51
|
Xiao M, Iglinski-Benjamin KC, Sharpe O, Robinson WH, Abrams GD. Exogenous micro-RNA and antagomir modulate osteogenic gene expression in tenocytes. Exp Cell Res 2019; 378:119-123. [PMID: 30849310 DOI: 10.1016/j.yexcr.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
Tendinopathy is a common and disabling condition that is difficult to treat. The pathomolecular events behind tendinopathy remain uncertain. Micro-RNAs (miRNAs, miRs) are short non-coding RNAs that regulate gene expression and may play a role in tendinopathy development. Tenocytes were obtained from human patellar tendons in patients undergoing anterior cruciate ligament (ACL) reconstruction. Micro-RNA mimics and antagomirs for miR-30d, 26a, and 29a were separately transfected into tenocyte culture. Gene expression for scleraxis, collagen 1 alpha 1 (COL1A1), collagen 3 alpha 1 (COL3A1), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), bone morphogenic protein 2 (BMP2), bone morphogenic protein 12 (BMP12), and osteocalcin was determined for each miRNA mimic and antagomir transfection using real-time quantitative PCR (qPCR). The results showed that exogenous miR-29a downregulated BMP2 and BMP12, while miR-26a and miR-30d did not have a significant effect on tenocyte gene expression. These findings suggest miR-29a contributes to tendon homeostasis and can serve as a potential therapeutic target in treating tendinopathy.
Collapse
Affiliation(s)
- Michelle Xiao
- Department of Orthopedic Surgery, Stanford University School of Medicine, United States
| | | | - Orr Sharpe
- Department of Orthopedic Surgery, Stanford University School of Medicine, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, United States
| | - William H Robinson
- Department of Orthopedic Surgery, Stanford University School of Medicine, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, United States
| | - Geoffrey D Abrams
- Department of Orthopedic Surgery, Stanford University School of Medicine, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, United States.
| |
Collapse
|
52
|
Thompson J, Mendoza F, Tan E, Bertol JW, Gaggar AS, Jun G, Biguetti C, Fakhouri WD. A cleft lip and palate gene, Irf6, is involved in osteoblast differentiation of craniofacial bone. Dev Dyn 2019; 248:221-232. [PMID: 30684382 DOI: 10.1002/dvdy.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Interferon regulatory factor 6 (IRF6) plays a critical role in embryonic tissue development, including differentiation of epithelial cells. Besides orofacial clefting due to haploinsufficiency of IRF6, recent human genetic studies indicated that mutations in IRF6 are linked to small mandible and digit abnormalities. The function of IRF6 has been well studied in oral epithelium; however, its role in craniofacial skeletal formation remains unknown. In this study, we investigated the role of Irf6 in craniofacial bone development using comparative analyses between wild-type (WT) and Irf6-null littermate mice. RESULTS Immunostaining revealed the expression of IRF6 in hypertrophic chondrocytes, osteocytes, and bone matrix of craniofacial tissues. Histological analysis of Irf6-null mice showed a remarkable reduction in the number of lacunae, embedded osteocytes in matrices, and a reduction in mineralization during bone formation. These abnormalities may explain the decreased craniofacial bone density detected by micro-CT, loss of incisors, and mandibular bone abnormality of Irf6-null mice. To validate the autonomous role of IRF6 in bone, extracted primary osteoblasts from calvarial bone of WT and Irf6-null pups showed no effect on osteoblastic viability and proliferation. However, a reduction in mineralization was detected in Irf6-null cells. CONCLUSIONS Altogether, these findings suggest an autonomous role of Irf6 in regulating bone differentiation and mineralization. Developmental Dynamics 248:221-232, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jake Thompson
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Fabian Mendoza
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ethan Tan
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica Wildgrube Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Arju S Gaggar
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Goo Jun
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Claudia Biguetti
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas.,Graduate School of Biomedical Sciences, University of Texas Health Science Center and MD Anderson Cancer Center at Houston, Houston, Texas
| |
Collapse
|
53
|
Zhu L, Li C, Liu Q, Xu W, Zhou X. Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med 2019; 23:1671-1677. [PMID: 30648807 PMCID: PMC6378174 DOI: 10.1111/jcmm.14129] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is characterized by an increase in myocyte size in the absence of cell division. This condition is thought to be an adaptive response to cardiac wall stress resulting from the enhanced cardiac afterload. The pathogenesis of heart dysfunction, which is one of the primary causes of morbidity and mortality in elderly people, is often associated with myocardial remodelling caused by cardiac hypertrophy. In order to well understand the potential mechanisms, we described the molecules involved in the development and progression of myocardial hypertrophy. Increasing evidence has indicated that micro‐RNAs are involved in the pathogenesis of cardiac hypertrophy. In addition, molecular biomarkers including vascular endothelial growth factor B, NAD‐dependent deacetylase sirtuin‐3, growth/differentiation factor 15 and glycoprotein 130, also play important roles in the development of myocardial hypertrophy. Knowing the regulatory mechanisms of these biomarkers in the heart may help identify new molecular targets for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Liu Zhu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Li
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Qiang Liu
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Weiting Xu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
54
|
Zhang L, Lei Q, Wang H, Xu C, Liu T, Kong F, Yang C, Yan G, Sun L, Zhao A, Chen W, Hu Y, Xie H, Cao Y, Fu F, Yuan G, Chen Z, Guo AY, Li Q. Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease. Am J Cancer Res 2019; 9:196-209. [PMID: 30662562 PMCID: PMC6332790 DOI: 10.7150/thno.27550] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background: As a hallmark driver of multiple myeloma (MM), MM bone disease (MBD) is unique in that it is characterized by severely impaired osteoblast activity resulting from blocked osteogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs). The mechanisms underlying this preferential blockade are incompletely understood. Methods: miRNA expression of MM cell-derived extracellular vesicles (MM-EVs) was detected by RNA sequencing. MM-EVs impaired osteogenesis and exacerbated MBD were in vitro and in vivo validated by histochemical staining, qPCR and micro-CT. We additionally examined the correlation between CD138+ circulating EVs (cirEVs) count and bone lesion in de novo MM patients. Results: Here, by sequencing and bioinformatics analysis, we found that MM-EVs were enriched in various molecules negatively regulating osteogenesis. We experimentally verified that MM-EVs inhibited BM-MSC osteogenesis, induced elevated expression of miR-103a-3p inhibiting osteogenesis in BM-MSCs, and increased cell viability and interleukin-6 secretion in MM cells. In a mouse model, MM-EVs that were injected into the marrow space of the left tibia led to impaired osteogenesis and exacerbated MBD and MM progression. Furthermore, the levels of CD138+ cirEVs in the peripheral blood were positively correlated with the number of MM bone lesions in MM patients. Conclusions: These findings suggest that MM-EVs play a pivotal role in the development of severely impaired osteoblast activity, which represents a novel biomarker for the precise diagnosis of MBD and a compelling rationale for exploring MM-EVs as a therapeutic target.
Collapse
|
55
|
Blaser MC, Aikawa E. Roles and Regulation of Extracellular Vesicles in Cardiovascular Mineral Metabolism. Front Cardiovasc Med 2018; 5:187. [PMID: 30622949 PMCID: PMC6308298 DOI: 10.3389/fcvm.2018.00187] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular calcification is a multifaceted disease that is a leading independent predictor of cardiovascular morbidity and mortality. Recent studies have identified a calcification-prone population of extracellular vesicles as the putative elementary units of vascular microcalcification in diseased heart valves and vessels. Their action is highly context-dependent; extracellular vesicles released by smooth muscle cells, valvular interstitial cells, endothelial cells, and macrophages may promote or inhibit mineralization, depending on the phenotype of their originating cells and/or the extracellular environment to which they are released. In particular, emerging roles for vesicular microRNAs, bioactive lipids, metabolites, and protein cargoes in driving this pro-calcific switch underpin the necessity of innovative strategies to employ next-generation sequencing and omics technologies in order to better understand the pathobiology of these nano-sized entities. Furthermore, a recent body of work has emerged that centers on the novel re-purposing of extracellular vesicles and exosomes as potential therapeutic avenues for cardiovascular calcification. This review aims to highlight the role of extracellular vesicles as constituents of cardiovascular calcification and summarizes recent advances in our understanding of the biophysical nature of vesicle accumulation, aggregation, and mineralization. We also comprehensively discuss the latest evidence that extracellular vesicles act as key mediators and regulators of cell/cell communication, osteoblastic/osteoclastic differentiation, and cell/matrix interactions in cardiovascular tissues. Lastly, we highlight the importance of robust vesicle isolation and characterization when studying these phenomena, and offer a brief primer on working with cardiovascular applications of extracellular vesicles.
Collapse
Affiliation(s)
- Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Center of Excellence in Cardiovascular Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
56
|
Bu Y, Zheng D, Wang L, Liu J. LncRNA TSIX promotes osteoblast apoptosis in particle-induced osteolysis by down-regulating miR-30a-5p. Connect Tissue Res 2018; 59:534-541. [PMID: 29260905 DOI: 10.1080/03008207.2017.1413362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study aims to investigate the role of TSIX/miR-30a-5p axis in particle-induced osteolysis (PIO). METHOD PIO mouse model was established by the implantation of Co-Cr-Mo metal particles (CoPs). MC3T3-E1 cells received CoPs stimulation. Bone mineral density (BMD) in the skull was detected to evaluate PIO development. The expression of TSIX and miR-30a-5p was detected by using qRT-PCR. Osteoblast apoptosis was measured using flow cytometry. RNA pull-down was used to verify the regulatory relationship between TSIX and miR-30a-5p. RESULT The results showed that BMD of the skull in PIO mice was significantly decreased compared with control mice, which indicated that the PIO model was established successfully. Moreover, CoPs could up-regulate TSIX level, down-regulate miR-30a-5p expression, and promote osteoblast apoptosis in vivo and in vitro. The results also found that TSIX negatively regulated miR-30a-5p expression, and knockdown of TSIX inhibited Runx2 expression. As expected, miR-30a-5p inhibitor could reverse the inhibition of si-TSIX on osteoblast apoptosis. CONCLUSION TSIX played a pivotal role in PIO development by negatively regulating miR-30a-5p.
Collapse
Affiliation(s)
- Yanmin Bu
- a Department of Orthopedics , Tianjin Hospital , Tianjin , People's Republic of China
| | - Dezhi Zheng
- a Department of Orthopedics , Tianjin Hospital , Tianjin , People's Republic of China
| | - Lei Wang
- a Department of Orthopedics , Tianjin Hospital , Tianjin , People's Republic of China
| | - Jun Liu
- a Department of Orthopedics , Tianjin Hospital , Tianjin , People's Republic of China
| |
Collapse
|
57
|
Yu L, Xu Y, Qu H, Yu Y, Li W, Zhao Y, Qiu G. Decrease of MiR-31 induced by TNF-α inhibitor activates SATB2/RUNX2 pathway and promotes osteogenic differentiation in ethanol-induced osteonecrosis. J Cell Physiol 2018; 234:4314-4326. [PMID: 30132874 DOI: 10.1002/jcp.27210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Suppressed osteogenic differentiation is considered a main cause of ethanol-induced osteonecrosis. Tumor necrosis factor α (TNF-α) and miR-31 have been reported to be involved in the osteogenic induction. This study aimed to explore a possible molecular mechanism regulating osteogenic differentiation in ethanol-induced osteonecrosis bone marrow stromal stem cells (BMSCs). METHODS Alizarin red staining was used to examine the level of mineralization in osteogenic differentiation process. Alkaline phosphatase assay was applied to the validation of ALP level which was essential to bone mineralization. The level of osteogenesis markers was determined by western blot assay, whereas the fluctuations of messenger RNA levels were tested by quantitative real-time polymerase chain reaction. Microarray analysis was conducted to identify differentially expressed genes, because the possible target relationship was predicted and validated by miRBase and luciferase reporter assay, respectively. Colony forming unit of fibroblast assay was used to observe the proliferation of BMSCs. RESULTS BMSCs from patients with ethanol-induced osteonecrosis exhibited weaker osteogenic differentiation and proliferation abilities. TNF-α inhibitor added in the osteogenic medium significantly enhanced the osteogenic differentiation ability and BMSCs proliferation ability. TNF-α by regulating miR-31 downregulated the expressions of RUNX2 and SATB2, two contributors of osteoblast differentiation, further suppressed osteogenic differentiation. On the contrary, TNF-α inhibitor could promote osteogenic differentiation in BMSCs from patients with ethanol-induced osteonecrosis. CONCLUSION TNF-α inhibitor could downregulate miR-31 expressions, which directly promoted SATB2 and RUNX2 expressions and enhanced osteogenic differentiation of BMSCs from patients with ethanol-induced osteonecrosis.
Collapse
Affiliation(s)
- Lingjia Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yisheng Xu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Qu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yifeng Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjing Li
- Department of Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
58
|
Croset M, Pantano F, Kan CWS, Bonnelye E, Descotes F, Alix-Panabières C, Lecellier CH, Bachelier R, Allioli N, Hong SS, Bartkowiak K, Pantel K, Clézardin P. miRNA-30 Family Members Inhibit Breast Cancer Invasion, Osteomimicry, and Bone Destruction by Directly Targeting Multiple Bone Metastasis-Associated Genes. Cancer Res 2018; 78:5259-5273. [PMID: 30042152 DOI: 10.1158/0008-5472.can-17-3058] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022]
Abstract
miRNAs are master regulators of gene expression that play key roles in cancer metastasis. During bone metastasis, metastatic tumor cells must rewire their biology and express genes that are normally expressed by bone cells (a process called osteomimicry), which endow tumor cells with full competence for outgrowth in the bone marrow. Here, we establish miR-30 family members miR-30a, miR-30b, miR-30c, miR-30d, and miR-30e as suppressors of breast cancer bone metastasis that regulate multiple pathways, including osteomimicry. Low expression of miR-30 in primary tumors from patients with breast cancer were associated with poor relapse-free survival. In addition, estrogen receptor (ER)-negative/progesterone receptor (PR)-negative breast cancer cells expressed lower miR-30 levels than their ER/PR-positive counterparts. Overexpression of miR-30 in ER/PR-negative breast cancer cells resulted in the reduction of bone metastasis burden in vivoIn vitro, miR-30 did not affect tumor cell proliferation, but did inhibit tumor cell invasion. Furthermore, overexpression of miR-30 restored bone homeostasis by reversing the effects of tumor cell-conditioned medium on osteoclastogenesis and osteoblastogenesis. A number of genes associated with osteoclastogenesis stimulation (IL8, IL11), osteoblastogenesis inhibition (DKK-1), tumor cell osteomimicry (RUNX2, CDH11), and invasiveness (CTGF, ITGA5, ITGB3) were identified as targets for repression by miR-30. Among these genes, silencing CDH11 or ITGA5 in ER-/PR-negative breast cancer cells recapitulated inhibitory effects of miR-30 on skeletal tumor burden in vivo Overall, our findings provide evidence that miR-30 family members employ multiple mechanisms to impede breast cancer bone metastasis and may represent attractive targets for therapeutic intervention.Significance: These findings suggest miR-30 family members may serve as an effective means to therapeutically attenuate metastasis in triple-negative breast cancer. Cancer Res; 78(18); 5259-73. ©2018 AACR.
Collapse
Affiliation(s)
| | - Francesco Pantano
- INSERM, UMR_S1033, University Lyon 1, Lyon, France.,Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | | | | | - Françoise Descotes
- Service de Biochimie Biologie Moléculaire, Hospices Civils de Lyon, Lyon, France
| | | | | | | | - Nathalie Allioli
- Institut des Sciences Pharmaceutiques et Biologiques (ISPB)-Faculté de Pharmacie de Lyon, University Claude Bernard Lyon 1. Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Lyon, France
| | - Saw-See Hong
- University Lyon 1, UMR 754-INRA-EPHE, Lyon, France
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
59
|
miR-30 Family: A Promising Regulator in Development and Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9623412. [PMID: 30003109 PMCID: PMC5996469 DOI: 10.1155/2018/9623412] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate posttranscriptional expression of target genes. Accumulating evidences have demonstrated that the miR-30 family, as a member of microRNAs, played a crucial regulating role in the development of tissues and organs and the pathogenesis of clinical diseases, which indicated that it may be a promising regulator in development and disease. This review aims to clarify the current progress on the regulating role of miR-30 family in tissues and organs development and related disease and highlight their research prospective in the future.
Collapse
|
60
|
Wei B, Wei W, Wang L, Zhao B. Differentially Expressed MicroRNAs in Conservatively Treated Nontraumatic Osteonecrosis Compared with Healthy Controls. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9015758. [PMID: 29977921 PMCID: PMC5994295 DOI: 10.1155/2018/9015758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/06/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
Deregulation of microRNAs (miRNAs) contributes to nontraumatic osteonecrosis of the femoral head (ONFH-N), but the differentially expressed circulating miRNAs in patients with ONFH-N receiving nonsurgical therapy are unknown. This study aimed to determine the miRNAs expression profile of patients with ONFH-N receiving conservative treatments. This was a case-control prospective study of 43 patients with ONFH-N and 43 participants without ONFH-N, enrolled from 10/2014 to 10/2016 at the Department of Orthopedics of the Linyi People's Hospital (China). The two groups were matched for age, gender, and living area. Microarray analysis and quantitative RT-PCR were used to examine the differentially expressed miRNAs. Bioinformatics was used to predict miRNA target genes and signaling pathways. Microarray and quantitative RT-PCR revealed that nine miRNAs were downregulated and five miRNAs were upregulated in ONFH-N (n = 3) compared with controls (n = 3). Bioinformatics showed that calcium-mediated signaling pathway, regulation of calcium ion transmembrane transporter activity, cytoskeletal protein binding, and caveolae macromolecular signaling complex were probably regulated by the identified differentially expressed miRNAs. In the remaining 80 subjects (n = 40/group), miR-335-5p was downregulated (P = 0.01) and miR-100-5p was upregulated (P = 0.02) in ONFH-N compared with controls. In conclusion, some miRNAs are differentially expressed in conservatively treated ONFH-N compared with controls. Those miRNAs could contribute to the pathogenesis of ONFH-N.
Collapse
Affiliation(s)
- Biaofang Wei
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| | - Wei Wei
- Department of Orthopedics, First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Wang
- Department of Surgery, Shandong Medical College, Linyi, China
| | - Baoxiang Zhao
- Department of Orthopedics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
61
|
Kao GS, Tu YK, Sung PH, Wang FS, Lu YD, Wu CT, Lin RLC, Yip HK, Lee MS. MicroRNA-mediated interacting circuits predict hypoxia and inhibited osteogenesis of stem cells, and dysregulated angiogenesis are involved in osteonecrosis of the femoral head. INTERNATIONAL ORTHOPAEDICS 2018; 42:1605-1614. [PMID: 29700584 DOI: 10.1007/s00264-018-3895-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) are associated with various pathologic conditions and can serve as diagnostic or therapeutic biomarkers. This study tried to identify the differentially expressed miRNAs to predict the possible pathomechanisms involved in osteonecrosis of the femoral head (ONFH). METHODS We compared the peripheral blood miRNAs in 46 patients with ONFH and 85 healthy controls by microarray and droplet digital polymerase chain reaction (ddPCR). Putative interacted networks between the differentially responded miRNAs were analyzed by web-based bioinformatics prediction tools. RESULTS Microarray identified 51 differentially expressed miRNAs with at least twofold change (upregulation in 34 and downregulation in 17), and the results were validated by ddPCR using six selected miRNAs. Bioinformatics genetic network analysis focusing on the six miRNAs found the upregulated miR-18a and miR-19a are associated with angiogenesis after induction of ischemia; the upregulated miR-138-1 can inhibit osteogenic differentiation of mesenchymal stem cells; the most targeted genes, p53 and SERBP1, are associated with hypoxia and hypofibrinolysis. CONCLUSIONS This study combined the miRNA analysis with the bioinformatics and predicts that hypoxia, inhibited osteogenesis of stem cells, and dysregulated angiogenesis might be orchestrated through the miRNA interacting circuits in the pathogenesis of ONFH.
Collapse
Affiliation(s)
- Gour-Shenq Kao
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedic Surgery, Eda Hospital, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-Der Lu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Chen-Ta Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Rio L C Lin
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohisung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.
| | - Mel S Lee
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung, Kaohsiung, 833, Taiwan.
| |
Collapse
|
62
|
Luo Y, Cao X, Chen J, Gu J, Zhao J, Sun J. MicroRNA‐224 suppresses osteoblast differentiation by inhibiting
SMAD4. J Cell Physiol 2018; 233:6929-6937. [PMID: 29693254 DOI: 10.1002/jcp.26596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Luo
- Department of Orthopedic The First Affiliated Hospital of Soochow University Souzhou Jiangsu China
- Department of Orthopedic Taicang Affiliated Hospital of Soochow University Taicang Jiangsu China
| | - Xiaodong Cao
- Department of Orthopedic Taicang Affiliated Hospital of Soochow University Taicang Jiangsu China
| | - Junfeng Chen
- Department of Orthopedic Taicang Affiliated Hospital of Soochow University Taicang Jiangsu China
| | - Jianwei Gu
- Department of Orthopedic Taicang Affiliated Hospital of Soochow University Taicang Jiangsu China
| | - Jitong Zhao
- Department of Orthopedic Taicang Affiliated Hospital of Soochow University Taicang Jiangsu China
| | - Junying Sun
- Department of Orthopedic The First Affiliated Hospital of Soochow University Souzhou Jiangsu China
| |
Collapse
|
63
|
Zeng YL, Zheng H, Chen QR, Yuan XH, Ren JH, Luo XF, Chen P, Lin ZY, Chen SZ, Wu XQ, Xiao M, Chen YQ, Chen ZZ, Hu JD, Yang T. Bone marrow-derived mesenchymal stem cells overexpressing MiR-21 efficiently repair myocardial damage in rats. Oncotarget 2018; 8:29161-29173. [PMID: 28418864 PMCID: PMC5438721 DOI: 10.18632/oncotarget.16254] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
Objective We investigated the ability of bone marrow derived mesenchymal stem cells (BMSCs) overexpressing microRNA-21 (miR-21) to repair cardiac damage induced by anthracyclines in rats. Methods Sprague-Dawley (SD) rats of 2~3 weeks old were selected to isolate and culture BMSCs. A lentivirus harboring pLVX-miR-21 was generated and transfected into rat BMSCs. The rats were assigned into an untreated negative control group, and groups injected with adriamycin alone or with adriamycin followed by BMSCs, pLVX-BMSCs or pLVX-miR-21-BMSCs (n = 10 each). Proliferation and migration of cells were detected by cholecystokinin-8 (CCK- 8) and transwell. MiR-21 expression, mRNA expressions of B cell lymphoma 2 (Bcl2), BAX (BCL-2-associated X protein) and vascular endothelial growth factor (VEGF) were tested by qRT-PCR. Western blotting was applied to detect protein expressions of Bcl-2, Bax and VEGF. Results Using CCK- 8 and transwell assays, we found that pLVX-miR-21-BMSCs, which overexpressed miR-21, exhibited greater proliferation and migration than untransfected BMSCs or pLVX-BMSCs. Ultrasonic cardiograms and immunohistochemical analysis demonstrated that among the five groups, the pLVX-miR-21-BMSC group exhibited the most improved heart function and enhanced angiogenesis. Moreover, the pLVX-miR-21-BMSC group showed enhanced expression of Bcl-2, VEGF and Cx43 and reduced expression of Bax, BNP and troponin T. Conclusion These findings suggest miR-21 overexpression enhanced the proliferation, invasiveness and differentiation of BMSCs as well as expression of key factors (Bcl-2, VEGF and Bax) essential for repairing the cardiac damage induced by anthracyclines and restoring heart function.
Collapse
Affiliation(s)
- Yan-Ling Zeng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China.,Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping 353000, P. R. China
| | - Hao Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Qiu-Ru Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiao-Hong Yuan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jin-Hua Ren
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xiao-Feng Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Ping Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhe-Yao Lin
- Department of Hematology, Affiliated Nanping First Hospital of Fujian Medical University, Nanping 353000, P. R. China
| | - Shao-Zhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Xue-Qiong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Min Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Yong-Quan Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Zhi-Zhe Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Jian-Da Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| |
Collapse
|
64
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
65
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
66
|
Identification of novel microRNA inhibiting actin cytoskeletal rearrangement thereby suppressing osteoblast differentiation. J Mol Med (Berl) 2018. [PMID: 29523914 DOI: 10.1007/s00109-018-1624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the role of miR-1187 in regulation of osteoblast functions. Over-expression of miR-1187 inhibited osteoblast differentiation. Target prediction analysis tools and experimental validation by luciferase 3' UTR reporter assay identified BMPR-II and ArhGEF-9 as direct targets of miR-1187. ArhGEF-9 activates Cdc42 which has a major role in actin reorganization. BMP-2 also induces actin polymerization. Role of miR-1187 in actin reorganization was determined by western blotting, immunofluorescence, and in vivo gene silencing studies. Reduced protein levels of BMPR-II, activated Cdc42, and downstream signaling molecules were observed in miR-1187-transfected osteoblasts. miR-1187 over-expression resulted in decreased actin polymerization. Additionally, P-cofilin, which does not bind F-actin, was decreased in miR-1187-transfected cells. These results were corroborated by administration of BMPR-II exogenously in miR-1187-transfected osteoblasts. Silencing of miR-1187 in neonatal mice mitigated all the inhibitory effects of miR-1187 on actin cytoskeletal rearrangement. Importantly, in vivo treatment of miR-1187 inhibitor to ovariectomized BALB/c mice led to significant improvement in trabecular bone microarchitecture. Overall, miR-1187 functions as a negative regulator of osteogenesis by repressing BMPR-II and ArhGEF-9 expression thus suppressing non-Smad BMP2/Cdc42 signaling pathway and inhibiting actin reorganization. miR-1187 functions as a negative regulator of osteogenesis by repressing BMPR-II expression, which in turn, suppresses non-Smad BMP2/Cdc42 signaling pathway, thus inhibiting actin cytoskeletal rearrangement. Silencing of miR-1187 significantly improves trabecular bone microarchitecture. As miR-1187 exerts a negative regulatory role in osteoblasts function, hence, we propose that therapeutic approaches targeting miR-1187 could be useful in enhancing the bone formation and treatment of pathological conditions of bone loss.
Collapse
|
67
|
Li S, Liu X, Li H, Pan H, Acharya A, Deng Y, Yu Y, Haak R, Schmidt J, Schmalz G, Ziebolz D. Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis. J Periodontal Res 2018. [PMID: 29516510 DOI: 10.1111/jre.12539] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Long noncoding RNAs (lncRNAs) play critical and complex roles in regulating various biological processes of periodontitis. This bioinformatic study aims to construct a putative competing endogenous RNA (ceRNA) network by integrating lncRNA, miRNA and mRNA expression, based on high-throughput RNA sequencing and microarray data about periodontitis. MATERIAL AND METHODS Data from 1 miRNA and 3 mRNA expression profiles were obtained to construct the lncRNA-associated ceRNA network. Gene Ontology enrichment analysis and pathway analysis were performed using the Gene Ontology website and Kyoto Encyclopedia of Genes and Genomes. A protein-protein interaction network was constructed based on the Search Tool for the retrieval of Interacting Genes/Proteins. Transcription factors (TFs) of differentially expressed genes were identified based on TRANSFAC database and then a regulatory network was constructed. RESULTS Through constructing the dysregulated ceRNA network, 6 genes (HSPA4L, PANK3, YOD1, CTNNBIP1, EVI2B, ITGAL) and 3 miRNAs (miR-125a-3p, miR-200a, miR-142-3p) were detected. Three lncRNAs (MALAT1, TUG1, FGD5-AS1) were found to target both miR-125a-3p and miR-142-3p in this ceRNA network. Protein-protein interaction network analysis identified several hub genes, including VCAM1, ITGA4, UBC, LYN and SSX2IP. Three pathways (cytokine-cytokine receptor, cell adhesion molecules, chemokine signaling pathway) were identified to be overlapping results with the previous bioinformatics studies in periodontitis. Moreover, 2 TFs including FOS and EGR were identified to be involved in the regulatory network of the differentially expressed genes-TFs in periodontitis. CONCLUSION These findings suggest that 6 mRNAs (HSPA4L, PANK3, YOD1, CTNNBIP1, EVI2B, ITGAL), 3 miRNAs (hsa-miR-125a-3p, hsa-miR-200a, hsa-miR-142-3p) and 3 lncRNAs (MALAT1, TUG1, FGD5-AS1) might be involved in the lncRNA-associated ceRNA network of periodontitis. This study sought to illuminate further the genetic and epigenetic mechanisms of periodontitis through constructing an lncRNA-associated ceRNA network.
Collapse
Affiliation(s)
- S Li
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - X Liu
- Shanghai Genomap Technologies, Yangpu District, Shanghai, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - H Li
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - H Pan
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - A Acharya
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China.,Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - Y Deng
- Shanghai Genomap Technologies, Yangpu District, Shanghai, China
| | - Y Yu
- Department of Periodontology, The Stomatology Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - R Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - J Schmidt
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - G Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - D Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
68
|
Yavropoulou MP, Yovos JG. The "dark matter" of DNA and the regulation of bone metabolism: The role of non-coding RNAs. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:18-31. [PMID: 29504575 PMCID: PMC5881125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epigenetics, present a new discipline that attempts to explain significant differences in phenotypes among patients with the same disease. In contrast to the other epigenetic mechanisms that modulate gene transcription, non-coding RNAs act at the post-transcriptional level. They directly modulate the gene expression of mRNA genes leading to mRNA target cleavage and degradation and translation repression. Bioinformatic predictions indicate that non coding RNAs may be involved in the regulation of 60% of the coding genes and each non-coding RNA can have multiple target genes, and each gene may be regulated by more than one non-coding RNAs. In the last decade several studies have shown a significant role of non-coding RNAs in the regulation of bone metabolism and function of bone cells opening a new era in the understanding of bone biology in health and disease.
Collapse
Affiliation(s)
- Maria P. Yavropoulou
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece,Corresponding author: Maria P. Yavropoulou, MD, MSc, PhD, Endocrinologist Consultant, 1st Department of Internal Medicine, AHEPA Univ. Hospital, 1 S. Kyriakidi street 54636, Thessaloniki, Greece E-mail:
| | - John G. Yovos
- Laboratory of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
69
|
Li X, Ji J, Wei W, Liu L. MiR-25 promotes proliferation, differentiation and migration of osteoblasts by up-regulating Rac1 expression. Biomed Pharmacother 2018; 99:622-628. [DOI: 10.1016/j.biopha.2018.01.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
|
70
|
Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications. Stem Cell Res Ther 2018; 9:44. [PMID: 29482607 PMCID: PMC5828435 DOI: 10.1186/s13287-018-0773-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the past years, cardiac mortality has decreased, but cardiac diseases are still responsible for millions of deaths every year worldwide. Bone-marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapeutic strategy because of its capacity to differentiate into cardiac cells. Current research indicates that chemical substances, microRNAs, and cytokines have biological functions that regulate the cardiomyocytes differentiation of BMSCs. In this review, we chiefly summarize the regulatory factors that induce BMSCs to differentiate into cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofei Guo
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Yan Bai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Li Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Bo Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Naufal Zagidullin
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Katherine Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Brazil
| | - Zhimin Du
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang Province, 150081, People's Republic of China.
| |
Collapse
|
71
|
Alkagiet S, Tziomalos K. Vascular calcification: the role of microRNAs. Biomol Concepts 2018; 8:119-123. [PMID: 28426428 DOI: 10.1515/bmc-2017-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 01/22/2023] Open
Abstract
Vascular calcification represents the deposition of calcium phosphate salts in the tunica media of the vascular wall. It occurs during aging but is accelerated and pronounced in patients with diabetes mellitus, chronic kidney disease (CKD) and established cardiovascular disease. Due to the loss of elasticity of the vessel wall, vascular calcification might result in left ventricular hypertrophy and compromise coronary perfusion. Accordingly, several studies showed that vascular calcification is associated with increased risk for cardiovascular morbidity and mortality. Accumulating data suggest that microRNAs (miRs) play an important role in vascular calcification. A variety of miRs have been implicated in the development of vascular calcification, whereas others appear to play a protective role. Accordingly, miRs might represent promising targets for the prevention of vascular calcification and its adverse cardiovascular sequelae. However, given the complexity of regulation of this process and the multitude of miRs involved, more research is needed to identify the optimal candidate miRs for targeting.
Collapse
|
72
|
Materozzi M, Merlotti D, Gennari L, Bianciardi S. The Potential Role of miRNAs as New Biomarkers for Osteoporosis. Int J Endocrinol 2018; 2018:2342860. [PMID: 29853878 PMCID: PMC5960506 DOI: 10.1155/2018/2342860] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is the most common metabolic bone disorder affecting up to 40% of postmenopausal women, characterized by a reduction in bone mass and strength leading to bone fragility and fractures. Despite the available tools for diagnosis and stratification of a fracture risk, bone loss occurs insidiously and osteoporosis is often diagnosed after the first fracture has occurred, with important health-related outcomes. Therefore, the need of markers that could efficiently diagnose bone fragility and osteoporosis is still necessary. Over the past few years, novel studies have focused on miRNAs, small noncoding RNAs that are differentially expressed in many pathological conditions, making them attractive biomarkers. To date, the role of miRNAs in bone disorders remains in great part unclear. In particular, limited and partly conflicting information is available concerning their use as potential biomarkers for osteoporosis, due to differences in patient selection, type of samples, and analytical methods. Despite these limits, concordant information about some specific miRNAs is now arising, making likely their use as additional tools to stratify the risk of osteoporosis and possibly fractures. In this review, we summarize the most relevant studies concerning circulating miRNAs differentially expressed in osteoporotic patients along with their function in bone cells and bone turnover.
Collapse
Affiliation(s)
- Maria Materozzi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Simone Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| |
Collapse
|
73
|
Liu MM, Li Z, Han XD, Shi JH, Tu DY, Song W, Zhang J, Qiu XL, Ren Y, Zhen LL. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in Breast Cancer. Sci Rep 2017; 7:15929. [PMID: 29162879 PMCID: PMC5698445 DOI: 10.1038/s41598-017-16175-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-30e (miR-30e) is downregulated in various tumor types. However, its mechanism in inhibiting tumor growth of breast cancer remains to be elucidated. In this study, we found that miR-30e was significantly downregulated in tumor tissues of breast cancer (BC) patients and cell lines, and overexpression of miR-30e inhibited cell proliferation, migration and invasion. To understand the potential mechanism of miR-30e in inhibiting tumor growth, we showed that miR-30e blocked the activation of AKT and ERK1/2 pathways, and the expression of HIF-1α and VEGF via directly targeting IRS1. Moreover, miR-30e regulates cell proliferation, migration, invasion and increases chemosensitivity of MDA-MB-231 cells to paclitaxel by inhibiting its target IRS1. MiR-30e also inhibited tumor growth and suppressed expression of IRS1, AKT, ERK1/2 and HIF-1α in mouse xenograft tumors. To test the clinical relevance of these results, we used 40 pairs of BC tissues and adjacent normal tissues, analyzed the levels of miR-30e and IRS1 expression in these tissues, and found that miR-30e levels were significantly inversely correlated with IRS1 levels in these BC tissues, suggesting the important implication of our findings in translational application for BC diagnostics and treatment in the future.
Collapse
Affiliation(s)
- Min-Min Liu
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Zhi Li
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xue-Dong Han
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jian-Hua Shi
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Dao-Yuan Tu
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wei Song
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jian Zhang
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiao-Lan Qiu
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yi Ren
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| | - Lin-Lin Zhen
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| |
Collapse
|
74
|
Howe GA, Kazda K, Addison CL. MicroRNA-30b controls endothelial cell capillary morphogenesis through regulation of transforming growth factor beta 2. PLoS One 2017; 12:e0185619. [PMID: 28977001 PMCID: PMC5627931 DOI: 10.1371/journal.pone.0185619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
The importance of microRNA (miRNA) to vascular biology is becoming increasingly evident; however, the function of a significant number of miRNA remains to be determined. In particular, the effect of growth factor regulation of miRNAs on endothelial cell morphogenesis is incomplete. Thus, we aimed to identify miRNAs regulated by pro-angiogenic vascular endothelial growth factor (VEGF) and determine the effects of VEGF-regulated miRNAs and their targets on processes important for angiogenesis. Human umbilical vein endothelial cells (HUVECs) were thus stimulated with VEGF and miRNA levels assessed using microarrays. We found that VEGF altered expression of many miRNA, and for this study focused on one of the most significantly down-regulated miRNA in HUVECs following VEGF treatment, miR-30b. Using specific miRNA mimics, we found that overexpression of miR-30b inhibited capillary morphogenesis in vitro, while depletion of endogenous miR-30b resulted in increased capillary morphogenesis indicating the potential significance of down-regulation of miR-30b as a pro-angiogenic response to VEGF stimulation. MiR-30b overexpression in HUVEC regulated transforming growth factor beta 2 (TGFβ2) production, which led to increased phosphorylation of Smad2, indicating activation of an autocrine TGFβ signaling pathway. Up-regulation of TGFβ2 by miR-30b overexpression was found to be dependent on ATF2 activation, a transcription factor known to regulate TGFβ2 expression, as miR-30b overexpressing cells exhibited increased levels of phosphorylated ATF2 and depletion of ATF2 inhibited miR-30b-induced TGFβ2 expression. However, miR-30b effects on ATF2 were indirect and found to be via targeting of the known ATF2 repressor protein JDP2 whose mRNA levels were indirectly correlated with miR-30b levels. Increased secretion of TGFβ2 from HUVEC was shown to mediate the inhibitory effects of miR-30b on capillary morphogenesis as treatment with a neutralizing antibody to TGFβ2 restored capillary morphogenesis to normal levels in miR-30b overexpressing cells. These results support that the regulation of miR-30b by VEGF in HUVEC is important for capillary morphogenesis, as increased miR-30b expression inhibits capillary morphogenesis through enhanced expression of TGFβ2.
Collapse
Affiliation(s)
- Grant A. Howe
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kayla Kazda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|
75
|
Sivakumar A, Subbiah R, Balakrishnan R, Rajendhran J. Cardiac mitochondrial dynamics: miR-mediated regulation during cardiac injury. J Mol Cell Cardiol 2017; 110:26-34. [PMID: 28705612 DOI: 10.1016/j.yjmcc.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/20/2022]
Abstract
Mitochondrial integrity is indispensable for cardiac health. With the advent of modern imaging technologies, mitochondrial motility and dynamics within the cell are extensively studied. Terminally differentiated and well-structured cardiomyocytes depict little mitochondrial division and fusion, questioning the contribution of mitochondrial fusion proteins (Mitofusin 1/2 and Optic Atrophy 1 protein) and fission factors (Dynamin-like protein 1 and mitochondrial fission 1 protein) in cardiomyocyte homeostasis. Emerging evidences suggest that alterations in mitochondrial morphology from globular, elongated network to punctate fragmented disconnected structures are a pathological response to ensuing cardiac stress and cardiomyocyte cell death, bringing forth the following question, "what maintains this balance between fusion and fission?" The answer hinges upon the classical "junk" DNA: microRNAs, the endogenous non-coding RNAs. Because of their essential role in numerous signaling pathways, microRNAs are considered to play major roles in the pathogenesis of various diseases. Mitochondria are not exempted from microRNA-mediated regulation. This review defines the importance of mitochondrial structural integrity and the microRNA-mitochondrial dynamics tandem, an imminent dimension of the cardiac homeostasis network. Elucidating their coordinated interaction could spur RNA-based therapeutics for resuscitating functional mitochondrial population during cardiovascular disorders.
Collapse
Affiliation(s)
- Anusha Sivakumar
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Ramasamy Subbiah
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India.
| | - Rekha Balakrishnan
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| |
Collapse
|
76
|
Kulkarni V, Uttamani JR, Naqvi AR, Nares S. microRNAs: Emerging players in oral cancers and inflammatory disorders. Tumour Biol 2017; 39:1010428317698379. [PMID: 28459366 DOI: 10.1177/1010428317698379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Association of oral diseases and disorders with altered microRNA profiles is firmly recognized. These evidences support the potential use of microRNAs as therapeutic tools for diagnosis, prognosis, and treatment of various diseases. In this review, we highlight the association of altered microRNA signatures in oral cancers and oral inflammatory diseases. Advances in our ability to detect microRNAs in human sera and saliva further highlight their clinical value as potential biomarkers. We have discussed key mechanisms underlying microRNA dysregulation in pathological conditions. The use of microRNAs in diagnostics and their potential therapeutic value in the treatment of oral diseases are reviewed.
Collapse
Affiliation(s)
- Varun Kulkarni
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| | - Juhi Raju Uttamani
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| | - Afsar Raza Naqvi
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| | - Salvador Nares
- 1 Department of Periodontics, College of Dentistry, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
77
|
miR-155 Inhibits Mouse Osteoblast Differentiation by Suppressing SMAD5 Expression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1893520. [PMID: 28473977 PMCID: PMC5394354 DOI: 10.1155/2017/1893520] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/09/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
Osteogenesis from preosteoblasts is important for bone tissue engineering. MicroRNAs are a class of endogenous small RNA molecules that potentially modulate osteogenesis. In this study, we found that miR-155 expression was downregulated in a time-dependent manner in cells of the preosteoblast cell line MC3T3-E1 after osteogenic induction using bone morphogenetic protein 2 (BMP2). Transfection with miR-155 decreased alkaline phosphatase (ALP) activity, ALP expression, and the staining intensity of Alizarin Red in MC3T3-E1 cells treated with BMP2, whereas treatment with miR-155 inhibitor promoted BMP2-induced osteoblast differentiation. The luciferase assay confirmed that miR-155 can bind to the 3′ untranslated region of SMAD5 mRNA. miR-155 transfection significantly decreased the expression of SMAD5 protein and mRNA in MC3T3-E1 cells under control media and the p-SMAD5 protein level during osteogenesis. After transfecting cells with the SMAD5 overexpression plasmids, the inhibitory effect of miR-155 on osteogenesis was significantly attenuated. In conclusion, miR-155 inhibited osteoblast differentiation by downregulating the translation of SMAD5 in mouse preosteoblast cells. Inhibition of miR-155 promoted osteogenic potential and thus it can be used as a potential target in the treatment of bone defects.
Collapse
|
78
|
Abstract
MicroRNAs are small, noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression, with an essential role in vertebrate development and different biological processes. This review highlights the recent advances in the function of miRNAs and their roles in bone remodeling and bone diseases. MicroRNAs (miRNAs) are a class of small (∼22 nt), noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression. They are essential for vertebrate development and play critical roles in different biological processes related to cell differentiation, activity, metabolism, and apoptosis. A rising number of experimental reports now indicate that miRNAs contribute to every step of osteogenesis and bone homeostasis, from embryonic skeletal development to maintenance of adult bone tissue, by regulating the growth, differentiation, and activity of different cell systems inside and outside the skeleton. Importantly, emerging information from animal studies suggests that targeting miRNAs might become an attractive and new therapeutic approach for osteoporosis or other skeletal diseases, even though there are still major concerns related to potential off target effects and the need of efficient delivery methods in vivo. Moreover, besides their recognized effects at the cellular level, evidence is also gathering that miRNAs are excreted and can circulate in the blood or other body fluids with potential paracrine or endocrine functions. Thus, they could represent suitable candidates for becoming sensitive disease biomarkers in different pathologic conditions, including skeletal disorders. Despite these promising perspectives more work remains to be done until miRNAs can serve as robust therapeutic targets or established diagnostic tools for precision medicine in skeletal disorders.
Collapse
Affiliation(s)
- L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - S Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
| | - D Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
79
|
Zhu YL, Wang S, Ding DG, Xu L, Zhu HT. miR‑217 inhibits osteogenic differentiation of rat bone marrow‑derived mesenchymal stem cells by binding to Runx2. Mol Med Rep 2017; 15:3271-3277. [PMID: 28339007 DOI: 10.3892/mmr.2017.6349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
The elucidation of the underlying molecular mechanisms regulating the osteogenic differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) is of great importance in improving the treatment of bone‑associated diseases. MicroRNAs (miRNAs) have been proven to regulate the osteogenic differentiation of BMSCs. The present study investigated the role of miR‑217 in the osteogenic differentiation of rat BMSCs. It was observed that miR‑217 expression levels were downregulated during the process of osteogenic differentiation. Subsequently, a dual‑luciferase reporter gene assay demonstrated that miR‑217 targets a putative binding site in the 3'‑untranslated region of the runt related transcription factor 2 (Runx2) gene, which is a key transcription factor for osteogenesis. It was then demonstrated that overexpression of miR‑217 attenuated the osteogenesis of BMSCs and downregulated the expression of Runx2, whereas inhibition of miR‑217 promoted osteoblastic differentiation and upregulated Runx2 expression. Furthermore, the extracellular signal‑regulated kinase (ERK) and p38 mitogen‑activated protein kinase (p38 MAPK) signaling pathways were investigated during osteogenic induction, and the data indicated that miR‑217 may exert a negative effect on the osteogenic differentiation of BMSCs through alteration of ERK and p38 MAPK phosphorylation. The present study therefore concluded that miR‑217 functions as a negative regulator of BMSC osteogenic differentiation via the inhibition of Runx2 expression, and the underlying molecular mechanisms may partially be attributed to mediation by the ERK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Yu-Long Zhu
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng, Jiangsu 224300, P.R. China
| | - Shui Wang
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng, Jiangsu 224300, P.R. China
| | - De-Gang Ding
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng, Jiangsu 224300, P.R. China
| | - Liang Xu
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng, Jiangsu 224300, P.R. China
| | - Hai-Tao Zhu
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng, Jiangsu 224300, P.R. China
| |
Collapse
|
80
|
Liu L, Liu M, Li R, Liu H, Du L, Chen H, Zhang Y, Zhang S, Liu D. MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int 2016; 41:112-123. [PMID: 27862699 DOI: 10.1002/cbin.10704] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Cyclical stretch-induced bone formation during orthodontic treatment is a complex biological process modulated by various factors including miRNAs and their targeted-gene network. However, the miRNA expression profile and their roles in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) exposed to mechanical stretch remains unclear. Here, we use the miRNA microarray assay to screen for mechano-sensitive miRNAs during stretch-induced osteogenic differentiation of BMSCs and identified that nine miRNAs were differentially expressed between stretched and control BMSCs. Furthermore, miR-503-5p, which was markedly downregulated in both microarray assay and qRT-PCR assay were selected for further functional verification. We found that overexpression of miR-503-5p in BMSCs attenuated stretch-induced osteogenic differentiation while the effect was reversed by miR-503-5p inhibition treatment. In vivo studies, overexpression of miR-503-5p with specific agomir decreased Runx2, ALP mRNA, and protein expression, decreased osteoblast numbers and osteoblastic bone formation in the OTM tension sides. In conclusion, our study revealed that miR-503-5p functions as the mechano-sensitive miRNA and inhibits BMSCs osteogenic differentiation subjected to mechanical stretch and bone formation in OTM tension sides.
Collapse
Affiliation(s)
- Lu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Mengjun Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Rongrong Li
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Liling Du
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Chen
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Shijie Zhang
- Department of Stomatology, School of Dentistry, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dongxu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| |
Collapse
|
81
|
Liu Y, Zhang XL, Chen L, Lin X, Xiong D, Xu F, Yuan LQ, Liao EY. Epigenetic mechanisms of bone regeneration and homeostasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:85-92. [DOI: 10.1016/j.pbiomolbio.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
82
|
MiR-30s Family Inhibit the Proliferation and Apoptosis in Human Coronary Artery Endothelial Cells Through Targeting the 3′UTR Region of ITGA4 and PLCG1. J Cardiovasc Pharmacol 2016; 68:327-333. [DOI: 10.1097/fjc.0000000000000419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
83
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
84
|
Abstract
Transforming growth factor β (TGF-β) and related growth factors are secreted pleiotropic factors that play critical roles in embryogenesis and adult tissue homeostasis by regulating cell proliferation, differentiation, death, and migration. The TGF-β family members signal via heteromeric complexes of type I and type II receptors, which activate members of the Smad family of signal transducers. The main attribute of the TGF-β signaling pathway is context-dependence. Depending on the concentration and type of ligand, target tissue, and developmental stage, TGF-β family members transmit distinct signals. Deregulation of TGF-β signaling contributes to developmental defects and human diseases. More than a decade of studies have revealed the framework by which TGF-βs encode a context-dependent signal, which includes various positive and negative modifiers of the principal elements of the signaling pathway, the receptors, and the Smad proteins. In this review, we first introduce some basic components of the TGF-β signaling pathways and their actions, and then discuss posttranslational modifications and modulatory partners that modify the outcome of the signaling and contribute to its context-dependence, including small noncoding RNAs.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
85
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y. MiR-132-3p Regulates the Osteogenic Differentiation of Thoracic Ligamentum Flavum Cells by Inhibiting Multiple Osteogenesis-Related Genes. Int J Mol Sci 2016; 17:ijms17081370. [PMID: 27556448 PMCID: PMC5000765 DOI: 10.3390/ijms17081370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
86
|
Seeliger C, Balmayor ER, van Griensven M. miRNAs Related to Skeletal Diseases. Stem Cells Dev 2016; 25:1261-81. [PMID: 27418331 DOI: 10.1089/scd.2016.0133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations.
Collapse
Affiliation(s)
- Claudine Seeliger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|
87
|
MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis. J Hum Genet 2016; 62:57-65. [PMID: 27488441 DOI: 10.1038/jhg.2016.98] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
In spite of advances in the diagnosis and current molecular target therapies of lung cancer, this disease remains the most common cause of cancer-related death worldwide. Approximately 80% of lung cancers is non-small cell lung cancer (NSCLC), and 5-year survival rate of the disease is ~20%. On the other hand, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown etiology. IPF is refractory to treatment and has a very low survival rate. Moreover, IPF is frequently associated with lung cancer. However, the common mechanisms shared by these two diseases remain poorly understood. In the post-genome sequence era, the discovery of noncoding RNAs, particularly microRNAs (miRNAs), has had a major impact on most biomedical fields, and these small molecules have been shown to contribute to the pathogenesis of NSCLC and IPF. Investigation of novel RNA networks mediated by miRNAs has improved our understanding of the molecular mechanisms of these diseases. This review summarizes our current knowledge on aberrantly expressed miRNAs regulating NSCLC and IPF based on miRNA expression signatures.
Collapse
|
88
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
89
|
Yun UJ, Song NJ, Yang DK, Kwon SM, Kim K, Kim S, Jo DG, Park WJ, Park KW, Kang H. miR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423. J Cell Biochem 2016; 116:2589-97. [PMID: 25903991 DOI: 10.1002/jcb.25204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in various cellular processes including proliferation and differentiation. In this study, we identified miRNA-195a (miR-195a) as a regulator of adipocyte differentiation. Differential expression of miR-195a in preadipocytes and adipocytes suggests its role in lipid accumulation and adipocyte differentiation. Forced expression of miR-195a mimics suppressed lipid accumulation and inhibited expression of adipocyte markers such as PPARγ and aP2 in 3T3-L1 and C3H10T1/2 cells. Conversely, downregulation of miR-195a by anti-miR-195a increased lipid accumulation and expression of adipocyte markers. Target prediction analysis suggested zinc finger protein 423 (Zfp423), a preadipogenic determinator, as a potential gene recognized by miR-195a. In line with this, mimicked expression of miR-195a reduced the expression of Zfp423, whereas anti-miR-195a increased its expression. Predicted targeting sequences in Zfp423 3'UTR, but not mutated sequences fused to luciferase, were regulated by miR-195a. Ectopic Zfp423 expression in 3T3-L1 cells increased lipid accumulation and expression of adipocyte markers, consistent with the observation that miR-195a targets Zfp423, resulting in suppressed adipocyte differentiation. In addition, miR-195a and Zfp423 were inversely correlated in obese fat tissues, raising the possibility of miRNA's role in obesity. Together, our data show that miR-195a is an anti-adipogenic regulator, which acts by targeting Zfp423, and further suggest the roles of miR-195a in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ui Jeong Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dong Kwon Yang
- Icahn School of Medicine at Mount Sinai, New York, USA.,College of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - So-Mi Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwangho Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Jin Park
- College of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| |
Collapse
|
90
|
Peck BCE, Sincavage J, Feinstein S, Mah AT, Simmons JG, Lund PK, Sethupathy P. miR-30 Family Controls Proliferation and Differentiation of Intestinal Epithelial Cell Models by Directing a Broad Gene Expression Program That Includes SOX9 and the Ubiquitin Ligase Pathway. J Biol Chem 2016; 291:15975-84. [PMID: 27261459 PMCID: PMC4965549 DOI: 10.1074/jbc.m116.733733] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferation and differentiation of intestinal epithelial cells (IECs) occur in part through precise regulation of key transcription factors, such as SOX9. MicroRNAs (miRNAs) have emerged as prominent fine-tuners of transcription factor expression and activity. We hypothesized that miRNAs, in part through the regulation of SOX9, may mediate IEC homeostasis. Bioinformatic analyses of the SOX9 3'-UTR revealed highly conserved target sites for nine different miRNAs. Of these, only the miR-30 family members were both robustly and variably expressed across functionally distinct cell types of the murine jejunal epithelium. Inhibition of miR-30 using complementary locked nucleic acids (LNA30bcd) in both human IECs and human colorectal adenocarcinoma-derived Caco-2 cells resulted in significant up-regulation of SOX9 mRNA but, interestingly, significant down-regulation of SOX9 protein. To gain mechanistic insight into this non-intuitive finding, we performed RNA sequencing on LNA30bcd-treated human IECs and found 2440 significantly increased genes and 2651 significantly decreased genes across three time points. The up-regulated genes are highly enriched for both predicted miR-30 targets, as well as genes in the ubiquitin-proteasome pathway. Chemical suppression of the proteasome rescued the effect of LNA30bcd on SOX9 protein levels, indicating that the regulation of SOX9 protein by miR-30 is largely indirect through the proteasome pathway. Inhibition of the miR-30 family led to significantly reduced IEC proliferation and a dramatic increase in markers of enterocyte differentiation. This in-depth analysis of a complex miRNA regulatory program in intestinal epithelial cell models provides novel evidence that the miR-30 family likely plays an important role in IEC homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - P Kay Lund
- From the Curriculum in Genetics & Molecular Biology, Cell Biology and Physiology, and
| | - Praveen Sethupathy
- From the Curriculum in Genetics & Molecular Biology, the Departments of Genetics, the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
91
|
Krohn JB, Hutcheson JD, Martínez-Martínez E, Aikawa E. Extracellular vesicles in cardiovascular calcification: expanding current paradigms. J Physiol 2016; 594:2895-903. [PMID: 26824781 PMCID: PMC4887674 DOI: 10.1113/jp271338] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023] Open
Abstract
Vascular calcification is a major contributor to the progression of cardiovascular disease, one of the leading causes of death in industrialized countries. New evidence on the mechanisms of mineralization identified calcification-competent extracellular vesicles (EVs) derived from smooth muscle cells, valvular interstitial cells and macrophages as the mediators of calcification in diseased heart valves and atherosclerotic plaques. However, the regulation of EV release and the mechanisms of interaction between EVs and the extracellular matrix leading to the formation of destabilizing microcalcifications remain unclear. This review focuses on current limits in our understanding of EVs in cardiovascular disease and opens up new perspectives on calcific EV biogenesis, release and functions within and beyond vascular calcification. We propose that, unlike bone-derived matrix vesicles, a large population of EVs implicated in cardiovascular calcification are of exosomal origin. Moreover, the milieu-dependent loading of EVs with microRNA and calcification inhibitors fetuin-A and matrix Gla protein suggests a novel role for EVs in intercellular communication, adding a new mechanism to the pathogenesis of vascular mineralization. Similarly, the cell type-dependent enrichment of annexins 2, 5 or 6 in calcifying EVs posits one of several emerging factors implicated in the regulation of EV release and calcifying potential. This review aims to emphasize the role of EVs as essential mediators of calcification, a major determinant of cardiovascular mortality. Based on recent findings, we pinpoint potential targets for novel therapies to slow down the progression and promote the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Jona B Krohn
- Center for Excellence in Vascular Biology, Harvard Medical School, Boston, MA, USA
| | - Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Boston, MA, USA
| | | | - Elena Aikawa
- Center for Excellence in Vascular Biology, Harvard Medical School, Boston, MA, USA
- Center for Interdisciplinary Cardiovascular Sciences, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
92
|
Peng S, Gao D, Gao C, Wei P, Niu M, Shuai C. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol Med Rep 2016; 14:623-9. [PMID: 27222009 PMCID: PMC4918597 DOI: 10.3892/mmr.2016.5335] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease.
Collapse
Affiliation(s)
- Shuping Peng
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Gao
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| | - Pingpin Wei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Man Niu
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
93
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1062] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
94
|
Kang H, Hata A. The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep 2016; 48:319-23. [PMID: 25341923 PMCID: PMC4578617 DOI: 10.5483/bmbrep.2015.48.6.206] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells capable of differentiating into adipocytes, osteoblasts, or chondrocytes. A mutually inhibitory relationship exists between osteogenic and adipogenic lineage commitment and differentiation. Such cell fate decision is regulated by several signaling pathways, including Wnt and bone morphogenetic protein (BMP). Accumulating evidence indicates that microRNAs (miRNAs) act as switches for MSCs to differentiate into either osteogenic or adipogenic lineage. Different miRNAs have been reported to regulate a master transcription factor for osteogenesis, such as Runx2, as well as molecules in the Wnt or BMP signaling pathway, and control the balance between osteoblast and adipocyte differentiation. Here, we discuss recent advancement of the cell fate decision of MSCs by miRNAs and their targets. [BMB Reports 2015; 48(6): 319-323]
Collapse
Affiliation(s)
- Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Korea
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
95
|
Nakasa T, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E, Ochi M. MicroRNAs and Bone Regeneration. Curr Genomics 2016; 16:441-52. [PMID: 27019619 PMCID: PMC4765532 DOI: 10.2174/1389202916666150817213630] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022] Open
Abstract
Bone has multiple functions, both morphologically and physiologically, and it frequently features in the pathological condition, including fracture and osteoporosis. For bone regeneration therapy, the regulation of osteoblast differentiation is important. MicroRNA (miRNA)s are short noncoding RNA which regulate gene expression at the post-transcriptional level. MiRNAs play an important role not only in a variety of other cellular processes including differentiation, proliferation, and apoptosis but also in the pathogenesis of human diseases. Recently, miRNAs have been known to participate in osteoblast differentiation by regulating several signaling pathways including transcription
factors. New insight into the mechanism during osteogenes is affected by miRNAs has been gained. Moreover, therapeutic trials for bone diseases including osteoporosis, fracture and bone defects targeting miRNAs have been examined in animal models. MiRNA therapy will enable development of a bone regeneration therapy.
Collapse
Affiliation(s)
- Tomoyuki Nakasa
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Masaaki Yoshizuka
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Muhammad Andry Usman
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Elhussein Elbadry Mahmoud
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| | - Mitsuo Ochi
- Department of Orthopaedics Surgery, Integrated Health Sciences, Institute of Biomedical & health Science, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima City, 734-8551, Japan
| |
Collapse
|
96
|
Ekman M, Albinsson S, Uvelius B, Swärd K. MicroRNAs in Bladder Outlet Obstruction: Relationship to Growth and Matrix Remodelling. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:5-17. [DOI: 10.1111/bcpt.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Mari Ekman
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | | | - Bengt Uvelius
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | - Karl Swärd
- Department of Experimental Medical Science; Lund University; Lund Sweden
| |
Collapse
|
97
|
The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Biomaterials 2016; 75:279-294. [DOI: 10.1016/j.biomaterials.2015.10.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 12/14/2022]
|
98
|
Abstract
Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene expression. The most abundant regulatory ncRNAs are the 20-24 nt small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just being recognized. While the importance of lncRNAs in epigenetic control of transcription, developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic and resorptive bone cells, coupled with in vivo gain- and loss-of-function studies, discovered unique mechanisms that support bone development and bone homeostasis in adults. We present here "guiding principles" for addressing biological control of bone tissue formation by ncRNAs. This review emphasizes recent advances in understanding regulation of the process of miRNA biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling pathways. Also discussed are the approaches to be pursued for an understanding of the role of lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for skeletal disorders are possible. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Oral & Maxillofacial Surgery, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
99
|
Li L, Yang C, Liu X, Yang S, Ye S, Jia J, Liu W, Zhang Y. Elevated expression of microRNA-30b in osteoarthritis and its role in ERG regulation of chondrocyte. Biomed Pharmacother 2015; 76:94-9. [PMID: 26653555 DOI: 10.1016/j.biopha.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/16/2015] [Indexed: 12/30/2022] Open
Abstract
ERG (ETS-related gene) belongs to the ETS family of transcription factors, and has been recently reported to contribute to homeostatic balance in skeleton cell plasticity. MicroRNA-30 (miR-30) family is also demonstrated to play a role in controlling chondrocyte differentiation. The current study investigated the miR-30b and ERG expression in articular cartilage of osteoarthritis (OA) patients. A total of 20 subjects, with 10 OA patients and 10 healthy participants, were included in this study. Human chondrosarcoma cell line SW1353 was used to explore the relationship of miR-30b and ERG in vitro. In OA patients, a significant increase of miR-30b and a decrease of ERG were observed in articular cartilage compared with Normal ones. MiR-30b mimic down-regulated the ERG mRNA and protein expression levels, while miR-30b inhibitor up-regulated ERG expression. In addition, miR-30b mimic also decreased the mRNA expression of COL2a and aggrecan, while miR-30b inhibitor had the opposite effect. Luciferase reporter assay confirmed that miR-30b targeted ERG. In conclusion, miR-30b was involved in the process of OA, and it probably functioned through its target gene ERG.
Collapse
Affiliation(s)
- Lisong Li
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianzhe Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shunan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
100
|
MicroRNAs' Involvement in Osteoarthritis and the Prospects for Treatments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:236179. [PMID: 26587043 PMCID: PMC4637488 DOI: 10.1155/2015/236179] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a chronic disease and its etiology is complex. With increasing OA incidence, more and more people are facing heavy financial and social burdens from the disease. Genetics-related aspects of OA pathogenesis are not well understood. Recent reports have examined the molecular mechanisms and genes related to OA. It has been realized that genetic changes in articular cartilage and bone may contribute to OA's development. Osteoclasts, osteoblasts, osteocytes, and chondrocytes in joints must express appropriate genes to achieve tissue homeostasis, and errors in this can cause OA. MicroRNAs (miRNAs) are small noncoding RNAs that have been discovered to be overarching regulators of gene expression. Their ability to repress many target genes and their target-binding specificity indicate a complex network of interactions, which is still being defined. Many studies have focused on the role of miRNAs in bone and cartilage and have identified numbers of miRNAs that play important roles in regulating bone and cartilage homeostasis. Those miRNAs may also be involved in the pathology of OA, which is the focus of this review. Future studies on the role of miRNAs in OA will provide important clues leading to a better understanding of the mechanism(s) of OA and, more particularly, to the development of therapeutic targets for OA.
Collapse
|