51
|
Forkink M, Willems PHGM, Koopman WJH, Grefte S. Live-cell assessment of mitochondrial reactive oxygen species using dihydroethidine. Methods Mol Biol 2015; 1264:161-9. [PMID: 25631012 DOI: 10.1007/978-1-4939-2257-4_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play an important role in both physiology and pathology. Mitochondria are an important source of the primary ROS superoxide. However, accurate detection of mitochondrial superoxide especially in living cells remains a difficult task. Here, we describe a method and the pitfalls to detect superoxide in both mitochondria and the entire cell using dihydroethidium (HEt) and live-cell microscopy.
Collapse
Affiliation(s)
- Marleen Forkink
- Department of Biochemistry, Raboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, NL-6500 HB, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
52
|
Schwarzländer M, Wagner S, Ermakova YG, Belousov VV, Radi R, Beckman JS, Buettner GR, Demaurex N, Duchen MR, Forman HJ, Fricker MD, Gems D, Halestrap AP, Halliwell B, Jakob U, Johnston IG, Jones NS, Logan DC, Morgan B, Müller FL, Nicholls DG, Remington SJ, Schumacker PT, Winterbourn CC, Sweetlove LJ, Meyer AJ, Dick TP, Murphy MP. The 'mitoflash' probe cpYFP does not respond to superoxide. Nature 2014; 514:E12-4. [PMID: 25341790 DOI: 10.1038/nature13858] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Markus Schwarzländer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Rafael Radi
- Departamento de Bioquímica, and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Joseph S Beckman
- Linus Pauling Institute, Environmental Health Sciences Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Garry R Buettner
- The University of Iowa, Department of Radiation Oncology and Interdisciplinary Graduate Program in Human Toxicology, and ESR Facility, College of Medicine, Med Labs B180K, Iowa City, Iowa 52242-1181, USA
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, Geneva 4 CH-1211, Switzerland
| | - Michael R Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Henry J Forman
- 1] Life and Environmental Sciences Unit, University of California, Merced, 5200 North Lake Road, Merced, California 95344, USA [2] Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Andrew P Halestrap
- School of Biochemistry and Bristol CardioVascular, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Ursula Jakob
- Molecular, Cellular and Developmental Biology Department, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | - Iain G Johnston
- Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Nick S Jones
- Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - David C Logan
- Université d'Angers &INRA &Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - Bruce Morgan
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian L Müller
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David G Nicholls
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - S James Remington
- Department of Physics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Paul T Schumacker
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago, ChristchurchPO Box 4345, Christchurch, New Zealand
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
53
|
Gong G, Liu X, Wang W. Regulation of metabolism in individual mitochondria during excitation-contraction coupling. J Mol Cell Cardiol 2014; 76:235-246. [PMID: 25252178 PMCID: PMC4250349 DOI: 10.1016/j.yjmcc.2014.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
Abstract
The heart is an excitable organ that undergoes spontaneous force generation and relaxation cycles driven by excitation-contraction (EC) coupling. A fraction of the oscillating cytosolic Ca(2+) during each heartbeat is taken up by mitochondria to stimulate mitochondrial metabolism, the major source of energy in the heart. Whether the mitochondrial metabolism is regulated individually during EC coupling and whether this heterogeneous regulation bears any physiological or pathological relevance have not been studied. Here, we developed a novel approach to determine the regulation of individual mitochondrial metabolism during cardiac EC coupling. Through monitoring superoxide flashes, which are stochastic and bursting superoxide production events arising from increased metabolism in individual mitochondria, we found that EC coupling stimulated the metabolism in individual mitochondria as indicated by significantly increased superoxide flash activity during electrical stimulation of the cultured intact myocytes or perfused heart. Mechanistically, cytosolic calcium transients promoted individual mitochondria to take up calcium via mitochondrial calcium uniporter, which subsequently triggered transient opening of the permeability transition pore and stimulated metabolism and bursting superoxide flash in that mitochondrion. The bursting superoxide, in turn, promoted local calcium release. In the early stage of heart failure, EC coupling regulation of superoxide flashes was compromised. This study highlights the heterogeneity in the regulation of cardiac mitochondrial metabolism, which may contribute to local redox signaling.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
54
|
|
55
|
Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol J 2014; 9:282-93. [PMID: 24497389 DOI: 10.1002/biot.201300199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
56
|
Hou T, Wang X, Ma Q, Cheng H. Mitochondrial flashes: new insights into mitochondrial ROS signalling and beyond. J Physiol 2014; 592:3703-13. [PMID: 25038239 PMCID: PMC4192698 DOI: 10.1113/jphysiol.2014.275735] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
Respiratory mitochondria undergo stochastic, intermittent bursts of superoxide production accompanied by transient depolarization of the mitochondrial membrane potential and reversible opening of the membrane permeability transition pore. These discrete events were named 'superoxide flashes' for the reactive oxygen species (ROS) signal involved, and 'mitochondrial flashes' (mitoflashes) for the entirety of the multifaceted and intertwined mitochondrial processes. In contrast to the flashless basal ROS production of 'homeostatic ROS' for redox regulation, bursting ROS production during mitoflashes may provide 'signalling ROS' at the organelle level, fulfilling distinctly different cell functions. Mounting evidence indicates that mitoflash frequency is richly regulated over a broad range, and represents a novel, universal, and 'digital' readout of mitochondrial functional status and of the mitochondrial stress response. An emerging view is that mitoflashes participate in vital processes including metabolism, cell differentiation, the stress response and ageing. These recent advances shed new light on the role of mitochondrial functional dynamics in health and disease.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qi Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Heping Cheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
57
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
58
|
Ezeriņa D, Morgan B, Dick TP. Imaging dynamic redox processes with genetically encoded probes. J Mol Cell Cardiol 2014; 73:43-9. [DOI: 10.1016/j.yjmcc.2013.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022]
|
59
|
Robb EL, Christoff CA, Maddalena LA, Stuart JA. Mitochondrial reactive oxygen species (ROS) in animal cells: relevance to aging and normal physiology. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In animal mitochondria, the four electron reduction of molecular oxygen to produce water at respiratory complex IV is the terminal step in substrate oxidation. However, respiratory complexes I, II, and III can participate in the single electron reduction of oxygen to produce the radical species superoxide. This progenitor reactive oxygen species (ROS) participates in a number of reactions that generate other ROS. These molecules may react with, and damage, intracellular macromolecules, leading to cellular dysfunction. Mitochondrial ROS production is often considered from this perspective of macromolecular damage and is central to the “oxidative damage theory of aging”, which suggests the accumulation of oxidative damage in animal cells underlies the aging phenotype and limits lifespan. In this review, we discuss some experimental results accumulated over the past decade that are inconsistent with this theory. A limitation of the theory is that it presupposes mitochondrial ROS are inherently harmful. However, it is increasingly apparent that some basic cellular functions are physiologically regulated by normal levels of mitochondrial ROS. For example, cell growth and division, the apoptotic pathway, and mitochondrial fusion–fission dynamics all appear to be redox-regulated by mitochondrial ROS and perhaps the matrix manganese superoxide dismutase (MnSOD). Therefore, it is less clear how the balance between ROS regulation of normal cellular activities and ROS-mediated macromolecular damage is maintained and how this relates to aging and longevity in animals.
Collapse
Affiliation(s)
- Ellen L. Robb
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Casey A. Christoff
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Lucas A. Maddalena
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
60
|
2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway. Biomaterials 2014; 35:2890-904. [DOI: 10.1016/j.biomaterials.2013.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
|
61
|
De Michele R, Carimi F, Frommer WB. Mitochondrial biosensors. Int J Biochem Cell Biol 2014; 48:39-44. [PMID: 24397954 DOI: 10.1016/j.biocel.2013.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Biosensors offer an innovative tool for measuring the dynamics of a wide range of metabolites in living organisms. Biosensors are genetically encoded, and thus can be specifically targeted to specific compartments of organelles by fusion to proteins or targeting sequences. Mitochondria are central to eukaryotic cell metabolism and present a complex structure with multiple compartments. Over the past decade, genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of mitochondrial physiology. To date, sensors for ATP, NADH, pH, hydrogen peroxide, superoxide anion, redox state, cAMP, calcium and zinc have been used in the matrix, intermembrane space and in the outer membrane region of mitochondria of animal and plant cells. This review summarizes the different types of sensors employed in mitochondria and their main limits and advantages, and it provides an outlook for the future application of biosensor technology in studying mitochondrial biology.
Collapse
Affiliation(s)
- Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Corso Calatafimi 414, 90129 Palermo, Italy.
| | - Francesco Carimi
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Corso Calatafimi 414, 90129 Palermo, Italy
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institute for Science, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
62
|
Li P, Xiao H, Cheng Y, Zhang W, Huang F, Zhang W, Wang H, Tang B. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH. Chem Commun (Camb) 2014; 50:7184-7. [DOI: 10.1039/c4cc01390e] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
63
|
Gong G, Wang W. Confocal imaging of single mitochondrial superoxide flashes in intact heart or in vivo. J Vis Exp 2013:e50818. [PMID: 24300235 PMCID: PMC3970564 DOI: 10.3791/50818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mitochondrion is a critical intracellular organelle responsible for energy production and intracellular signaling in eukaryotic systems. Mitochondrial dysfunction often accompanies and contributes to human disease. Majority of the approaches that have been developed to evaluate mitochondrial function and dysfunction are based on in vitro or ex vivo measurements. Results from these experiments have limited ability in determining mitochondrial function in vivo. Here, we describe a novel approach that utilizes confocal scanning microscopy for the imaging of intact tissues in live aminals, which allows the evaluation of single mitochondrial function in a real-time manner in vivo. First, we generate transgenic mice expressing the mitochondrial targeted superoxide indicator, circularly permuted yellow fluorescent protein (mt-cpYFP). Anesthetized mt-cpYFP mouse is fixed on a custom-made stage adaptor and time-lapse images are taken from the exposed skeletal muscles of the hindlimb. The mouse is subsequently sacrificed and the heart is set up for Langendorff perfusion with physiological solutions at 37 °C. The perfused heart is positioned in a special chamber on the confocal microscope stage and gentle pressure is applied to immobilize the heart and suppress heart beat induced motion artifact. Superoxide flashes are detected by real-time 2D confocal imaging at a frequency of one frame per second. The perfusion solution can be modified to contain different respiration substrates or other fluorescent indicators. The perfusion can also be adjusted to produce disease models such as ischemia and reperfusion. This technique is a unique approach for determining the function of single mitochondrion in intact tissues and in vivo.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | | |
Collapse
|
64
|
Wang X, Fang H, Huang Z, Shang W, Hou T, Cheng A, Cheng H. Imaging ROS signaling in cells and animals. J Mol Med (Berl) 2013; 91:917-27. [PMID: 23873151 PMCID: PMC3730091 DOI: 10.1007/s00109-013-1067-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/08/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) act as essential cellular messengers, redox regulators, and, when in excess, oxidative stressors that are widely implicated in pathologies of cancer and cardiovascular and neurodegenerative diseases. Understanding such complexity of the ROS signaling is critically hinged on the ability to visualize and quantify local, compartmental, and global ROS dynamics at high selectivity, sensitivity, and spatiotemporal resolution. The past decade has witnessed significant progress in ROS imaging at levels of intact cells, whole organs or tissues, and even live organisms. In particular, major advances include the development of novel synthetic or genetically encoded fluorescent protein-based ROS indicators, the use of protein indicator-expressing animal models, and the advent of in vivo imaging technology. Innovative ROS imaging has led to important discoveries in ROS signaling—for example, mitochondrial superoxide flashes as elemental ROS signaling events and hydrogen peroxide transients for wound healing. This review aims at providing an update of the current status in ROS imaging, while identifying areas of insufficient knowledge and highlighting emerging research directions.
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
65
|
Superoxide constitutes a major signal of mitochondrial superoxide flash. Life Sci 2013; 93:178-86. [PMID: 23800644 DOI: 10.1016/j.lfs.2013.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/08/2013] [Accepted: 06/12/2013] [Indexed: 11/21/2022]
Abstract
AIMS Mitochondrial flashes detected with an N- and C-terminal circularly-permuted yellow fluorescent protein (cpYFP) have been thought to represent transient and quantal bursts of superoxide production under physiological, stressful and pathophysiological conditions. However, the superoxide nature of the cpYFP-flash has been challenged, considering the pH-sensitivity of cpYFP and the distinctive regulation of the flash versus the basal production of mitochondrial reactive oxygen species (ROS). Thus, the aim of the study is to further determine the origin of mitochondrial flashes. MAIN METHODS We investigated the origin of the flashes using the widely-used pH-insensitive ROS indicators, mitoSOX, an indicator for superoxide, and 2, 7-dichlorodihydrofluorescein diacetate (DCF), an indicator for H2O2 and other oxidants. KEY FINDINGS Robust, quantal, and stochastic mitochondrial flashes were detected with either mitoSOX or DCF in several cell-types and in mitochondria isolated from the heart. Both mitoSOX-flashes and DCF-flashes showed similar incidence and kinetics to those of cpYFP-flashes, and were equally sensitive to mitochondria-targeted antioxidants. Furthermore, they were markedly decreased by inhibitors or an uncoupler of the mitochondrial electron transport chain, as is the case with cpYFP-flashes. The involvement of the mitochondrial permeability transition pore in DCF-flashes was evidenced by the coincidental loss of mitochondrial membrane potential and matrix-enriched rhod-2, as well as by their sensitivity to cyclosporine A. SIGNIFICANCE These data indicate that all the three types of mitochondrial flashes stem from the common physiological process of bursting superoxide and ensuing H2O2 production in the matrix of single mitochondrion.
Collapse
|
66
|
Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013; 4:95. [PMID: 23675351 PMCID: PMC3650560 DOI: 10.3389/fphys.2013.00095] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/19/2013] [Indexed: 01/04/2023] Open
Abstract
The permeability transition (PT) denotes an increase of the mitochondrial inner membrane permeability to solutes with molecular masses up to about 1500 Da. It is presumed to be mediated by opening of a channel, the permeability transition pore (PTP), whose molecular nature remains a mystery. Here I briefly review the history of the PTP, discuss existing models, and present our new results indicating that reconstituted dimers of the FOF1 ATP synthase form a channel with properties identical to those of the mitochondrial megachannel (MMC), the electrophysiological equivalent of the PTP. Open questions remain, but there is now promise that the PTP can be studied by genetic methods to solve the large number of outstanding problems.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|