51
|
Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci Rep 2015; 5:8047. [PMID: 25623238 PMCID: PMC4306959 DOI: 10.1038/srep08047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/31/2014] [Indexed: 12/19/2022] Open
Abstract
Three JNK isoforms, JNK1, JNK2, and JNK3 have been reported and unique biological function has been ascribed to each. It is unknown if selective inhibition of these isoforms would confer therapeutic or safety benefit. To probe JNK isoform function we designed JNK2/3 inhibitors that have >30-fold selectivity over JNK1. Utilizing site-directed mutagenesis and x-ray crystallography we identified L144 in JNK3 as a key residue for selectivity. To test whether JNK2/3 selective inhibitors protect human dopaminergic neurons against neurotoxin-induced mitochondrial dysfunction, we monitored reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP). The results showed that JNK2/3 selective inhibitors protected against 6-hydroxydopamine-induced ROS generation and MMP depolarization. These results suggest that it was possible to develop JNK2/3 selective inhibitors and that residues in hydrophobic pocket I were responsible for selectivity. Moreover, the findings also suggest that inhibition of JNK2/3 likely contributed to protecting mitochondrial function and prevented ultimate cell death.
Collapse
|
52
|
Han D, Scott EL, Dong Y, Raz L, Wang R, Zhang Q. Attenuation of mitochondrial and nuclear p38α signaling: a novel mechanism of estrogen neuroprotection in cerebral ischemia. Mol Cell Endocrinol 2015; 400:21-31. [PMID: 25462588 DOI: 10.1016/j.mce.2014.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
P38 mitogen-activated protein kinase (MAPK) is a pro-apoptotic and pro-inflammatory protein that is activated in response to cellular stress. While p38 is known to be activated in response to cerebral ischemia, the precise role of p38 and its isoforms in ischemia-induced neuronal apoptosis remains unclear. In the current study, we examined the differential activation and functional roles of p38α and p38β MAPK isoforms in short-term ovariectomized female rats treated with either the neuroprotective ovarian hormone 17beta-estradiol (E2) or placebo in a model of global cerebral ischemia (GCI). GCI induced biphasic activation of total p38 in the hippocampal CA1, with peaks at 30 min and 1 day after 10-min ischemia-reperfusion. Further study demonstrated that activated p38α, but not p38β, translocated to the nucleus 30 min and 3 h post reperfusion, and that this event coincided with increased phosphorylation of activating transcription factor 2 (ATF2), a p38 target protein. Intriguingly, activated p38α was also enhanced in mitochondrial fractions of CA1 neurons 1 day after GCI, and there was loss of mitochondrial membrane potential, as well as enhanced cytochrome c release and caspase-3 cleavage at 2 days post GCI. Importantly, E2 prevented the biphasic activation of p38, as well as both nuclear and mitochondrial translocation of p38α after GCI, and these findings correlated with attenuation of mitochondrial dysfunction and delayed neuronal cell death in the hippocampal CA1. Furthermore, administration of a p38 inhibitor was able to mimic the neuroprotective effects of E2 in the hippocampal CA1 region by preventing nuclear and mitochondrial translocation of p38α, loss of mitochondrial membrane potential, and neuronal apoptosis. As a whole, this study suggests that changes in subcellular localization of the activated p38α isoform are required for neuronal apoptosis following GCI, and that E2 exerts robust neuroprotection, in part, through dual inhibition of activation and subcellular trafficking of p38α.
Collapse
Affiliation(s)
- Dong Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Jiangsu 221004, China
| | - Erin L Scott
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Limor Raz
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Neurobiology Institute of Medical Research Centre, Hebei United University, Tangshan, Hebei 06300, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
53
|
Abstract
The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|
54
|
Yu D, Li M, Tian Y, Liu J, Shang J. Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury. Life Sci 2014; 122:15-25. [PMID: 25476833 DOI: 10.1016/j.lfs.2014.11.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 11/25/2022]
Abstract
AIMS Luteolin is a falconoid compound that has an antioxidant effect, but its contribution to ROS-activated MAPK pathways in ischemia/reperfusion injury is seldom reported. Here, we have confirmed that it exhibits an antioxidant effect in myocardial ischemia/reperfusion injury (MIRI) by inhibiting ROS-activated MAPK pathways. MAIN METHODS We exposed rat hearts into the left anterior descending coronary artery (LAD) ligation for 30min followed by 1h of reperfusion. Observations were carried out using electrocardiography; detection of hemodynamic parameters; and testing levels of lactate dehydrogenase (LDH), creatine kinase (CK), total superoxide dismutase (T-SOD), and malondialdehyde (MDA). Mitogen-activated protein kinase (MAPK) pathway was measured by western blot and transmission electron microscopy was applied to observe the myocardial ultrastructure. Rat H9c2 cell in 95% N2 and 5% CO2 stimulated the MIRI. Oxidation system mRNA levels were measured by real-time PCR; mitochondrial membrane potential and apoptosis were measured by confocal microscopy and flow cytometry; western blot analysis was used to assay caspase-3, -8, and -9 and MAPK pathway protein expression; the MAPK pathway was inhibited using SB203580 (p38 MAPK inhibitor) and SP600125 (c-Jun NH2-terminal kinase inhibitor) before H9c2 cells were exposed to hypoxia/reoxygenation injury to show the modulation of the changes in ROS generation, cell viability and apoptosis. KEY FINDINGS In vivo, luteolin can ameliorate the impaired mitochondrial morphology, regulating the MAPK pathway to protect MIRI. In vitro, luteolin can affect the oxidation system, mitochondrial membrane potential and MAPK pathway to anti-apoptosis. SIGNIFICANCE These results reveal a ROS-MAPK mediated mechanism and mitochondrial pathway through which luteolin can protect myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dongsheng Yu
- Center for Drug Screening & State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Mengwen Li
- Center for Drug Screening & State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Youqing Tian
- Lianyungang TCM Branch, Jiangsu Union Technical Institute, Lianyungang 222007, PR China
| | - Jun Liu
- Center for Drug Screening & State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jing Shang
- Center for Drug Screening & State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.
| |
Collapse
|
55
|
Jang S, Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK. PLoS One 2014; 9:e113526. [PMID: 25423094 PMCID: PMC4244102 DOI: 10.1371/journal.pone.0113526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
c-Jun N-terminal kinase (JNK), a stress-activated MAPK, is activated during cardiac ischemia-reperfusion (IR). The role of JNK inhibitors in cardioprotection against IR still remains controversial, in part, due to spill-over effects of non-specific inhibitors. In the present study, we sought to examine whether inhibition of JNK by SU3327, a specific JNK inhibitor that inhibits upstream JNK signaling rather than the kinase activity of JNK, improves cardiac function and reduces heart damage during IR. Hearts of male Sprague-Dawley rats perfused by Langendorff were subjected to 25 min of global ischemia followed by 30 min reperfusion in the presence or absence of SU3327. Cardiac function was monitored throughout the perfusion period. Myocardial damage was extrapolated from LDH activity in the coronary effluent. At the end of reperfusion, mitochondria were isolated and used to measure respiration rates and mitochondrial permeability transition pore opening. Protein analysis of mitochondria predictably revealed that SU3327 inhibited JNK phosphorylation. Although SU3327 significantly reduced cell damage during the first minutes of reperfusion, it did not improve cardiac function and, furthermore, reduced the mitochondrial respiratory control index. Interestingly, SU3327 activated the other stress-related MAPK, p38, and greatly increased its translocation to mitochondria. Mitochondrial P-JNK and P-p38 were co-immunoprecipitated with complex III of the electron transfer chain. Thus, JNK plays an essential role in cardiac signaling under both physiological and pathological conditions. Its inhibition by SU3327 during IR aggravates cardiac function. The detrimental effects of JNK inhibition are associated with reciprocal p38 activation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
56
|
Zheng K, Iqbal S, Hernandez P, Park H, LoGrasso PV, Feng Y. Design and synthesis of highly potent and isoform selective JNK3 inhibitors: SAR studies on aminopyrazole derivatives. J Med Chem 2014; 57:10013-30. [PMID: 25393557 PMCID: PMC4266361 DOI: 10.1021/jm501256y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
The
c-jun N-terminal kinase 3 (JNK3) is expressed primarily in
the brain. Numerous reports have shown that inhibition of JNK3 is
a promising strategy for treatment of neurodegeneration. The optimization
of aminopyrazole-based JNK3 inhibitors with improved potency, isoform
selectivity, and pharmacological properties by structure–activity
relationship (SAR) studies utilizing biochemical and cell-based assays,
and structure-based drug design is reported. These inhibitors had
high selectivity over JNK1 and p38α, minimal cytotoxicity, potent
inhibition of 6-OHDA-induced mitochondrial membrane potential dissipation
and ROS generation, and good drug metabolism and pharmacokinetic (DMPK)
properties for iv dosing. 26n was profiled against 464
kinases and was found to be highly selective hitting only seven kinases
with >80% inhibition at 10 μM. Moreover, 26n showed
good solubility, good brain penetration, and good DMPK properties.
Finally, the crystal structure of 26k in complex with
JNK3 was solved at 1.8 Å to explore the binding mode of aminopyrazole
based JNK3 inhibitors.
Collapse
Affiliation(s)
- Ke Zheng
- Medicinal Chemistry, ‡Discovery Biology, §Crystallography/Modeling Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, Scripps Florida, The Scripps Research Institute , 130 Scripps Way, No. 2A1, Jupiter, Florida 33458, United States
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France.
| |
Collapse
|
58
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
59
|
Xu J, Qin X, Cai X, Yang L, Xing Y, Li J, Zhang L, Tang Y, Liu J, Zhang X, Gao F. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis 2014; 1852:262-70. [PMID: 24859228 DOI: 10.1016/j.bbadis.2014.05.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/01/2023]
Abstract
c-Jun N-terminal kinase (JNK) is a stress-activated mitogen-activated protein kinase that plays a central role in initiating apoptosis in disease conditions. Recent studies have shown that mitochondrial JNK signaling is partly responsible for ischemic myocardial dysfunction; however, the underlying mechanism remains unclear. Here we report for the first time that activation of mitochondrial JNK, rather than JNK localization on mitochondria, induces autophagy and apoptosis and aggravates myocardial ischemia/reperfusion injury. Myocardial ischemia/reperfusion induced a dominant increase of mitochondrial JNK phosphorylation, while JNK mitochondrial localization was reduced. Treatment with Tat-SabKIM1, a retro-inverso peptide which blocks JNK interaction with mitochondria, decreased mitochondrial JNK activation without affecting JNK mitochondrial localization following reperfusion. Tat-SabKIM1 treatment reduced Bcl2-regulated autophagy, cytochrome c-mediated apoptosis and myocardial infarct size. Notably, selective inhibition of mitochondrial JNK activation using Tat-SabKIM1 produced a similar infarct size-reducing effect as inhibiting universal JNK activation with JNK inhibitor SP600125. Moreover, insulin-treated animals exhibited significantly dampened mitochondrial JNK activation accompanied by reduced infarct size and diminished autophagy and apoptosis following reperfusion. Taken together, these findings demonstrate that mitochondrial JNK activation, rather than JNK mitochondrial localization, induces autophagy and apoptosis and exacerbates myocardial ischemia/reperfusion injury. Insulin selectively inhibits mitochondrial JNK activation, contributing to insulin cardioprotection against myocardial ischemic/reperfusion injury. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Jie Xu
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Xinghua Qin
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Xiaoqing Cai
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Lu Yang
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Yuan Xing
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Jun Li
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China
| | - Lihua Zhang
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Tang
- Institute of Mitochondrial Biology and Medicine, Xi'an Jiaotong University School of Life Science, Xi'an, China
| | - Jiankang Liu
- Institute of Mitochondrial Biology and Medicine, Xi'an Jiaotong University School of Life Science, Xi'an, China
| | - Xing Zhang
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China.
| | - Feng Gao
- Department of Physiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
60
|
Ma C, Zhu Z, Wang X, Zhao G, Liu X, Li R. Vasopressin decreases neuronal apoptosis during cardiopulmonary resuscitation. Neural Regen Res 2014; 9:622-9. [PMID: 25206865 PMCID: PMC4146244 DOI: 10.4103/1673-5374.130107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2014] [Indexed: 11/04/2022] Open
Abstract
The American Heart Association and the European Resuscitation Council recently recommended that vasopressin can be used for cardiopulmonary resuscitation, instead of epinephrine. However, the guidelines do not discuss the effects of vasopressin during cerebral resuscitation. In this study, we intraperitoneally injected epinephrine and/or vasopressin during cardiopulmonary resuscitation in a rat model of asphyxial cardiac arrest. The results demonstrated that, compared with epinephrine alone, the pathological damage to nerve cells was lessened, and the levels of c-Jun N-terminal kinase and p38 expression were significantly decreased in the hippocampus after treatment with vasopressin alone or the vasopressin and epinephrine combination. No significant difference in resuscitation effects was detected between vasopressin alone and the vasopressin and epinephrine combination. These results suggest that vasopressin alone or the vasopressin and epinephrine combination suppress the activation of mitogen-activated protein kinase and c-Jun N-terminal kinase signaling pathways and reduce neuronal apoptosis during cardiopulmonary resuscitation.
Collapse
Affiliation(s)
- Chi Ma
- Department of Neurosurgery, the First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Center for Hand and Foot Surgery and Reparative and Reconstructive Surgery, Orthopedics Hospital, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xu Wang
- Department of Neurology, the First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Gang Zhao
- Department of Neurosurgery, the First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xiaoliang Liu
- Emergency Medicine, the First Hospital, Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Center for Hand and Foot Surgery and Reparative and Reconstructive Surgery, Orthopedics Hospital, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
61
|
JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis 2014; 5:e989. [PMID: 24407242 PMCID: PMC4040675 DOI: 10.1038/cddis.2013.522] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022]
Abstract
Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5′-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis.
Collapse
|
62
|
Lisanti MP, Tsirigos A, Pavlides S, Reeves KJ, Peiris-Pagès M, Chadwick AL, Sanchez-Alvarez R, Lamb R, Howell A, Martinez-Outschoorn UE, Sotgia F. JNK1 stress signaling is hyper-activated in high breast density and the tumor stroma: connecting fibrosis, inflammation, and stemness for cancer prevention. Cell Cycle 2013; 13:580-99. [PMID: 24434780 DOI: 10.4161/cc.27379] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mammography is an important screening modality for the early detection of DCIS and breast cancer lesions. More specifically, high mammographic density is associated with an increased risk of breast cancer. However, the biological processes underlying this phenomenon remain largely unknown. Here, we re-interrogated genome-wide transcriptional profiling data obtained from low-density (LD) mammary fibroblasts (n = 6 patients) and high-density (HD) mammary fibroblasts (n = 7 patients) derived from a series of 13 female patients. We used these raw data to generate a "breast density" gene signature consisting of>1250 transcripts that were significantly increased in HD fibroblasts, relative to LD fibroblasts. We then focused on the genes that were increased by ≥ 1.5-fold (P<0.05) and performed gene set enrichment analysis (GSEA), using the molecular signatures database (MSigDB). Our results indicate that HD fibroblasts show the upregulation and/or hyper-activation of several key cellular processes, including the stress response, inflammation, stemness, and signal transduction. The transcriptional profiles of HD fibroblasts also showed striking similarities to human tumors, including head and neck, liver, thyroid, lung, and breast cancers. This may reflect functional similarities between cancer-associated fibroblasts (CAFs) and HD fibroblasts. This is consistent with the idea that the presence of HD fibroblasts may be a hallmark of a pre-cancerous phenotype. In these biological processes, GSEA predicts that several key signaling pathways may be involved, including JNK1, iNOS, Rho GTPase(s), FGF-R, EGF-R, and PDGF-R-mediated signal transduction, thereby creating a pro-inflammatory, pro-proliferative, cytokine, and chemokine-rich microenvironment. HD fibroblasts also showed significant overlap with gene profiles derived from smooth muscle cells under stress (JNK1) and activated/infected macrophages (iNOS). Thus, HD fibroblasts may behave like activated myofibroblasts and macrophages, to create and maintain a fibrotic and inflammatory microenvironment. Finally, comparisons between the HD fibroblast gene signature and breast cancer tumor stroma revealed that JNK1 stress signaling is the single most significant biological process that is shared between these 2 data sets (with P values between 5.40E-09 and 1.02E-14), and is specifically associated with tumor recurrence. These results implicate "stromal JNK1 signaling" in the pathogenesis of human breast cancers and the transition to malignancy. Augmented TGF-β signaling also emerged as a common feature linking high breast density with tumor stroma and breast cancer recurrence (P = 5.23E-05). Similarities between the HD fibroblast gene signature, wound healing, and the cancer-associated fibroblast phenotype were also noted. Thus, this unbiased informatics analysis of high breast density provides a novel framework for additional experimental exploration and new hypothesis-driven breast cancer research, with a focus on cancer prevention and personalized medicine.
Collapse
Affiliation(s)
- Michael P Lisanti
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); University of Manchester; Manchester, UK
| | - Aristotelis Tsirigos
- Computational Biology Center; IBM T.J. Watson Research Center; Yorktown Heights, NY USA
| | - Stephanos Pavlides
- Postgraduate Research Institute of Science, Technology, Environment and Medicine (PRI); Limassol, Cyprus
| | - Kimberley Jayne Reeves
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); University of Manchester; Manchester, UK
| | - Maria Peiris-Pagès
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); University of Manchester; Manchester, UK
| | - Amy L Chadwick
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); University of Manchester; Manchester, UK
| | - Rosa Sanchez-Alvarez
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); University of Manchester; Manchester, UK
| | - Rebecca Lamb
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); Institute of Human Development; University of Manchester; Manchester, UK
| | - Anthony Howell
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK
| | | | - Federica Sotgia
- Breakthrough Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM); University of Manchester; Manchester, UK
| |
Collapse
|
63
|
Takeshita Y, Hashimoto Y, Nawa M, Uchino H, Matsuoka M. SH3-binding protein 5 mediates the neuroprotective effect of the secreted bioactive peptide humanin by inhibiting c-Jun NH2-terminal kinase. J Biol Chem 2013; 288:24691-704. [PMID: 23861391 DOI: 10.1074/jbc.m113.469692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Humanin is a secreted bioactive peptide that suppresses cell toxicity caused by a variety of insults. The neuroprotective effect of Humanin against Alzheimer disease (AD)-related death is mediated by the binding of Humanin to its heterotrimeric Humanin receptor composed of ciliary neurotrophic receptor α, WSX-1, and gp130, as well as the activation of intracellular signaling pathways including a JAK2 and STAT3 signaling axis. Despite the elucidation of the signaling pathways by which Humanin mediates its neuroprotection, the transcriptional targets of Humanin that behaves as effectors of Humanin remains undefined. In the present study, Humanin increased the mRNA and protein expression of SH3 domain-binding protein 5 (SH3BP5), which has been known to be a JNK interactor, in neuronal cells. Similar to Humanin treatment, overexpression of SH3BP5 inhibited AD-related neuronal death, while siRNA-mediated knockdown of endogenous SH3BP5 expression attenuated the neuroprotective effect of Humanin. These results indicate that SH3BP5 is a downstream effector of Humanin. Furthermore, biochemical analysis has revealed that SH3BP5 binds to JNK and directly inhibits JNK through its two putative mitogen-activated protein kinase interaction motifs (KIMs).
Collapse
Affiliation(s)
- Yuji Takeshita
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | |
Collapse
|
64
|
Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons. Neuromolecular Med 2013; 15:435-46. [PMID: 23584919 DOI: 10.1007/s12017-013-8230-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/05/2013] [Indexed: 12/24/2022]
Abstract
A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.
Collapse
|
65
|
Liddy KA, White MY, Cordwell SJ. Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics. Genome Med 2013; 5:20. [PMID: 23445784 PMCID: PMC3706772 DOI: 10.1186/gm424] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The more than 300 currently identified post-translational modifications (PTMs) provides great scope for subtle or dramatic alteration of protein structure and function. Furthermore, the rapid and transient nature of many PTMs allows efficient signal transmission in response to internal and environmental stimuli. PTMs are predominantly added by enzymes, and the enzymes responsible (such as kinases) are thus attractive targets for therapeutic interventions. Modifications can be grouped according to their stability or transience (reversible versus irreversible): irreversible types (such as irreversible redox modifications or protein deamidation) are often associated with aging or tissue injury, whereas transient modifications are associated with signal propagation and regulation. This is particularly important in the setting of heart disease, which comprises a diverse range of acute (such as ischemia/reperfusion), chronic (such as heart failure, dilated cardiomyopathy) and genetic (such as hypertrophic cardiomyopathy) disease states, all of which have been associated with protein PTM. Recently the interplay between diverse PTMs has been suggested to also influence cellular function, with cooperation or competition for sites of modification possible. Here we discuss the utility of proteomics for examining PTMs in the context of the molecular mechanisms of heart disease.
Collapse
Affiliation(s)
- Kiersten A Liddy
- School of Molecular Bioscience, The University of Sydney, 2006 Sydney, Australia
| | - Melanie Y White
- School of Molecular Bioscience, The University of Sydney, 2006 Sydney, Australia ; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006 Sydney, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, The University of Sydney, 2006 Sydney, Australia ; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006 Sydney, Australia
| |
Collapse
|