51
|
Stirling PC, Bakhoum SF, Feigl AB, Leroux MR. Convergent evolution of clamp-like binding sites in diverse chaperones. Nat Struct Mol Biol 2006; 13:865-70. [PMID: 17021621 DOI: 10.1038/nsmb1153] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular chaperones have evolved diverse tertiary and quaternary structures to stabilize non-native polypeptides and facilitate their transition to the native state. Indeed, different families of chaperones lack sequence similarity, and few are represented ubiquitously in all three domains of life. Despite their discrete evolutionary paths, recent crystal structures reveal that many chaperones use seemingly convergent strategies to bind non-native proteins. This crystallographic evidence shows, or strongly suggests, that chaperones including prefoldin, Skp, trigger factor, Hsp40 and Hsp90 have clamp-like structural features used to grip substrate proteins. We explore the notion that clamp-like structures are evolutionarily favored by both ATP-dependent and ATP-independent molecular chaperones. Presumably, clamps present a multivalent binding surface ideal for protecting unstable protein conformers until they reach the native state or are transferred to another component of the folding machinery.
Collapse
Affiliation(s)
- Peter C Stirling
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | | | | | | |
Collapse
|
52
|
Bird JG, Sharma S, Roshwalb SC, Hoskins JR, Wickner S. Functional Analysis of CbpA, a DnaJ Homolog and Nucleoid-associated DNA-binding Protein. J Biol Chem 2006; 281:34349-56. [PMID: 16973605 DOI: 10.1074/jbc.m603365200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaK/Hsp70 proteins are universally conserved ATP-dependent molecular chaperones that help proteins adopt and maintain their native conformations. DnaJ/Hsp40 and GrpE are co-chaperones that assist DnaK. CbpA is an Escherichia coli DnaJ homolog. It acts as a multicopy suppressor for dnaJ mutations and functions in vitro in combination with DnaK and GrpE in protein remodeling reactions. CbpA binds nonspecifically to DNA with preference for curved DNA and is a nucleoid-associated protein. The DNA binding and co-chaperone activities of CbpA are modulated by CbpM, a small protein that binds specifically to CbpA. To identify the regions of CbpA involved in the interaction of CbpA with CbpM and those involved in DNA binding, we constructed and characterized deletion and substitution mutants of CbpA. We discovered that CbpA interacted with CbpM through its N-terminal J-domain. We found that the region C-terminal to the J-domain was required for DNA binding. Moreover, we found that the CbpM interaction, DNA binding, and co-chaperone activities were separable; some mutants were proficient in some functions and defective in others.
Collapse
Affiliation(s)
- Jeremy G Bird
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
53
|
Li J, Wu Y, Qian X, Sha B. Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. Biochem J 2006; 398:353-60. [PMID: 16737444 PMCID: PMC1559466 DOI: 10.1042/bj20060618] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heat shock protein (Hsp) 40 facilitates the critical role of Hsp70 in a number of cellular processes such as protein folding, assembly, degradation and translocation in vivo. Hsp40 and Hsp70 stay in close contact to achieve these diverse functions. The conserved C-terminal EEVD motif in Hsp70 has been shown to regulate Hsp40-Hsp70 interaction by an unknown mechanism. Here, we provide a structural basis for this regulation by determining the crystal structure of yeast Hsp40 Sis1 peptide-binding fragment complexed with the Hsp70 Ssa1 C-terminal. The Ssa1 extreme C-terminal eight residues, G634PTVEEVD641, form a beta-strand with the domain I of Sis1 peptide-binding fragment. Surprisingly, the Ssa1 C-terminal binds Sis1 at the site where Sis1 interacts with the non-native polypeptides. The negatively charged residues within the EEVD motif in Ssa1 C-terminal form extensive charge-charge interactions with the positively charged residues in Sis1. The structure-based mutagenesis data support the structural observations.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Brimingham, AL 35294-0005, U.S.A
| | - Yunkun Wu
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Brimingham, AL 35294-0005, U.S.A
| | - Xinguo Qian
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Brimingham, AL 35294-0005, U.S.A
| | - Bingdong Sha
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Brimingham, AL 35294-0005, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
54
|
Cintron NS, Toft D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J Biol Chem 2006; 281:26235-44. [PMID: 16854979 DOI: 10.1074/jbc.m605417200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.
Collapse
Affiliation(s)
- Nela S Cintron
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
55
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
56
|
Cajo GC, Horne BE, Kelley WL, Schwager F, Georgopoulos C, Genevaux P. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J Biol Chem 2006; 281:12436-44. [PMID: 16533811 DOI: 10.1074/jbc.m511192200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To perform effectively as a molecular chaperone, DnaK (Hsp70) necessitates the assistance of its DnaJ (Hsp40) co-chaperone partner, which efficiently stimulates its intrinsically weak ATPase activity and facilitates its interaction with polypeptide substrates. In this study, we address the function of the conserved glycine- and phenylalanine-rich (G/F-rich) region of the Escherichia coli DnaJ in the DnaK chaperone cycle. We show that the G/F-rich region is critical for DnaJ co-chaperone functions in vivo and that despite a significant degree of sequence conservation among the G/F-rich regions of Hsp40 homologs from bacteria, yeast, or humans, functional complementation in the context of the E. coli DnaJ is limited. Furthermore, we found that the deletion of the whole G/F-rich region is mirrored by mutations in the conserved Asp-Ile/Val-Phe (DIF) motif contained in this region. Further genetic and biochemical analyses revealed that this amino acid triplet plays a critical role in regulation of the DnaK chaperone cycle, possibly by modulating a crucial step subsequent to DnaK-mediated ATP hydrolysis.
Collapse
Affiliation(s)
- Gordana Cogelja Cajo
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1, rue Michel-Servet, CH-1211, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
57
|
Li J, Sha B. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40. Biochem J 2005; 386:453-60. [PMID: 15500443 PMCID: PMC1134863 DOI: 10.1042/bj20041050] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ydj1 is the major type I Hsp40 (heat-shock protein 40) family member in yeast. Ydj1 can pair with yeast Hsp70 Ssa1 to facilitate protein translocation and protein folding. Ydj1 itself can also function as a molecular chaperone to bind the non-native polypeptides and suppress protein aggregations in vitro. The crystal structure of Ydj1 complexed with its peptide substrate GWLYEIS reveals that a hydrophobic pocket located on Ydj1 domain I may play a major role in mediating the interactions between Ydj1 and the peptide substrate. To understand the mechanism by which Ydj1 interacts with non-native polypeptide, we have mutated the residues forming the hydrophobic pocket, based on the structural information. We have also constructed deletion mutations of the zinc-finger motifs within Ydj1. We have examined the functional consequences of these Ydj1 mutants by in vivo and in vitro assays. The results indicated that the hydrophobic pocket located on Ydj1 plays a critical role in its molecular chaperone activity by mediating interactions with the non-native polypeptides.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-0005, U.S.A
| | - Bingdong Sha
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-0005, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
58
|
Borges JC, Fischer H, Craievich AF, Ramos CHI. Low Resolution Structural Study of Two Human HSP40 Chaperones in Solution. J Biol Chem 2005; 280:13671-81. [PMID: 15661747 DOI: 10.1074/jbc.m408349200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins that belong to the heat shock protein (Hsp) 40 family assist Hsp70 in many cellular functions and are important for maintaining cell viability. A knowledge of the structural and functional characteristics of the Hsp40 family is therefore essential for understanding the role of the Hsp70 chaperone system in cells. In this work, we used small angle x-ray scattering and analytical ultracentrifugation to study two representatives of human Hsp40, namely, DjA1 (Hdj2/dj2/HSDJ/Rdj1) from subfamily A and DjB4 (Hlj1/DnaJW) from subfamily B, and to determine their quaternary structure. We also constructed low resolution models for the structure of DjA1-(1-332), a C-terminal-deleted mutant of DjA1 in which dimer formation is prevented. Our results, together with the current structural information of the Hsp40 C-terminal and J-domains, were used to generate models of the internal structural organization of DjA1 and DjB4. The characteristics of these models indicated that DjA1 and DjB4 were both dimers, but with substantial differences in their quaternary structures: whereas DjA1 consisted of a compact dimer in which the N and C termini of the two monomers faced each other, DjB4 formed a dimer in which only the C termini of the two monomers were in contact. The two proteins also differed in their ability to bind unfolded luciferase. Overall, our results indicate that these representatives of subfamilies A and B of human Hsp40 have different quaternary structures and chaperone functions.
Collapse
Affiliation(s)
- Júlio C Borges
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, CP 6192, 13084-971, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
59
|
Aron R, Lopez N, Walter W, Craig EA, Johnson J. In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 2005; 169:1873-82. [PMID: 15687271 PMCID: PMC1449600 DOI: 10.1534/genetics.104.037242] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The essential Hsp40, Sis1, is a J-protein cochaperone for the Ssa class of Hsp70's of Saccharomyces cerevisiae. Sis1 is required for the maintenance of the prion [RNQ(+)], as Sis1 lacking its 55-amino-acid glycine-rich region (G/F) does not maintain [RNQ(+)]. We report that overexpression of Sis1DeltaG/F in an otherwise wild-type strain had a negative effect on both cell growth and [RNQ(+)] maintenance, while overexpression of wild-type Sis1 did not. Overexpression of the related Hsp40 Ydj1 lacking its G/F region did not cause inhibition of growth, indicating that this dominant effect of Sis1DeltaG/F is not a characteristic shared by all Hsp40's. Analysis of small deletions within the SIS1 G/F region indicated that the observed dominant effects were caused by the absence of sequences known to be important for Sis1's unique cellular functions. These inhibitory effects of Sis1DeltaG/F were obviated by alterations in the N-terminal J-domain of Sis1 that affect interaction with Ssa's ATPase domain. In addition, a genetic screen designed to isolate additional mutations that relieved these inhibitory effects identified two residues in Sis1's carboxy-terminal domain. These alterations disrupted the interaction of Sis1 with the 10-kD carboxy-terminal regulatory domain of Ssa1, indicating that Sis1 has a bipartite interaction with Ssa in vivo.
Collapse
Affiliation(s)
- Rebecca Aron
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | |
Collapse
|
60
|
Fan CY, Ren HY, Lee P, Caplan AJ, Cyr DM. The type I Hsp40 zinc finger-like region is required for Hsp70 to capture non-native polypeptides from Ydj1. J Biol Chem 2005; 280:695-702. [PMID: 15496404 DOI: 10.1074/jbc.m410645200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytosolic yeast Hsp40 Ydj1 contains a conserved zinc finger-like region (ZFLR), which has two zinc-binding domains (ZBD), that helps regulate and specify Hsp70 function. To investigate the mechanism for Ydj1 ZFLR action, ZBDI and ZBDII mutants were constructed and characterized. ZBDII mutants exhibited temperature-sensitive growth defects, but yeast tolerated mutation of ZBDI. However, ZBDI and ZBDII mutants were defective at facilitating androgen receptor (AR) folding. Defective AR folding was associated with the accumulation of complexes between AR and Ydj1 ZFLR mutants and a reduction in Hsp70.AR complex formation. Purified Ydj1 ZBDI and ZBDII mutants could bind non-native polypeptides but could not deliver luciferase to Hsp70 and were defective at luciferase refolding. Interestingly, the ability of Ydj1 to synergize with Hsp70 to suppress thermally induced protein aggregation was blocked by mutation of ZBDII, but not ZBDI. Hence, ZBDII is required for yeast to survive heat stress because it is essential for Ydj1 to cooperate with Hsp70 to suppress protein aggregation. On the other hand, protein folding is dependent upon the action of both ZBDI and ZBDII because each is required for Hsp70 to capture non-native polypeptides from Ydj1.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | | | |
Collapse
|
61
|
Abstract
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
62
|
Li J, Qian X, Sha B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 2004; 11:1475-83. [PMID: 14656432 DOI: 10.1016/j.str.2003.10.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms by which Hsp40 functions as a molecular chaperone to recognize and bind non-native polypeptides is not understood. We have identified a peptide substrate for Ydj1, a member of the type I Hsp40 from yeast. The structure of the Ydj1 peptide binding fragment and its peptide substrate complex was determined to 2.7 A resolution. The complex structure reveals that Ydj1 peptide binding fragment forms an L-shaped molecule constituted by three domains. The domain I exhibits a similar protein folds as domain III while the domain II contains two Zinc finger motifs. The peptide substrate binds Ydj1 by forming an extra beta strand with domain I of Ydj1. The Leucine residue in the middle of the peptide substrate GWLYEIS inserts its side chain into a hydrophobic pocket formed on the molecular surface of Ydj1 domain I. The Zinc finger motifs located in the Ydj1 domain II are not in the vicinity of peptide substrate binding site.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
63
|
Mohler PJ, Hoffman JA, Davis JQ, Abdi KM, Kim CR, Jones SK, Davis LH, Roberts KF, Bennett V. Isoform specificity among ankyrins. An amphipathic alpha-helix in the divergent regulatory domain of ankyrin-b interacts with the molecular co-chaperone Hdj1/Hsp40. J Biol Chem 2004; 279:25798-804. [PMID: 15075330 DOI: 10.1074/jbc.m401296200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrins-R, -B, and -G are a family of membrane-associated adaptors required for localization of structurally diverse proteins to specialized membrane domains, including axon initial segments, cardiomyocyte T-tubules, and epithelial cell lateral membranes. Ankyrins are often co-expressed in the same cells and, although structurally similar, have non-overlapping functions. We previously determined that the regulatory domain of ankyrin-B defines specificity between ankyrins B and G in cardiomyocytes. Here, we identify key residues on the surface of an amphipathic alpha-helix unique to the regulatory domain of ankyrin-B that are essential for the function of ankyrin-B in cardiomyocytes. Using circular dichroism, we determined that a peptide representing the predicted helix folds as a helix in solution. Alanine-scanning mutagenesis revealed that residues 1773, 1777, 1780, 1784, and 1788 located in a patch on one surface the helix are critical for ankyrin-B function in cardiomyocytes. In a parallel set of experiments we determined that the molecular co-chaperone human DnaJ homologue 1 (Hdj1)/Hsp40 interacts with the ankyrin-B regulatory domain. Moreover, interaction of Hdj1/Hsp40 with the regulatory domain was mapped by random mutagenesis to same surface of the alpha-helix that is required for ankyrin-B function. These results provide new insight into the molecular basis for specificity between ankyrin-based pathways by defining a key alpha-helix structure in the divergent regulatory domain of ankyrin-B as well as interaction of the helix with Hdj1/Hsp40, the first downstream target for ankyrin-B-specific function.
Collapse
Affiliation(s)
- Peter J Mohler
- Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurosciences, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Fan CY, Lee S, Ren HY, Cyr DM. Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 2003; 15:761-73. [PMID: 14657253 PMCID: PMC329391 DOI: 10.1091/mbc.e03-03-0146] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hsp40 family members regulate Hsp70s ability to bind nonnative polypeptides and thereby play an essential role in cell physiology. Type I and type II Hsp40s, such as yeast Ydj1 and Sis1, form chaperone pairs with cytosolic Hsp70 Ssa1 that fold proteins with different efficiencies and carry out specific cellular functions. The mechanism by which Ydj1 and Sis1 specify Hsp70 functions is not clear. Ydj1 and Sis1 share a high degree of sequence identity in their amino and carboxyl terminal ends, but each contains a structurally unique and centrally located protein module that is implicated in chaperone function. To test whether the chaperone modules of Ydj1 and Sis1 function in the specification of Hsp70 action, we constructed a set of chimeric Hsp40s in which the chaperone domains of Ydj1 and Sis1 were swapped to form YSY and SYS. Purified SYS and YSY exhibited protein-folding activity and substrate specificity that mimicked that of Ydj1 and Sis1, respectively. In in vivo studies, YSY exhibited a gain of function and, unlike Ydj1, could complement the lethal phenotype of sis1 Delta and facilitate maintenance of the prion [RNQ+]. Ydj1 and Sis1 contain exchangeable chaperone modules that assist in specification of Hsp70 function.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | |
Collapse
|
65
|
Zhao Z, Peng Y, Hao SF, Zeng ZH, Wang CC. Dimerization by domain hybridization bestows chaperone and isomerase activities. J Biol Chem 2003; 278:43292-8. [PMID: 12933788 DOI: 10.1074/jbc.m306945200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin, DsbA, the N-terminal active-site domain a and the non-active-site domain b of protein-disulfide isomerase are all monomeric with a thioredoxin fold, and each exhibits low or no isomerase and chaperone activity. We have linked the N terminus of the above four monomers, individually, to the C terminus of the N-terminal domain of DsbC via the flexible linker helix of the latter to produce four domain hybrids, DsbCn-Trx, DsbCn-DsbA, DsbCn-PDIa, and DsbCn-PDIb. These four hybrid proteins form homodimers, and except for DsbCn-PDIb they exhibit new or greatly elevated isomerase as well as chaperone activity. Three-dimensional structure prediction indicates that all the four domain hybrids adopt DsbC-like V-shaped structure with a broad uncharged cleft between the two arms for binding of non-native protein folding intermediates. The results provide strong evidence that dimerization creates chaperone and isomerase activity for monomeric thiol-protein oxidases or reductases, and suggesting a pathway for proteins to acquire new functions and/or higher biological efficiency during evolution.
Collapse
Affiliation(s)
- Zhen Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academi of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
66
|
Kampinga HH, Kanon B, Salomons FA, Kabakov AE, Patterson C. Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells. Mol Cell Biol 2003; 23:4948-58. [PMID: 12832480 PMCID: PMC162225 DOI: 10.1128/mcb.23.14.4948-4958.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHIP is a cochaperone of Hsp70 that inhibits Hsp70-dependent refolding in vitro. However, the effect of altered expression of CHIP on the fate of unfolded proteins in mammalian cells has not been determined. Surprisingly, we found that overexpression of CHIP in fibroblasts increased the refolding of proteins after thermal denaturation. This effect was insensitive to geldanamycin, an Hsp90 inhibitor, and required the tetratricopeptide repeat motifs but not the U-box domain of CHIP. Inhibition of Hsp70 chaperone activity abolished the effects of CHIP on protein folding, indicating that the CHIP-mediated events were Hsp70 dependent. Hsp40 competitively inhibited the CHIP-dependent refolding, which is consistent with in vitro data indicating that these cofactors act on Hsp70 in the ATP-bound state and have opposing effects on Hsp70 ATPase activity. Consistent with these observations, CHIP overexpression did not alter protein folding in the setting of ATP depletion, when Hsp70 is in the ADP-bound state. Concomitant with its effects on refolding heat-denatured substrates, CHIP increased the fraction of nascent chains coimmunoprecipitating with Hsc70, but only when sufficient ATP was present to allow Hsp70 to cycle rapidly. Our data suggest that, consistent with in vitro studies, CHIP attenuates the Hsp70 cycle in living cells. The impact of this effect on the fate of unfolded proteins in cells, however, is different from what might be expected from the in vitro data. Rather than resulting in inhibited refolding, CHIP increases the folding capacity of Hsp70 in eukaryotic cells.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Radiation & Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
67
|
Stirling PC, Lundin VF, Leroux MR. Getting a grip on non-native proteins. EMBO Rep 2003; 4:565-70. [PMID: 12776175 PMCID: PMC1319208 DOI: 10.1038/sj.embor.embor869] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 04/24/2003] [Indexed: 11/09/2022] Open
Abstract
It is an underappreciated fact that non-native polypeptides are prevalent in the cellular environment. Native proteins have the folded structure, assembled state and cellular localization required for activity. By contrast, non-native proteins lack function and are particularly prone to aggregation because hydrophobic residues that are normally buried are exposed on their surfaces. These unstable entities include polypeptides that are undergoing synthesis, transport to and translocation across membranes, and those that are unfolded before degradation. Non-native proteins are normal, biologically relevant components of a healthy cell, except in cases in which their misfolding results from disease-causing mutations or adverse extrinsic factors. Here, we explore the nature and occurrence of non-native proteins, and describe the diverse families of molecular chaperones and coordinated cellular responses that have evolved to prevent their misfolding and aggregation, thereby maintaining quality control over these potentially damaging protein species.
Collapse
Affiliation(s)
- Peter C. Stirling
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- These authors contributed equally to this work
| | - Victor F. Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- These authors contributed equally to this work
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- Tel: +1 604 268 6683; Fax: +1 604 291 5583;
| |
Collapse
|