Nrl (- / -) mouse that expresses only cone photoreceptors in the retina. This paper will give a brief overview of some of the known mouse models to study cone degeneration and discuss the current knowledge gained from the analysis of these models.
Collapse
Affiliation(s)
- Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Wagistr 14 Schlieren, 8952, Zurich, Switzerland,
| | | |
Collapse
|
60
|
Agbaga MP, Logan S, Brush RS, Anderson RE. Biosynthesis of very long-chain polyunsaturated fatty acids in hepatocytes expressing ELOVL4. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:631-6. [PMID: 24664752 DOI: 10.1007/978-1-4614-3209-8_79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) is a fatty acid condensing enzyme that mediates biosynthesis of very long chain polyunsaturated fatty acids (VLC-PUFA; ≥ C28) in a limited number of tissues. Depletion of VLC-PUFA in retinal photoreceptors leads to retinal dysfunction and likely contributes to autosomal dominant Stargardt-like macular dystrophy (STGD3) pathology. In addition, depletion of VLC-PUFA in rodent testicular tissues leads to sterility. These results suggest that VLC-PUFA synthesized in situ play a unique role that cannot be compensated for by other fatty acid species. Though liver is the major fatty acid biosynthetic organs, it does not express the ELOVL4 protein; hence, no VLC-PUFA are detected in the blood and plasma. Thus, delivery of these VLC-PUFA to target tissues to compensate for their reduction caused by disease presents a challenge. We hypothesized that expression of ELOVL4 in the liver will result in the biosynthesis of VLC-PUFA that could be transported via the bloodstream to target tissues such as retina, brain and testis. Hence, we evaluated the ability of rat hepatoma (4HIIE) and human hepatocyte (HepG2) cells to synthesize VLC-PUFA by expressing ELOVL4 in these cells. We showed that, in the presence of ELOVL4, both 4HIIE and HepG2 cells are capable of VLC-PUFA biosynthesis. We propose that transgenic expression of ELOVL4 in the liver will result in the biosynthesis of VLC-PUFA that can be transported to target.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA,
| | | | | | | |
Collapse
|
61
|
Sassa T, Kihara A. Metabolism of very long-chain Fatty acids: genes and pathophysiology. Biomol Ther (Seoul) 2014; 22:83-92. [PMID: 24753812 PMCID: PMC3975470 DOI: 10.4062/biomolther.2014.017] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
62
|
Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL. Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks. Invest Ophthalmol Vis Sci 2014; 55:3669-80. [PMID: 24833735 DOI: 10.1167/iovs.13-13099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Autosomal dominant Stargardt macular dystrophy caused by mutations in the Elongation of Very Long Chain fatty acids (ELOVL4) gene results in macular degeneration, leading to early childhood blindness. Transgenic mice and pigs expressing mutant ELOVL4 develop progressive photoreceptor degeneration. The mechanism by which these mutations cause macular degeneration remains unclear, but have been hypothesized to involve the loss of an ER-retention dilysine motif located in the extreme C-terminus. Dominant negative mechanisms and reduction in retinal polyunsaturated fatty acids also have been suggested. To understand the molecular mechanisms involved in disease progression in vivo, we addressed the hypothesis that the disease-linked C-terminal truncation mutant of ELOVL4 exerts a dominant negative effect on wild-type (WT) ELOVL4, altering its subcellular localization and function, which subsequently induces retinal degeneration and loss of vision. METHODS We generated transgenic Xenopus laevis that overexpress HA-tagged murine ELOVL4 variants in rod photoreceptors. RESULTS Tagged or untagged WT ELOVL4 localized primarily to inner segments. However, the mutant protein lacking the dilysine motif was mislocalized to post-Golgi compartments and outer segment disks. Coexpression of mutant and WT ELOVL4 in rods did not result in mislocalization of the WT protein to outer segments or in the formation of aggregates. Full-length HA-tagged ELOVL4 lacking the dilysine motif (K308R/K310R) necessary for targeting the WT ELOVL4 protein to the endoplasmic reticulum was similarly mislocalized to outer segments. CONCLUSIONS We propose that expression and outer segment mislocalization of the disease-linked 5-base-pair deletion mutant ELOVL4 protein alters photoreceptor structure and function, which subsequently results in retinal degeneration, and suggest three possible mechanisms by which mutant ELOVL4 may induce retinal degeneration in STGD3.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Beatrice M Tam
- Department of Ophthalmology and Vancouver Eye Care Center, University of British Columbia, Vancouver, Canada
| | - Jenny S Wong
- Department of Ophthalmology and Vancouver Eye Care Center, University of British Columbia, Vancouver, Canada
| | - Lee Ling Yang
- Department of Ophthalmology and Vancouver Eye Care Center, University of British Columbia, Vancouver, Canada
| | - Robert E Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Orson L Moritz
- Department of Ophthalmology and Vancouver Eye Care Center, University of British Columbia, Vancouver, Canada
| |
Collapse
|
63
|
Bennett LD, Hopiavuori BR, Brush RS, Chan M, Van Hook MJ, Thoreson WB, Anderson RE. Examination of VLC-PUFA-deficient photoreceptor terminals. Invest Ophthalmol Vis Sci 2014; 55:4063-72. [PMID: 24764063 DOI: 10.1167/iovs.14-13997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Juvenile-onset autosomal dominant Stargardt-like macular dystrophy (STGD3) is caused by mutations in ELOVL4 (elongation of very long fatty acids-4), an elongase necessary for the biosynthesis of very long chain fatty acids (VLC-FAs ≥ C26). Photoreceptors are enriched with VLC polyunsaturated fatty acids (VLC-PUFAs), which are necessary for long-term survival of rod photoreceptors. The purpose of these studies was to determine the effect of deletion of VLC-PUFAs on rod synaptic function in retinas of mice conditionally depleted (KO) of Elovl4. METHODS Retina function was assessed in wild-type (WT) and KO by electroretinography. Outer plexiform structure was evaluated by immunofluorescence and transmission electron microscopy. Single-cell recordings measured rod ion channel operation and rod bipolar glutamate signaling. Sucrose gradient centrifugation was used to isolate synaptosomes from bovine retina. Proteins and lipids were analyzed by Western blotting and tandem mass spectroscopy, respectively. RESULTS Inner retinal responses (b-wave, oscillatory potentials, and scotopic threshold responses) of the ERG were decreased in the KO mice compared to controls. However the rod ion channel operation and bipolar glutamate responses were comparable between groups. Biochemical analysis revealed that conventional and ribbon synapses have VLC-PUFAs. Ultrastructural analysis showed that the outer plexiform layer was disorganized and the diameter of vesicles in rod terminals was smaller in the KO mice. CONCLUSIONS Very long chain PUFAs affect rod function by contributing to synaptic vesicle size, which may alter the dynamics of synaptic transmission, ultimately resulting in a loss of neuronal connectivity and death of rod photoreceptors.
Collapse
Affiliation(s)
- Lea D Bennett
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Blake R Hopiavuori
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Richard S Brush
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael Chan
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Robert E Anderson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
64
|
Bennett LD, Brush RS, Chan M, Lydic TA, Reese K, Reid GE, Busik JV, Elliott MH, Anderson RE. Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors. Invest Ophthalmol Vis Sci 2014; 55:3150-7. [PMID: 24722693 DOI: 10.1167/iovs.14-13995] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Autosomal dominant Stargardt-like macular dystrophy (STGD3) is a juvenile-onset disease that is caused by mutations in Elovl4 (elongation of very long fatty acids-4). The Elovl4 catalyzes the first step in the conversion of C24 and longer fatty acids (FAs) to very long-chain FAs (VLC-FAs, ≥C26). Photoreceptors are particularly rich in VLC polyunsaturated FAs (VLC-PUFA). To explore the role of VLC-PUFAs in photoreceptors, we conditionally deleted Elovl4 in the mouse retina. METHODS Proteins were analyzed by Western blotting and lipids by gas chromatography (GC)-mass spectrometry, GC-flame ionization detection, and tandem mass spectrometry. Retina function was assessed by electroretinography (ERG), and structure was evaluated by bright field, immunofluorescence, and transmission electron microscopy. RESULTS Conditional deletion (KO) of retinal Elovl4 reduced RNA and protein levels by 91% and 96%, respectively. Total retina VLC-PUFAs were reduced by 88% compared to the wild type (WT) levels. Retinal VLC-PUFAs incorporated in phosphatidylcholine were less abundant at 12 months compared to 8-week-old levels. Amplitudes of the ERG a-wave were reduced by 22%, consistent with photoreceptor degeneration (11% loss of photoreceptors). Analysis of the rod a-wave responses gave no evidence of a role for VLC-PUFA in visual transduction. However, there were significant reductions in rod b-wave amplitudes (>30%) that could not be explained by loss of rod photoreceptors. There was no effect of VLC-PUFA reduction on cone ERG responses, and cone density was not different between the WT and KO mice at 12 months of age. CONCLUSIONS The VLC-PUFAs are important for rod, but not cone, function and for rod photoreceptor longevity.
Collapse
Affiliation(s)
- Lea D Bennett
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Richard S Brush
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Michael Chan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Todd A Lydic
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States
| | - Kristen Reese
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States
| | - Gavin E Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Michael H Elliott
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Robert E Anderson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
65
|
Marchette L, Sherry D, Brush RS, Chan M, Wen Y, Wang J, Ash JD, Anderson RE, Mandal NA. Very long chain polyunsaturated fatty acids and rod cell structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:637-45. [PMID: 24664753 PMCID: PMC4456017 DOI: 10.1007/978-1-4614-3209-8_80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The gene encoding Elongation of Very Long Chain Fatty Acids-4 (ELOVL4) is mutated in patients with autosomal dominant Stargardt's Macular Dystrophy Type 3 (STDG3). ELOVL4 catalyzes the initial condensation step in the elongation of polyunsaturated fatty acids (PUFA) containing more than 26 carbons (26C) to very long chain PUFA (VLC-PUFA; C28 and greater). To investigate the role of VLC-PUFA in rod photoreceptors, we generated mice with rod-specific deletion of Elovl4 (RcKO). The mosaic deletion of rod-expressed ELOVL4 protein resulted in a 36 % lower amount of VLC-PUFA in the retinal phosphatidylcholine (PC) fraction compared to retinas from wild-type mice. However, this reduction was not sufficient to cause rod dysfunction at 7 months or photoreceptor degeneration at 9 or 15 months.
Collapse
Affiliation(s)
- L.D. Marchette
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - D.M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R. S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - M. Chan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Y. Wen
- Amherst College, Amherst, MA, USA
| | - J. Wang
- University of Florida, Gainesville, FL, USA
| | | | - Robert E. Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - N. A. Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| |
Collapse
|
66
|
Zemski Berry KA, Gordon WC, Murphy RC, Bazan NG. Spatial organization of lipids in the human retina and optic nerve by MALDI imaging mass spectrometry. J Lipid Res 2013; 55:504-15. [PMID: 24367044 DOI: 10.1194/jlr.m044990] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045; and
| | | | | | | |
Collapse
|
67
|
Suburu J, Gu Z, Chen H, Chen W, Zhang H, Chen YQ. Fatty acid metabolism: Implications for diet, genetic variation, and disease. FOOD BIOSCI 2013; 4:1-12. [PMID: 24511462 DOI: 10.1016/j.fbio.2013.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by de novo synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review de novo and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases.
Collapse
Affiliation(s)
- Janel Suburu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China ; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
68
|
Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:5181-6. [PMID: 23479632 DOI: 10.1073/pnas.1214707110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stargardt type 3 (STGD3) disease is a juvenile macular dystrophy caused by mutations in the ELOVL4 (Elongation of very long chain fatty acids 4) gene. Its protein product, ELOVL4, is an elongase required for the biosynthesis of very long-chain polyunsaturated fatty acids (VLC-PUFAs). It is unclear whether photoreceptor degeneration in STGD3 is caused by loss of VLC-PUFAs or by mutated ELOVL4 protein trafficking/aggregation. We therefore generated conditional knockout (cKO) mice with Elovl4 ablated in rods or cones and compared their phenotypes to transgenic (TG) animals that express the human STGD3-causing ELOVL4(STGD3) allele. Gas chromatography-mass spectrometry was used to assess C30-C34 VLC-PUFA and N-retinylidene-N-retinylethanolamine content; electroretinography was used to measure phototransduction and outer retinal function; electron microscopy was used for retinal ultrastructure; and the optomotor tracking response was used to test scotopic and photopic visual performance. Elovl4 transcription and biosynthesis of C30-C34 VLC-PUFAs in rod cKO and TG retinas were reduced up to 98%, whereas the content of docosahexaenoic acid was diminished in TG, but not rod cKO, retinas. Despite the near-total loss of the retinal VLC-PUFA content, rod and cone cKO animals exhibited no electrophysiological or behavioral deficits, whereas the typical rod-cone dystrophic pattern was observed in TG animals. Our data suggest that photoreceptor-specific VLC-PUFA depletion is not sufficient to induce the STGD3 phenotype, because depletion alone had little effect on photoreceptor survival, phototransduction, synaptic transmission, and visual behavior.
Collapse
|
69
|
Bhattacharya SK. Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 2013; 38:417-27. [PMID: 23330842 DOI: 10.3109/02713683.2012.760742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the past decade, mass spectrometry (MS) has made tremendous advances toward the profiling and identification of lipids from biological samples. MS is attractive for the simplicity it offers toward total profiling of lipids, the identification and characterization of individual entities directly after extraction from complex biological mixtures utilizing an infusion mode. Fundamentally, two types of mass analyzers exist, depending upon whether the fragment ion resolution and analysis occurs in space domain or in time domain within the mass spectrometer. Compared to MS, chromatographic methods are cumbersome. Nuclear magnetic resonance, which provides unequivocal elucidation of structures, necessitates much higher absolute amount and demands purity of lipids. We present here an account of recent developments in class-specific lipid identification strategies, targeted and untargeted lipid analyses, identification and de novo structure elucidation using mass spectrometric and combinatorial chemical derivatization and MS. We have reviewed the strategies with emphasis for spatial domain fragment resolution mass analyzers enabling analysis of lipids in a class-specific manner. We also provide a brief account of database and bioinformatic tools that have been recently developed toward profiling, identification and quantification of lipids in complex biological mixtures.
Collapse
|
70
|
Hadziahmetovic M, Kumar U, Song Y, Grieco S, Song D, Li Y, Tobias JW, Dunaief JL. Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE. Invest Ophthalmol Vis Sci 2012; 53:5231-41. [PMID: 22736611 DOI: 10.1167/iovs.12-10204] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate light damage-induced transcript changes within neurosensory retina (NSR) and isolated retinal pigment epithelium (RPE). Similar studies have been conducted previously, but were usually limited to the NSR and only a portion of the transcriptome. Herein most of the transcriptome, not just in the NSR but also in isolated RPE, was queried. METHODS Mice were exposed to 10,000 lux cool white fluorescent light for 18 hours and euthanized 4 hours after photic injury. NSR and isolated RPE were collected, and RNA was isolated. DNA microarray hybridization was conducted as described in the Affymetrix GeneChip Expression Analysis Technical Manual. Microarray analysis was performed using probe intensity data derived from the Mouse Gene 1.0 ST Array. For the genes of interest, confirmation of gene expression was done using quantitative real-time PCR. Immunofluorescence assessed protein levels and localization. RESULTS Numerous iron regulatory genes were significantly changed in the light-exposed NSR and RPE. Several of these gene expression changes favored an iron-overloaded state. For example, the transferrin receptor was upregulated in both light-exposed NSR and RPE. Consistent with this, there was stronger transferrin receptor immunoreactivity in the light-exposed retinas. Significant changes in gene expression following light damage were also observed in oxidative stress and complement system genes. CONCLUSIONS The concept of a photooxidative stress-induced vicious cycle of increased iron uptake leading to further oxidative stress was introduced.
Collapse
Affiliation(s)
- Majda Hadziahmetovic
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Go MJ, Hwang JY, Kim DJ, Lee HJ, Jang HB, Park KH, Song J, Lee JY. Effect of genetic predisposition on blood lipid traits using cumulative risk assessment in the korean population. Genomics Inform 2012; 10:99-105. [PMID: 23105936 PMCID: PMC3480684 DOI: 10.5808/gi.2012.10.2.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 12/27/2022] Open
Abstract
Dyslipidemia, mainly characterized by high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) levels, is an important etiological factor in the development of cardiovascular disease (CVD). Considering the relationship between childhood obesity and CVD risk, it would be worthwhile to evaluate whether previously identified lipid-related variants in adult subjects are associated with lipid variations in a childhood obesity study (n = 482). In an association analysis for 16 genome-wide association study (GWAS)-based candidate loci, we confirmed significant associations of a genetic predisposition to lipoprotein concentrations in a childhood obesity study. Having two loci (rs10503669 at LPL and rs16940212 at LIPC) that showed the strongest association with blood levels of TG and HDL-C, we calculated a genetic risk score (GRS), representing the sum of the risk alleles. It has been observed that increasing GRS is significantly associated with decreased HDL-C (effect size, -1.13 ± 0.07) compared to single nucleotide polymorphism combinations without two risk variants. In addition, a positive correlation was observed between allelic dosage score and risk allele (rs10503669 at LPL) on high TG levels (effect size, 10.89 ± 0.84). These two loci yielded consistent associations in our previous meta-analysis. Taken together, our findings demonstrate that the genetic architecture of circulating lipid levels (TG and HDL-C) overlap to a large extent in childhood as well as in adulthood. Post-GWAS functional characterization of these variants is further required to elucidate their pathophysiological roles and biological mechanisms.
Collapse
Affiliation(s)
- Min Jin Go
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongwon 363-951, Korea
| | | | | | | | | | | | | | | |
Collapse
|