51
|
Xiang SY, Ouyang K, Yung BS, Miyamoto S, Smrcka AV, Chen J, Heller Brown J. PLCε, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. Sci Signal 2013; 6:ra108. [PMID: 24345679 DOI: 10.1126/scisignal.2004405] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.
Collapse
Affiliation(s)
- Sunny Y Xiang
- 1Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Protein kinase D (PKD) belongs to a family of serine/threonine kinases that play an important role in basic cellular processes and are implicated in the pathogenesis of several diseases. Progress in our understanding of the biological functions of PKD has been limited due to the lack of a PKD-specific inhibitor. The benzoxoloazepinolone CID755673 was recently reported as the first potent and kinase-selective inhibitor for this enzyme. For structure-activity analysis purposes, a series of analogs was prepared and their in vitro inhibitory potency evaluated.
Collapse
|
53
|
PtdIns(4)P signalling and recognition systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:59-83. [PMID: 23775691 DOI: 10.1007/978-94-007-6331-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Golgi apparatus is a sorting platform that exchanges extensively with the endoplasmic reticulum (ER), endosomes (Es) and plasma membrane (PM) compartments. The last compartment of the Golgi, the trans-Golgi Network (TGN) is a large complex of highly deformed membranes from which vesicles depart to their targeted organelles but also are harbored from retrograde pathways. The phosphoinositide (PI) composition of the TGN is marked by an important contingent of phosphatidylinositol-4-phosphate (PtdIns(4)P). Although this PI is present throughout the Golgi, its proportion grows along the successive cisternae and peaks at the TGN. The levels of this phospholipid are controlled by a set of kinases and phosphatases that regulate its concentrations in the Golgi and maintain a dynamic gradient that determines the cellular localization of several interacting proteins. Though not exclusive to the Golgi, the synthesis of PtdIns(4)P in other membranes is relatively marginal and has unclear consequences. The significance of PtdIns(4)P within the TGN has been demonstrated for numerous cellular events such as vesicle formation, lipid metabolism, and membrane trafficking.
Collapse
|
54
|
PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors. PLoS One 2013; 8:e73149. [PMID: 24039875 PMCID: PMC3767810 DOI: 10.1371/journal.pone.0073149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022] Open
Abstract
We examined whether protein kinase D1 (PKD1) mediates negative feeback of PI3K/Akt signaling in intestinal epithelial cells stimulated with G protein-coupled receptor (GPCR) agonists. Exposure of intestinal epithelial IEC-18 cells to increasing concentrations of the PKD family inhibitor kb NB 14270, at concentrations that inhibited PKD1 activation, strikingly potentiated Akt phosphorylation at Thr308 and Ser473 in response to the mitogenic GPCR agonist angiotensin II (ANG II). Enhancement of Akt activation by kb NB 142-70 was also evident in cells with other GPCR agonists, including vasopressin and lysophosphatidic acid. Cell treatment rovincial Hospital Affiliated to Shandong University, Jinan, China with the structurally unrelated PKD family inhibitor CRT0066101 increased Akt phosphorylation as potently as kb NB 142–70. Knockdown of PKD1 with two different siRNAs strikingly enhanced Akt phosphorylation in response to ANG II stimulation in IEC-18 cells. To determine whether treatment with kb NB 142–70 enhances accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in the plasma membrane, we monitored the redistribution of Akt-pleckstrin homology domain-green fluorescent protein (Akt-PH-GFP) in single IEC-18 cells. Exposure to kb NB 142–70 strikingly increased membrane accumulation of Akt-PH-GFP in response to ANG II. The translocation of the PIP3 sensor to the plasma membrane and the phosphorylation of Akt was completed prevented by prior exposure to the class I p110α specific inhibitor A66. ANG II markedly increased the phosphorylation of p85α detected by a PKD motif-specific antibody and enhanced the association of p85α with PTEN. Transgenic mice overexpressing PKD1 showed a reduced phosphorylation of Akt at Ser473 in intestinal epithelial cells compared to wild type littermates. Collectively these results indicate that PKD1 activation mediates feedback inhibition of PI3K/Akt signaling in intestinal epithelial cells in vitro and in vivo.
Collapse
|
55
|
Carracedo S, Braun U, Leitges M. Expression pattern of protein kinase C ϵ during mouse embryogenesis. BMC DEVELOPMENTAL BIOLOGY 2013; 13:16. [PMID: 23639204 PMCID: PMC3668281 DOI: 10.1186/1471-213x-13-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/24/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Protein kinase C epsilon (PKCϵ) belongs to the novel PKC subfamily, which consists of diacylglycerol dependent- and calcium independent-PKCs. Previous studies have shown that PKCϵ is important in different contexts, such as wound healing or cancer. In this study, we contribute to expand the knowledge on PKCϵ by reporting its expression pattern during murine midgestation using the LacZ reporter gene and immunostaining procedures. RESULTS Sites showing highest PKCϵ expression were heart at ealier stages, and ganglia in older embryos. Other stained domains included somites, bone, stomach, kidney, and blood vessels. CONCLUSIONS The seemingly strong expression of PKCϵ in heart and ganglia shown in this study suggests a important role of this isoform in the vascular and nervous systems during mouse development. However, functional redundancy with other PKCs during midgestation within these domains and others reported here possibly exists since PKCϵ deficient mice do not display obvious embryonic developmental defects.
Collapse
Affiliation(s)
- Sergio Carracedo
- Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Oslo, N-0349, Norway.
| | | | | |
Collapse
|
56
|
Lynch CM, Leandry LA, Matheny RW. Lysophosphatidic acid-stimulated phosphorylation of PKD2 is mediated by PI3K p110β and PKCδ in myoblasts. J Recept Signal Transduct Res 2012; 33:41-8. [DOI: 10.3109/10799893.2012.752005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
57
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
58
|
Young SH, Rozengurt N, Sinnett-Smith J, Rozengurt E. Rapid protein kinase D1 signaling promotes migration of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G356-66. [PMID: 22595992 PMCID: PMC3423107 DOI: 10.1152/ajpgi.00025.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser(916), an autophosphorylation site. An increase in PKD1 phosphorylation at Ser(916) was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser(916) was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.
Collapse
Affiliation(s)
- Steven H. Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - Nora Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
59
|
Brar SS, Meyer JN, Bortner CD, Van Houten B, Martin WJ. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin. Am J Physiol Lung Cell Mol Physiol 2012; 303:L413-24. [PMID: 22773697 DOI: 10.1152/ajplung.00343.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ(0)) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ(0) than A549 cells. These results suggest that A549 ρ(0) cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Sukhdev S Brar
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
60
|
LaValle CR, Zhang L, Xu S, Eiseman JL, Wang QJ. Inducible silencing of protein kinase D3 inhibits secretion of tumor-promoting factors in prostate cancer. Mol Cancer Ther 2012; 11:1389-99. [PMID: 22532599 DOI: 10.1158/1535-7163.mct-11-0887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase D (PKD) acts as a major mediator of several signaling pathways related to cancer development. Aberrant PKD expression and activity have been shown in multiple cancers, and novel PKD inhibitors show promising anticancer activities. Despite these advances, the mechanisms through which PKD contributes to the pathogenesis of cancer remain unknown. Here, we establish a novel role for PKD3, the least studied member of the PKD family, in the regulation of prostate cancer cell growth and motility through modulation of secreted tumor-promoting factors. Using both a stable inducible knockdown cell model and a transient knockdown system using multiple siRNAs, we show that silencing of endogenous PKD3 significantly reduces prostate cancer cell proliferation, migration, and invasion. In addition, conditioned medium from PKD3-knockdown cells exhibits less migratory potential compared with that from control cells. Further analysis indicated that depletion of PKD3 blocks secretion of multiple key tumor-promoting factors including matrix metalloproteinase (MMP)-9, interleukin (IL)-6, IL-8, and GROα but does not alter mRNA transcript levels for these factors, implying impairment of the secretory pathway. More significantly, inducible depletion of PKD3 in a subcutaneous xenograft model suppresses tumor growth and decreases levels of intratumoral GROα in mice. These data validate PKD3 as a promising therapeutic target in prostate cancer and shed light on the role of secreted tumor-promoting factors in prostate cancer progression.
Collapse
Affiliation(s)
- Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
61
|
Uesugi A, Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Robaye B, Boeynaems JM, Inoue K. Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis. Glia 2012; 60:1094-105. [PMID: 22488958 DOI: 10.1002/glia.22337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 03/13/2012] [Indexed: 11/09/2022]
Abstract
The clearance of tissue debris by microglia is a crucial component of maintaining brain homeostasis. Microglia continuously survey the brain parenchyma and utilize extracellular nucleotides to trigger the initiation of their dynamic responses. Extracellular uridine diphosphate (UDP), which leaks or is released from damaged neurons, has been reported to stimulate the phagocytotic activity of microglia through P2Y(6) receptor activation. However, the intracellular mechanisms underlying microglial P2Y(6) receptor signals have not been identified. In this study, we demonstrated that UDP stimulation induced immediate and long-lasting dynamic movements in the cell membrane. After 60 min of UDP stimulation, there was an upregulation in the number of large vacuoles formed in the cell that incorporate extracellular fluorescent-labeled dextran, which indicates microglial macropinocytosis. In addition, UDP-induced vacuole formation and continuous membrane motility were suppressed by the protein kinase D (PKD) inhibitors, Gö6976 and CID755673, unlike Gö6983, which is far less sensitive to PKD. The inhibition of PKD also reduced UDP-induced incorporation of fluorescent-labeled dextran and soluble β-amyloid and phagocytosis of microspheres. UDP induced rapid phosphorylation and membrane translocation of PKD, which was abrogated by the inhibition of protein kinase C (PKC) with Gö6983. However, Gö6983 failed to suppress UDP-induced incorporation of microspheres. Finally, we found that inhibition of PKD by CID755673 significantly suppressed UDP-induced engulfment of IgG-opsonized microspheres. These data suggest that a PKC-independent function of PKD regulates UDP-induced membrane movement and contributes to the increased uptake of extracellular fluid and microspheres in microglia.
Collapse
Affiliation(s)
- Ayumi Uesugi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Hattangady N, Olala L, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 2012; 350:151-62. [PMID: 21839803 PMCID: PMC3253327 DOI: 10.1016/j.mce.2011.07.034] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 11/28/2022]
Abstract
Aldosterone is the major mineralocorticoid synthesized by the adrenal and plays an important role in the regulation of systemic blood pressure through the absorption of sodium and water. Aldosterone production is regulated tightly by selective expression of aldosterone synthase (CYP11B2) in the adrenal outermost zone, the zona glomerulosa. Angiotensin II (Ang II), potassium (K(+)) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. Aldosterone production is regulated within minutes of stimulation (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein and over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly CYP11B2. Imbalance in any of these processes may lead to several disorders of aldosterone excess. In this review we attempt to summarize the key molecular events involved in the acute and chronic phases of aldosterone secretion.
Collapse
Affiliation(s)
- Namita Hattangady
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Lawrence Olala
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Wendy B. Bollag
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
| | - William E. Rainey
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- To whom correspondence should be addressed: William E. Rainey, Department of Physiology, Georgia Health Sciences University, 1120 15 Street, Augusta, GA 30912, , Tel: (706) 721-7665, Fax: (706) 721-7299
| |
Collapse
|
63
|
Abstract
Chronic neurohormonal stimulation can have direct adverse effects on the structure and function of the heart. Heart failure develops and progresses as a result of the deleterious changes. It is well established that phosphorylation of class II HDAC5 (histone deacetylase 5) is an important event in the transcriptional regulation of cardiac gene reprogramming that results in the hypertrophic growth response. To date, experimentation on phosphorylation-mediated translocation of HDAC5 has focused on the regulatory properties of PKD (protein kinase D) within intact cells. With regard to the potential role of PKD in myocardium, recent observations raise the possibility that PKD-mediated myocardial regulatory mechanisms may represent promising therapeutic avenues for the treatment of heart failure. The present review summarizes the most recent and important insights into the role of PKD in hypertrophic signalling pathways.
Collapse
|
64
|
Differential PKC-dependent and -independent PKD activation by G protein α subunits of the Gq family: selective stimulation of PKD Ser⁷⁴⁸ autophosphorylation by Gαq. Cell Signal 2011; 24:914-21. [PMID: 22227248 DOI: 10.1016/j.cellsig.2011.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/06/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Protein kinase D (PKD) is activated within cells by stimulation of multiple G protein coupled receptors (GPCR). Earlier studies demonstrated a role for PKC to mediate rapid activation loop phosphorylation-dependent PKD activation. Subsequently, a novel PKC-independent pathway in response to Gαq-coupled GPCR stimulation was identified. Here, we examined further the specificity and PKC-dependence of PKD activation using COS-7 cells cotransfected with different Gq-family Gα and stimulated with aluminum fluoride (AlF4⁻). PKD activation was measured by kinase assays, and Western blot analysis of activation loop sites Ser⁷⁴⁴, a prominent and rapid PKC transphosphorylation site, and Ser⁷⁴⁸, a site autophosphorylated in the absence of PKC signaling. Treatment with AlF4⁻ potently induced PKD activation and Ser⁷⁴⁴ and Ser⁷⁴⁸ phosphorylation, in the presence of cotransfected Gαq, Gα11, Gα14 or Gα15. These treatments achieved PKD activation loop phosphorylation similar to the maximal levels obtained by stimulation with the phorbol ester, PDBu. Preincubation with the PKC inhibitor GF1 potently blocked Gα11-, Gα14-, and Gα15-mediated enhancement of Ser⁷⁴⁸ phosphorylation induced by AlF4⁻, and largely abolished Ser⁷⁴⁴ phosphorylation. In contrast, Ser⁷⁴⁸ phosphorylation was almost completely intact, and Ser⁷⁴⁴ phosphorylation was significantly activated in cells cotransfected with Gαq. Importantly, the differential Ser⁷⁴⁸ phosphorylation was also promoted by treatment of Swiss 3T3 cells with Pasteurella multocida toxin, a selective activator of Gαq but not Gα11. Taken together, our results suggest that Gαq, but not the closely related Gα11, promotes PKD activation in response to GPCR ligands in a unique manner leading to PKD autophosphorylation at Ser⁷⁴⁸.
Collapse
|
65
|
Abstract
Protein kinase D1 (PKD1) is a stress-activated serine/threonine kinase that plays a vital role in various physiologically important biological processes, including cell growth, apoptosis, adhesion, motility, and angiogenesis. Dysregulated PKD1 expression also contributes to the pathogenesis of certain cancers and cardiovascular disorders. Studies to date have focused primarily on the canonical membrane-delimited pathway for PKD1 activation by G protein-coupled receptors or peptide growth factors. Here, agonist-dependent increases in diacylglycerol accumulation lead to the activation of protein kinase C (PKC) and PKC-dependent phosphorylation of PKD1 at two highly conserved serine residues in the activation loop; this modification increases PKD1 catalytic activity, as assessed by PKD1 autophosphorylation at a consensus phosphorylation motif at the extreme C terminus. However, recent studies expose additional controls and consequences for PKD1 activation loop and C-terminal phosphorylation as well as additional autophosphorylation reactions and trans-phosphorylations (by PKC and other cellular enzymes) that contribute to the spatiotemporal control of PKD1 signaling in cells. This review focuses on the multisite phosphorylations that are known or predicted to influence PKD1 catalytic activity and may also influence docking interactions with cellular scaffolds and trafficking to signaling microdomains in various subcellular compartments. These modifications represent novel targets for the development of PKD1-directed pharmaceuticals for the treatment of cancers and cardiovascular disorders.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
66
|
Zheng H, Qian J, Baker DP, Fuchs SY. Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor. J Biol Chem 2011; 286:35733-35741. [PMID: 21865166 DOI: 10.1074/jbc.m111.263608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Juan Qian
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
67
|
Bossuyt J, Chang CW, Helmstadter K, Kunkel MT, Newton AC, Campbell KS, Martin JL, Bossuyt S, Robia SL, Bers DM. Spatiotemporally distinct protein kinase D activation in adult cardiomyocytes in response to phenylephrine and endothelin. J Biol Chem 2011; 286:33390-400. [PMID: 21795686 DOI: 10.1074/jbc.m111.246447] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) is a nodal point in cardiac hypertrophic signaling. It triggers nuclear export of class II histone deacetylase (HDAC) and regulates transcription. Although this pathway is thought to be critical in cardiac hypertrophy and heart failure, little is known about spatiotemporal aspects of PKD activation at the myocyte level. Here, we demonstrate that in adult cardiomyocytes two important neurohumoral stimuli that induce hypertrophy, endothelin-1 (ET1) and phenylephrine (PE), trigger comparable global PKD activation and HDAC5 nuclear export, but via divergent spatiotemporal PKD signals. PE-induced HDAC5 export is entirely PKD-dependent, involving fleeting sarcolemmal PKD translocation (for activation) and very rapid subsequent nuclear import. In contrast, ET1 recruits and activates PKD that remains predominantly sarcolemmal. This explains why PE-induced nuclear HDAC5 export in myocytes is totally PKD-dependent, whereas ET1-induced HDAC5 export depends more prominently on InsP(3) and CaMKII signaling. Thus α-adrenergic and ET-1 receptor signaling via PKD in adult myocytes feature dramatic differences in cellular localization and translocation in mediating hypertrophic signaling. This raises new opportunities for targeted therapeutic intervention into distinct limbs of this hypertrophic signaling pathway.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
|
69
|
Rozengurt E. Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 2011; 26:23-33. [PMID: 21357900 DOI: 10.1152/physiol.00037.2010] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily conserved protein kinase family with structural, enzymological, and regulatory properties different from the PKC family members. Signaling through PKD is induced by a remarkable number of stimuli, including G-protein-coupled receptor agonists and polypeptide growth factors. PKD1, the most studied member of the family, is increasingly implicated in the regulation of a complex array of fundamental biological processes, including signal transduction, cell proliferation and differentiation, membrane trafficking, secretion, immune regulation, cardiac hypertrophy and contraction, angiogenesis, and cancer. PKD mediates such a diverse array of normal and abnormal biological functions via dynamic changes in its spatial and temporal localization, combined with its distinct substrate specificity. Studies on PKD thus far indicate a striking diversity of both its signal generation and distribution and its potential for complex regulatory interactions with multiple downstream pathways, often regulating the subcellular localization of its targets.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
70
|
Asaithambi A, Kanthasamy A, Saminathan H, Anantharam V, Kanthasamy AG. Protein kinase D1 (PKD1) activation mediates a compensatory protective response during early stages of oxidative stress-induced neuronal degeneration. Mol Neurodegener 2011; 6:43. [PMID: 21696630 PMCID: PMC3145571 DOI: 10.1186/1750-1326-6-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022] Open
Abstract
Background Oxidative stress is a key pathophysiological mechanism contributing to degenerative processes in many neurodegenerative diseases and therefore, unraveling molecular mechanisms underlying various stages of oxidative neuronal damage is critical to better understanding the diseases and developing new treatment modalities. We previously showed that protein kinase C delta (PKCδ) proteolytic activation during the late stages of oxidative stress is a key proapoptotic signaling mechanism that contributes to oxidative damage in Parkinson's disease (PD) models. The time course studies revealed that PKCδ activation precedes apoptotic cell death and that cells resisted early insults of oxidative damage, suggesting that some intrinsic compensatory response protects neurons from early oxidative insult. Therefore, the purpose of the present study was to characterize protective signaling pathways in dopaminergic neurons during early stages of oxidative stress. Results Herein, we identify that protein kinase D1 (PKD1) functions as a key anti-apoptotic kinase to protect neuronal cells against early stages of oxidative stress. Exposure of dopaminergic neuronal cells to H2O2 or 6-OHDA induced PKD1 activation loop (PKD1S744/748) phosphorylation long before induction of neuronal cell death. Blockade of PKCδ cleavage, PKCδ knockdown or overexpression of a cleavage-resistant PKCδ mutant effectively attenuated PKD1 activation, indicating that PKCδ proteolytic activation regulates PKD1 phosphorylation. Furthermore, the PKCδ catalytic fragment, but not the regulatory fragment, increased PKD1 activation, confirming PKCδ activity modulates PKD1 activation. We also identified that phosphorylation of S916 at the C-terminal is a preceding event required for PKD1 activation loop phosphorylation. Importantly, negative modulation of PKD1 by the RNAi knockdown or overexpression of PKD1S916A phospho-defective mutants augmented oxidative stress-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 or constitutively active PKD1 plasmids attenuated oxidative stress-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Conclusion Collectively, our results demonstrate that PKCδ-dependent activation of PKD1 represents a novel intrinsic protective response in counteracting early stage oxidative damage in neuronal cells. Our results suggest that positive modulation of the PKD1-mediated compensatory protective mechanism against oxidative damage in dopaminergic neurons may provide novel neuroprotective strategies for treatment of PD.
Collapse
Affiliation(s)
- Arunkumar Asaithambi
- Department of Biomedical Sciences, 2062 Veterinary Medicine Bldg, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | |
Collapse
|
71
|
Chen J, Giridhar KV, Zhang L, Xu S, Wang QJ. A protein kinase C/protein kinase D pathway protects LNCaP prostate cancer cells from phorbol ester-induced apoptosis by promoting ERK1/2 and NF-{kappa}B activities. Carcinogenesis 2011; 32:1198-206. [PMID: 21665893 DOI: 10.1093/carcin/bgr113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phorbol esters such as phorbol 12-myristate 13-acetate (PMA) induce apoptosis in many tumor cells including the androgen-sensitive LNCaP prostate cancer cells. Although phorbol ester-induced apoptotic pathways have been well characterized, little is known of the pro-survival pathways modulated by these agents. We now provide experimental evidence to indicate that protein kinase D (PKD) promotes survival signals in LNCaP cells in response to PMA treatment. Knockdown of endogenous PKD1 or PKD2 decreased extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor-kappaB (NF-κB)-dependent transcriptional activities and potentiated PMA-induced apoptosis, whereas overexpression of wild-type PKD1 enhanced ERK1/2 activity and suppressed PMA-induced apoptosis. PMA caused rapid activation, followed by progressive downregulation of endogenous PKD1 in a time- and concentration-dependent manner. The downregulation of PKD1 was dependent on the activity of protein kinase C (PKC), but not that of PKD. Selective depletion of endogenous PKC isoforms revealed that both PKCδ and PKCε were required for PKD1 activation and subsequent downregulation. Further analysis showed that the downregulation of PKD1 was mediated by a ubiquitin-proteasome degradation pathway, inhibition of which correlated to increased cell survival. In summary, our data indicate that PKD1 is activated and downregulated by PMA through a PKC-dependent ubiquitin-proteasome degradation pathway, and the activation of PKD1 or PKD2 counteracts PMA-induced apoptosis by promoting downstream ERK1/2 and NF-κB activities in LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
72
|
Rodriguez Perez CE, Nie W, Sinnett-Smith J, Rozengurt E, Yoo J. TNF-α potentiates lysophosphatidic acid-induced COX-2 expression via PKD in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2011; 300:G637-46. [PMID: 21292998 PMCID: PMC3074991 DOI: 10.1152/ajpgi.00381.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The myofibroblast (MFB) has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Here, we show that treatment of 18Co cells, a model of human colonic MFBs, with TNF-α and lysophosphatidic acid (LPA) induced striking synergistic cyclooxygenase-2 (COX-2) protein expression and production of PGE(2). This effect was prevented by the LPA(1) receptor antagonist Ki16425, the G(iα)-specific inhibitor pertussis toxin, and by the preferential protein kinase (PK) C inhibitors GF109203X and Go6983. As a known downstream target of LPA and PKC, we tested whether PKD, recently implicated in the regulation of COX-2 expression in MFB, was involved in this response. TNF-α, while having no detectable effect on the activation of PKD when added alone, augmented PKD activation stimulated by LPA, as measured by PKD autophosphorylation at Ser(910). LPA-induced PKD activation was also inhibited by Ki16425, pertussis toxin, GF109203X, and Go6983. Transfection of 18Co cells with short interfering RNA targeting PKD completely inhibited the synergistic increase in COX-2 protein, demonstrating a critical role of PKD in this response. Our results imply that cross talk between TNF-α and LPA results in the amplification of COX-2 protein expression via a conserved PKD-dependent signaling pathway that appears to involve the LPA(1) receptor and the G protein G(iα). PKD plays a critical role in the expression of COX-2 in human colonic MFBs and may contribute to an inflammatory microenvironment that promotes tumor growth.
Collapse
Affiliation(s)
- Citlali Ekaterina Rodriguez Perez
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - Wenxian Nie
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - James Sinnett-Smith
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - Enrique Rozengurt
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| | - James Yoo
- Departments of Surgery and Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
73
|
Bravo-Altamirano K, George KM, Frantz MC, LaValle CR, Tandon M, Leimgruber S, Sharlow ER, Lazo JS, Wang QJ, Wipf P. Synthesis and Structure-Activity Relationships of Benzothienothiazepinone Inhibitors of Protein Kinase D. ACS Med Chem Lett 2011; 2:154-159. [PMID: 21617763 DOI: 10.1021/ml100230n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein kinase D (PKD) is a member of a novel family of serine/threonine kinases that regulate fundamental cellular processes. PKD is implicated in the pathogenesis of several diseases, including cancer. Progress in understanding the biological functions and therapeutic potential of PKD has been hampered by the lack of specific inhibitors. The benzoxoloazepinolone CID755673 was recently identified as the first potent and selective PKD inhibitor. The study of structure-activity relationships (SAR) of this lead structure led to further improvements in PKD1 potency. We describe herein the synthesis and biological evaluation of novel benzothienothiazepinone analogs. We achieved a ten-fold increase in the in vitro PKD1 inhibitory potency for the second generation lead kb-NB142-70 and accomplished a transition to an almost equally potent novel pyrimidine scaffold, while maintaining excellent target selectivity. These promising results will guide the design of pharmacological tools to dissect PKD function and pave the way for the development of potential anti-cancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Leimgruber
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elizabeth R. Sharlow
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John S. Lazo
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
74
|
Amako Y, Syed GH, Siddiqui A. Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J Biol Chem 2011; 286:11265-74. [PMID: 21285358 DOI: 10.1074/jbc.m110.182097] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatitis C virus (HCV) RNA replicates its genome on specialized endoplasmic reticulum modified membranes termed membranous web and utilizes lipid droplets for initiating the viral nucleocapsid assembly. HCV maturation and/or the egress pathway requires host sphingolipid synthesis, which occur in the Golgi. Ceramide transfer protein (CERT) and oxysterol-binding protein (OSBP) play a crucial role in sphingolipid biosynthesis. Protein kinase D (PKD), a serine/threonine kinase, is recruited to the trans-Golgi network where it influences vesicular trafficking to the plasma membrane by regulation of several important mediators via phosphorylation. PKD attenuates the function of both CERT and OSBP by phosphorylation at their respective Ser(132) and Ser(240) residues (phosphorylation inhibition). Here, we investigated the functional role of PKD in HCV secretion. Our studies show that HCV gene expression down-regulated PKD activation. PKD depletion by shRNA or inhibition by pharmacological inhibitor Gö6976 enhanced HCV secretion. Overexpression of a constitutively active form of PKD suppressed HCV secretion. The suppression by PKD was subverted by the ectopic expression of nonphosphorylatable serine mutant CERT S132A or OSBP S240A. These observations imply that PKD negatively regulates HCV secretion/release by attenuating OSBP and CERT functions by phosphorylation inhibition. This study identifies the key role of the Golgi components in the HCV maturation process.
Collapse
Affiliation(s)
- Yutaka Amako
- Department of Medicine, Division of Infectious Diseases, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
75
|
Newton RH, Leverrier S, Srikanth S, Gwack Y, Cahalan MD, Walsh CM. Protein kinase D orchestrates the activation of DRAK2 in response to TCR-induced Ca2+ influx and mitochondrial reactive oxygen generation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:940-50. [PMID: 21148796 PMCID: PMC3133617 DOI: 10.4049/jimmunol.1000942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DRAK2 is a serine/threonine kinase highly enriched in lymphocytes that raises the threshold for T cell activation and maintains T cell survival following productive activation. T cells lacking DRAK2 are prone to activation under suboptimal conditions and exhibit enhanced calcium responses to AgR stimulation. Despite this, mice lacking DRAK2 are resistant to organ-specific autoimmune diseases due to defective autoreactive T cell survival. DRAK2 kinase activity is induced by AgR signaling, and in this study we show that the induction of DRAK2 activity requires Ca(2+) influx through the Ca(2+) release-activated Ca(2+) channel formed from Orai1 subunits. Blockade of DRAK2 activity with the protein kinase D (PKD) inhibitor Gö6976 or expression of a kinase-dead PKD mutant prevented activation of DRAK2, whereas a constitutively active PKD mutant promoted DRAK2 function. Knockdown of PKD in T cells strongly blocked endogenous DRAK2 activation following TCR ligation, implicating PKD as an essential intermediate in the activation of DRAK2 by Ca(2+) influx. Furthermore, we identify DRAK2 as a novel substrate of PKD, and demonstrate that DRAK2 and PKD physically interact under conditions that activate PKD. Mitochondrial generation of reactive oxygen intermediates was necessary and sufficient for DRAK2 activation in response to Ca(2+) influx. Taken together, DRAK2 and PKD form a novel signaling module that controls calcium homeostasis following T cell activation.
Collapse
Affiliation(s)
- Ryan H. Newton
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Sabrina Leverrier
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michael D. Cahalan
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Craig M. Walsh
- Institute for Immunology, University of California, Irvine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
76
|
Thrower EC, Yuan J, Usmani A, Liu Y, Jones C, Minervini SN, Alexandre M, Pandol SJ, Guha S. A novel protein kinase D inhibitor attenuates early events of experimental pancreatitis in isolated rat acini. Am J Physiol Gastrointest Liver Physiol 2011; 300:G120-9. [PMID: 20947701 PMCID: PMC3025506 DOI: 10.1152/ajpgi.00300.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel protein kinase C isoforms (PKC δ and ε) mediate early events in acute pancreatitis. Protein kinase D (PKD/PKD1) is a convergent point of PKC δ and ε in the signaling pathways triggered through CCK or cholinergic receptors and has been shown to activate the transcription factor NF-κB in acute pancreatitis. For the present study we hypothesized that a newly developed PKD/PKD1 inhibitor, CRT0066101, would prevent the initial events leading to pancreatitis. We pretreated isolated rat pancreatic acinar cells with CRT0066101 and a commercially available inhibitor Gö6976 (10 μM). This was followed by stimulation for 60 min with high concentrations of cholecystokinin (CCK, 0.1 μM), carbachol (CCh, 1 mM), or bombesin (10 μM) to induce initial events of pancreatitis. PKD/PKD1 phosphorylation and activity were measured as well as zymogen activation, amylase secretion, cell injury and NF-κB activation. CRT0066101 dose dependently inhibited secretagogue-induced PKD/PKD1 activation and autophosphorylation at Ser-916 with an IC(50) ∼3.75-5 μM but had no effect on PKC-dependent phosphorylation of the PKD/PKD1 activation loop (Ser-744/748). Furthermore, CRT0066101 reduced secretagogue-induced zymogen activation and amylase secretion. Gö6976 reduced zymogen activation but not amylase secretion. Neither inhibitor affected basal zymogen activation or secretion. CRT0066101 did not affect secretagogue-induced cell injury or changes in cell morphology, but it reduced NF-κB activation by 75% of maximal for CCK- and CCh-stimulated acinar cells. In conclusion, CRT0066101 is a potent and specific PKD family inhibitor. Furthermore, PKD/PKD1 is a potential mediator of zymogen activation, amylase secretion, and NF-κB activation induced by a range of secretagogues in pancreatic acinar cells.
Collapse
Affiliation(s)
- Edwin C. Thrower
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Jingzhen Yuan
- 2Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, California; and
| | - Ashar Usmani
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Yannan Liu
- 2Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, California; and
| | - Courtney Jones
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Samantha N. Minervini
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Martine Alexandre
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Stephen J. Pandol
- 2Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, California; and
| | - Sushovan Guha
- 3University of Texas M.D. Anderson Cancer Center Department of Gastroenterology, Hepatology and Nutrition, Houston, Texas
| |
Collapse
|
77
|
Manna PR, Soh JW, Stocco DM. The involvement of specific PKC isoenzymes in phorbol ester-mediated regulation of steroidogenic acute regulatory protein expression and steroid synthesis in mouse Leydig cells. Endocrinology 2011; 152:313-25. [PMID: 21047949 PMCID: PMC3033061 DOI: 10.1210/en.2010-0874] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinase C (PKC) is a multigene family of serine/threonine kinases. PKC is involved in regulating adrenal and gonadal steroidogenesis; however, the functional relevance of the different PKC isoenzymes remains obscure. In this study, we demonstrate that MA-10 mouse Leydig tumor cells express several PKC isoforms to varying levels and that the activation of PKC signaling, by phorbol 12-myristate 13-acetate (PMA) elevated the expression and phosphorylation of PKCα, -δ, -ε, and -μ/protein kinase D (PKD). These responses coincided with the expression of the steroidogenic acute regulatory (StAR) protein and progesterone synthesis. Targeted silencing of PKCα, δ, and ε and PKD, using small interfering RNAs, resulted in deceases in basal and PMA-mediated StAR and steroid levels and demonstrated the importance of PKD in steroidogenesis. PKD was capable of controlling PMA and cAMP/PKA-mediated synergism involved in the steroidogenic response. Further studies pointed out that the regulatory events effected by PKD are associated with cAMP response element-binding protein (CREB) and c-Jun/c-Fos-mediated transcription of the StAR gene. Chromatin immunoprecipitation studies revealed that the activation of phosphorylated CREB, c-Jun, and c-Fos by PMA was correlated with in vivo protein-DNA interactions and the recruitment of CREB-binding protein, whereas knockdown of PKD suppressed the association of these factors with the StAR promoter. Ectopic expression of CREB-binding protein enhanced the trans-activation potential of CREB and c-Jun/c-Fos in StAR gene expression. Using EMSA, a -83/-67-bp region of the StAR promoter was shown to bind PKD-transfected MA-10 nuclear extract in a PMA-responsive manner, targeting CREB and c-Jun/c-Fos proteins. These findings provide evidence for the presence of multiple PKC isoforms and demonstrate the molecular events by which selective isozymes, especially PKD, influence PMA/PKC signaling involved in the regulation of the steroidogenic machinery in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
78
|
Zhang H, Kong WJ, Shan YQ, Song DQ, Li Y, Wang YM, You XF, Jiang JD. Protein kinase D activation stimulates the transcription of the insulin receptor gene. Mol Cell Endocrinol 2010; 330:25-32. [PMID: 20674666 DOI: 10.1016/j.mce.2010.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/22/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Our previous studies proved that berberine (BBR) up-regulates the insulin receptor (InsR) gene by stimulating its promoter and calphostin C blocks this effect. Here, the present study was designed to discover the specific kinase isoform(s) used by berberine. In the blocking experiment, we found that Gö6976, a kinase inhibitor that potently inhibit PKCμ/protein kinase D 1 (PKD1), effectively and specifically reduced the activity of BBR on InsR. PKD1/PKCμ is a member of the PKD family that also covers PKD2 and PKD3/PKCν with high homology. The role of PKD1 in InsR expression was also proved by using another PKD-activator oligomycin. In the RNA interference experiment, we found that the effects of BBR on InsR expression and on cellular glucose consumption were partially eliminated by silencing any one of the three PKDs and were totally abolished by silencing all of them. BBR enhanced the PKD1 catalytic activity, but not its expression. Along with BBR treatment, PKD1 ser916 autophosphorylation was increased time- and dose-dependently, indicating an activation of PKD1 by BBR. BBR also induces PKD1 translocation from cytosol-to-plasma membrane, further verifying the activation of PKD1. These results suggest that the PKD family is involved in the transcriptional regulation of the InsR gene; we consider it to be a potential new target to discover drugs for sugar-related disorders in the future.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Sinnett-Smith J, Rozengurt N, Kui R, Huang C, Rozengurt E. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts. J Biol Chem 2010; 286:511-20. [PMID: 21051537 DOI: 10.1074/jbc.m110.167528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
80
|
Carrasquero LMG, Delicado EG, Sánchez-Ruiloba L, Iglesias T, Miras-Portugal MT. Mechanisms of protein kinase D activation in response to P2Y(2) and P2X7 receptors in primary astrocytes. Glia 2010; 58:984-95. [PMID: 20222145 DOI: 10.1002/glia.20980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that can be activated by many stimuli via protein kinase C in a variety of cells. This is the first report where PKD activation and localization is studied in glial cells. Herein, we demonstrate that P2Y(2) and P2X7 receptor stimulation of primary rat cerebellar astrocytes rapidly increases PKD1/2 phosphorylation and activity. P2Y(2) receptor response evokes a PKD1/2 activation that is dependent on a pertussis toxin-insensitive G protein, phospholipase C (PLC)-mediated generation of diacylglycerol, and protein kinase C. This mechanism is similar to the one described for other G-protein coupled receptors. In contrast, the way the ionotropic P2X7 receptor activates PKD1/2 is significantly different. Importantly, this response is not dependent on calcium entry, but depends on the activity of several phospholipases, including phosphoinositide-phospholipase C (PI-PLC), phosphatidylcholine-phospholipase C (PC-PLC) and also phospholipase D (PLD). Immunoblot and confocal microscopy analysis show that PKD1/2 activation by nucleotides is transient. The active kinase first moves to and concentrates in certain plasma membrane domains. Then, phosphorylated-PKD1/2 translocates to intracellular vesicles, where it remains active. All together, our results open the perspective of PKD1/2 being involved in many physiological functions where nucleotides play important roles not only in astrocytes but in other cell types bearing these receptors.
Collapse
Affiliation(s)
- Luz María G Carrasquero
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
81
|
LaValle CR, George KM, Sharlow ER, Lazo JS, Wipf P, Wang QJ. Protein kinase D as a potential new target for cancer therapy. Biochim Biophys Acta Rev Cancer 2010; 1806:183-92. [PMID: 20580776 DOI: 10.1016/j.bbcan.2010.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/13/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022]
Abstract
Protein kinase D is a novel family of serine/threonine kinases and diacylglycerol receptors that belongs to the calcium/calmodulin-dependent kinase superfamily. Evidence has established that specific PKD isoforms are dysregulated in several cancer types, and PKD involvement has been documented in a variety of cellular processes important to cancer development, including cell growth, apoptosis, motility, and angiogenesis. In light of this, there has been a recent surge in the development of novel chemical inhibitors of PKD. This review focuses on the potential of PKD as a chemotherapeutic target in cancer treatment and highlights important recent advances in the development of PKD inhibitors.
Collapse
Affiliation(s)
- Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
82
|
Jadali A, Ghazizadeh S. Protein kinase D is implicated in the reversible commitment to differentiation in primary cultures of mouse keratinocytes. J Biol Chem 2010; 285:23387-97. [PMID: 20463010 DOI: 10.1074/jbc.m110.105619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although commitment to epidermal differentiation is generally considered to be irreversible, differentiated keratinocytes (KCs) have been shown to maintain a regenerative potential and to reform skin epithelia when placed in a suitable environment. To obtain insights into the mechanism of reinitiation of this proliferative response in differentiated KCs, we examined the reversibility of commitment to Ca(2+)-induced differentiation. Lowering Ca(2+) concentration to micromolar levels triggered culture-wide morphological and biochemical changes, as indicated by derepression of cyclin D1, reinitiation of DNA synthesis, and acquisition of basal cell-like characteristics. These responses were inhibited by Goedecke 6976, an inhibitor of protein kinase D (PKD) and PKCalpha, but not with GF109203X, a general inhibitor of PKCs, suggesting PKD activation by a PKC-independent mechanism. PKD activation followed complex kinetics with a biphasic early transient phosphorylation within the first 6 h, followed by a sustained and progressive phosphorylation beginning at 24 h. The second phase of PKD activation was followed by prolonged ERK1/2 signaling and progression to DNA synthesis in response to the low Ca(2+) switch. Specific knockdown of PKD-1 by RNA interference or expression of a dominant negative form of PKD-1 did not have a significant effect on normal KC proliferation and differentiation but did inhibit Ca(2+)-mediated reinitiation of proliferation and reversion in differentiated cultures. The present study identifies PKD as a major regulator of a proliferative response in differentiated KCs, probably through sustained activation of the ERK-MAPK pathway, and provides new insights into the process of epidermal regeneration and wound healing.
Collapse
Affiliation(s)
- Azadeh Jadali
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
83
|
Kisfalvi K, Hurd C, Guha S, Rozengurt E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. J Cell Physiol 2010; 223:309-16. [PMID: 20082306 DOI: 10.1002/jcp.22036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.
Collapse
Affiliation(s)
- Krisztina Kisfalvi
- Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, California 90095-1786, USA
| | | | | | | |
Collapse
|
84
|
Lavalle CR, Bravo-Altamirano K, Giridhar KV, Chen J, Sharlow E, Lazo JS, Wipf P, Wang QJ. Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility. BMC CHEMICAL BIOLOGY 2010; 10:5. [PMID: 20444281 PMCID: PMC2873968 DOI: 10.1186/1472-6769-10-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/05/2010] [Indexed: 12/29/2022]
Abstract
Background Protein kinase D (PKD) has been implicated in a wide range of cellular processes and pathological conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, CID755673, with potency in the upper nanomolar range and high selectivity for PKD. In an effort to further enhance its selectivity and potency for potential in vivo application, small molecule analogs of CID755673 were generated by modifying both the core structure and side-chains. Results After initial activity screening, five analogs with equal or greater potencies as CID755673 were chosen for further analysis: kb-NB142-70, kb-NB165-09, kb-NB165-31, kb-NB165-92, and kb-NB184-02. Our data showed that modifications to the aromatic core structure in particular significantly increased potency while retaining high specificity for PKD. When tested in prostate cancer cells, all compounds inhibited PMA-induced autophosphorylation of PKD1, with kb-NB142-70 being most active. Importantly, these analogs caused a dramatic arrest in cell proliferation accompanying elevated cytotoxicity when applied to prostate cancer cells. Cell migration and invasion were also inhibited by these analogs with varying potencies that correlated to their cellular activity. Conclusions Throughout the battery of experiments, the compounds kb-NB142-70 and kb-NB165-09 emerged as the most potent and specific analogs in vitro and in cells. These compounds are undergoing further testing for their effectiveness as pharmacological tools for dissecting PKD function and as potential anti-cancer agents in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Courtney R Lavalle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Shapiro BA, Olala L, Arun SN, Parker PM, George MV, Bollag WB. Angiotensin II-activated protein kinase D mediates acute aldosterone secretion. Mol Cell Endocrinol 2010; 317:99-105. [PMID: 19961896 PMCID: PMC2814994 DOI: 10.1016/j.mce.2009.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/21/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
Dysregulation of the renin-angiotensin II (AngII)-aldosterone system can contribute to cardiovascular disease, such that an understanding of this system is critical. Diacylglycerol-sensitive serine/threonine protein kinase D (PKD) is activated by AngII in several systems, including the human adrenocortical carcinoma cell line NCI H295R, where this enzyme enhances chronic (24h) AngII-evoked aldosterone secretion. However, the role of PKD in acute AngII-elicited aldosterone secretion has not been previously examined. In primary cultures of bovine adrenal glomerulosa cells, which secrete detectable quantities of aldosterone in response to secretagogues within minutes, PKD was activated in response to AngII, but not an elevated potassium concentration or adrenocorticotrophic hormone. This activation was time- and dose-dependent and occurred through the AT1, but not the AT2, receptor. Adenovirus-mediated overexpression of constitutively active PKD resulted in enhanced AngII-induced aldosterone secretion; whereas overexpression of a dominant-negative PKD construct decreased AngII-stimulated aldosterone secretion. Thus, we demonstrate for the first time that PKD mediates acute AngII-induced aldosterone secretion.
Collapse
Affiliation(s)
- Brian A. Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Lawrence Olala
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Senthil Nathan Arun
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Peter M. Parker
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Mariya V. George
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Wendy B. Bollag
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
- Departments of Physiolgy, Medicine, Cell Biology and Anatomy and Orthopaedic Surgery, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
- To whom correspondence should be addressed: Wendy B. Bollag, Department of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, TEL: (706) 721-0698, FAX: (706) 721-7299,
| |
Collapse
|
86
|
Abstract
The epsilon isoform of protein kinase C (PKCepsilon) has important roles in the function of the cardiac, immune and nervous systems. As a result of its diverse actions, PKCepsilon is the target of active drug-discovery programmes. A major research focus is to identify signalling cascades that include PKCepsilon and the substrates that PKCepsilon regulates. In the present review, we identify and discuss those proteins that have been conclusively shown to be direct substrates of PKCepsilon by the best currently available means. We will also describe binding partners that anchor PKCepsilon near its substrates. We review the consequences of substrate phosphorylation and discuss cellular mechanisms by which target specificity is achieved. We begin with a brief overview of the biology of PKCepsilon and methods for substrate identification, and proceed with a discussion of substrate categories to identify common themes that emerge and how these may be used to guide future studies.
Collapse
|
87
|
Griner EM, Caino MC, Sosa MS, Colón-González F, Chalmers MJ, Mischak H, Kazanietz MG. A novel cross-talk in diacylglycerol signaling: the Rac-GAP beta2-chimaerin is negatively regulated by protein kinase Cdelta-mediated phosphorylation. J Biol Chem 2010; 285:16931-41. [PMID: 20335173 DOI: 10.1074/jbc.m109.099036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the family of chimaerin Rac-GAPs has recently gained significant attention for their involvement in development, cancer, and neuritogenesis, little is known about their molecular regulation. Chimaerins are activated by the lipid second messenger diacylglycerol via their C1 domain upon activation of tyrosine kinase receptors, thereby restricting the magnitude of Rac signaling in a receptor-regulated manner. Here we identified a novel regulatory mechanism for beta2-chimaerin via phosphorylation. Epidermal growth factor or the phorbol ester phorbol 12-myristate 13-acetate caused rapid phosphorylation of beta2-chimaerin on Ser(169) located in the SH2-C1 domain linker region via protein kinase Cdelta, which retained beta2-chimaerin in the cytosol and prevented its C1 domain-mediated translocation to membranes. Furthermore, despite the fact that Ser(169) phosphorylation did not alter intrinsic Rac-GAP activity in vitro, a non-phosphorylatable beta2-chimaerin mutant was highly sensitive to translocation, and displayed enhanced association with activated Rac, enhanced Rac-GAP activity, and anti-migratory properties when expressed in cells. Our results not only revealed a novel regulatory mechanism that facilitates Rac activation, but also identified a novel mechanism of cross-talk between diacylglycerol receptors that restricts beta2-chimaerin relocalization and activation.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Kim YI, Park JE, Brand DD, Fitzpatrick EA, Yi AK. Protein kinase D1 is essential for the proinflammatory response induced by hypersensitivity pneumonitis-causing thermophilic actinomycetes Saccharopolyspora rectivirgula. THE JOURNAL OF IMMUNOLOGY 2010; 184:3145-56. [PMID: 20142359 DOI: 10.4049/jimmunol.0903718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypersensitivity pneumonitis is an interstitial lung disease that results from repeated pulmonary exposure to various organic Ags, including Saccharopolyspora rectivirgula, the causative agent of farmer's lung disease. Although the contributions of proinflammatory mediators to the disease pathogenesis are relatively well documented, the mechanism(s) involved in the initiation of proinflammatory responses against the causative microorganisms and the contribution of signaling molecules involved in the host immune defense have not been fully elucidated. In the current study, we found that S. rectivirgula induces the activation of protein kinase D (PKD)1 in lung cells in vitro and in vivo. Activation of PKD1 by S. rectivirgula was dependent on MyD88. Inhibition of PKD by pharmacological PKD inhibitor Gö6976 and silencing of PKD1 expression by small interfering RNA revealed that PKD1 is indispensable for S. rectivirgula-mediated activation of MAPKs and NF-kappaB and the expression of various proinflammatory cytokines and chemokines. In addition, compared with controls, mice pretreated with Gö6976 showed significantly suppressed alveolitis and neutrophil influx in bronchial alveolar lavage fluid and interstitial lung tissue, as well as substantially decreased myeloperoxidase activity in the lung after pulmonary exposure to S. rectivirgula. These results demonstrate that PKD1 is essential for S. rectivirgula-mediated proinflammatory immune responses and neutrophil influx in the lung. Our findings also imply the possibility that PKD1 is one of the critical factors that play a regulatory role in the development of hypersensitivity pneumonitis caused by microbial Ags and that inhibition of PKD1 activation could be an effective way to control microbial Ag-induced hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- Young-In Kim
- Children's Foundation Research Center at Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | | | | | |
Collapse
|
89
|
CID755673 enhances mitogenic signaling by phorbol esters, bombesin and EGF through a protein kinase D-independent pathway. Biochem Biophys Res Commun 2009; 391:63-8. [PMID: 19896460 DOI: 10.1016/j.bbrc.2009.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/01/2009] [Indexed: 11/21/2022]
Abstract
Recently, CID755673 was reported to act as a highly selective inhibitor of protein kinase D (PKD). In the course of experiments using CID755673, we noticed that it exerted unexpected stimulatory effects on [(3)H]thymidine incorporation and cell cycle progression in Swiss 3T3 cells stimulated by bombesin, a Gq-coupled receptor agonist, phorbol 12,13-dibutyrate (PDBu), a biologically active tumor promoting phorbol ester and epidermal growth factor (EGF). These stimulatory effects could be dissociated from the inhibitory effect of CID755673 on PKD activity, since enhancement of DNA synthesis was still evident in cells with severely down-regulated PKD1 after transfection of siRNA targeting PKD1. A major point raised by our study is that CID755673 can not be considered a specific inhibitor of PKD and it should be used with great caution in experiments attempting to elucidate the role of PKD family members in cellular regulation, particularly cell cycle progression from G(1)/G(o) to S phase.
Collapse
|
90
|
Yoo J, Chung C, Slice L, Sinnett-Smith J, Rozengurt E. Protein kinase D mediates synergistic expression of COX-2 induced by TNF-{alpha} and bradykinin in human colonic myofibroblasts. Am J Physiol Cell Physiol 2009; 297:C1576-87. [PMID: 19794144 DOI: 10.1152/ajpcell.00184.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myofibroblasts have recently been identified as major mediators of tumor necrosis factor-alpha (TNF-alpha)-associated colitis, but the precise mechanism(s) involved remains incompletely understood. In particular, the possibility that TNF-alpha signaling cross talks with other proinflammatory mediators, including bradykinin (BK), has not been examined in these cells. Here we show that treatment of 18Co cells, a model of human colonic myofibroblasts, with BK and TNF-alpha induced striking synergistic COX-2 protein expression that was paralleled by increases in the levels of transcripts encoding COX-2 and microsomal prostaglandin E synthase 1 (mPGES-1) and by the production of PGE(2). COX-2 expression in 18Co cells treated with BK and TNF-alpha was prevented by the B(2) BK receptor antagonist HOE-140, the preferential protein kinase C (PKC) inhibitors Ro31-8220 and GF-109203X, and Gö-6976, an inhibitor of conventional PKCs and protein kinase D (PKD). In a parallel fashion, TNF-alpha, while having no detectable effect on the activation of PKD when added alone, augmented PKD activation induced by BK, as measured by PKD phosphorylation at its activation loop (Ser(744)) and autophosphorylation site (Ser(916)). BK-induced PKD activation was also inhibited by HOE-140, Ro31-8220, and Gö-6976. Transfection of 18Co cells with small interfering RNA targeting PKD completely inhibited the synergistic increase in COX-2 protein in response to BK and TNF-alpha, demonstrating, for the first time, a critical role of PKD in the pathways leading to synergistic expression of COX-2. Our results imply that cross talk between TNF-alpha and BK amplifies a PKD phosphorylation cascade that mediates synergistic COX-2 expression in colonic myofibroblasts. It is plausible that PKD increases COX-2 expression in colonic myofibroblasts to promote an inflammatory microenvironment that supports tumor growth.
Collapse
Affiliation(s)
- James Yoo
- Department of Surgery, CURE: Digestive Diseases Research Center, Molecular Biology Institute, University of California, Los Angeles, 90095-1786, USA
| | | | | | | | | |
Collapse
|
91
|
Amadesi S, Grant AD, Cottrell GS, Vaksman N, Poole DP, Rozengurt E, Bunnett NW. Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of protease-activated receptor 2. J Comp Neurol 2009; 516:141-56. [PMID: 19575452 DOI: 10.1002/cne.22104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Serine proteases generated during injury and inflammation cleave protease-activated receptor 2 (PAR(2)) on primary sensory neurons to induce neurogenic inflammation and hyperalgesia. Hyperalgesia requires sensitization of transient receptor potential vanilloid (TRPV) ion channels by mechanisms involving phospholipase C and protein kinase C (PKC). The protein kinase D (PKD) serine/threonine kinases are activated by diacylglycerol and PKCs and can phosphorylate TRPV1. Thus, PKDs may participate in novel signal transduction pathways triggered by serine proteases during inflammation and pain. However, it is not known whether PAR(2) activates PKD, and the expression of PKD isoforms by nociceptive neurons is poorly characterized. By using HEK293 cells transfected with PKDs, we found that PAR(2) stimulation promoted plasma membrane translocation and phosphorylation of PKD1, PKD2, and PKD3, indicating activation. This effect was partially dependent on PKCepsilon. By immunofluorescence and confocal microscopy, with antibodies against PKD1/PKD2 and PKD3 and neuronal markers, we found that PKDs were expressed in rat and mouse dorsal root ganglia (DRG) neurons, including nociceptive neurons that expressed TRPV1, PAR(2), and neuropeptides. PAR(2) agonist induced phosphorylation of PKD in cultured DRG neurons, indicating PKD activation. Intraplantar injection of PAR(2) agonist also caused phosphorylation of PKD in neurons of lumbar DRG, confirming activation in vivo. Thus, PKD1, PKD2, and PKD3 are expressed in primary sensory neurons that mediate neurogenic inflammation and pain transmission, and PAR(2) agonists activate PKDs in HEK293 cells and DRG neurons in culture and in intact animals. PKD may be a novel component of a signal transduction pathway for protease-induced activation of nociceptive neurons and an important new target for antiinflammatory and analgesic therapies.
Collapse
Affiliation(s)
- Silvia Amadesi
- Center for Neurobiology of Digestive Diseases, University of California, San Francisco, San Francisco, California 94143-0660, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Rotem-Dai N, Oberkovitz G, Abu-Ghanem S, Livneh E. PKCη confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells. Exp Cell Res 2009; 315:2616-23. [DOI: 10.1016/j.yexcr.2009.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/31/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
|
93
|
Koncz P, Szanda G, Fülöp L, Rajki A, Spät A. Mitochondrial Ca2+ uptake is inhibited by a concerted action of p38 MAPK and protein kinase D. Cell Calcium 2009; 46:122-9. [DOI: 10.1016/j.ceca.2009.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/20/2009] [Indexed: 10/20/2022]
|
94
|
Ha CH, Jin ZG. Protein kinase D1, a new molecular player in VEGF signaling and angiogenesis. Mol Cells 2009; 28:1-5. [PMID: 19655095 PMCID: PMC4228936 DOI: 10.1007/s10059-009-0109-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal and pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are incompletely understood. The protein kinase D1 (PKD1), a newly described calcium/calmodulin-dependent serine/threonine kinase, has been implicated in cell migration, proliferation and membrane trafficking. Increasing evidence suggests critical roles for PKD1-mediated signaling pathways in endothelial cells, particularly in the regulation of VEGF-induced angiogenesis. Recent studies show that class IIa histone deacetylases (HDACs) are PKD1 substrates and VEGF signal-responsive repressors of myocyte enhancer factor-2 (MEF2) transcriptional activation in endothelial cells. This review provides a guide to PKD1 signaling pathways and the direct downstream targets of PKD1 in VEGF signaling, and suggests important functions of PKD1 in angiogenesis.
Collapse
Affiliation(s)
- Chang Hoon Ha
- The Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
95
|
Cowell CF, Yan IK, Eiseler T, Leightner AC, Döppler H, Storz P. Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. J Cell Biochem 2009; 106:714-28. [PMID: 19173301 DOI: 10.1002/jcb.22067] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell-cell contacts mediated by cadherins are known to inhibit the small Rho-GTPase RhoA. We here show that in epithelial cells the disruption of these cell-cell contacts as mediated by a calcium switch leads to actin re-organization and the activation of RhoA. We identified the serine/threonine kinase protein kinase D1 (PKD1) as a downstream target for RhoA in this pathway. After disruption of cell-cell contacts, PKD1 relayed RhoA activation to the induction of the transcription factor NF-kappaB. We found that a signaling complex composed of the kinases ROCK, novel protein kinase C (nPKC), and Src family kinases (SFKs) is upstream of PKD1 and crucial for RhoA-mediated NF-kappaB activation. In conclusion, our data suggest a previously undescribed signaling pathway of how RhoA is activated by loss of cell-cell adhesions and by which it mediates the activation of NF-kappaB. We propose that this pathway is of relevance for epithelial tumor cell biology, where loss of cell-cell contacts has been implicated in regulating cell survival and motility.
Collapse
Affiliation(s)
- Catherine F Cowell
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
96
|
Park JE, Kim YI, Yi AK. Protein kinase D1 is essential for MyD88-dependent TLR signaling pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:6316-27. [PMID: 19414785 DOI: 10.4049/jimmunol.0804239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinase D1 (PKD1) has been shown to be involved in certain MAPK activation and cytokine expression by several TLR ligands. However, the precise physiological role of PKD1 in individual signaling from TLRs has not been fully addressed. In this study, we provide evidence that PKD1 is being activated by TLR ligands, except the TLR3 ligand. PKD1 activation by TLR ligands is dependent on MyD88, IL-1R-associated kinase 4 and 1, but independent of TNF-alpha receptor-associated factor 6. PKD1-knockdown macrophages and bone marrow-derived dendritic cells revealed that PKD1 is indispensable for the MyD88-dependent ubiquitination of TNF-alpha receptor-associated factor 6; activation of TGF-beta-activated kinase 1, MAPKs, and transcription factors; and expression of proinflammatory genes induced by TLR ligands, but is not involved in expression of type I IFNs induced by TLR ligands and TRIF-dependent genes induced by TLR3 and TLR4 ligands. These results demonstrate that PKD1 is essential for MyD88-dependent proinflammatory immune responses.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Department of Pediatrics, Children's Foundation Research Center, Le Bonheur Children's Medical Center, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | |
Collapse
|
97
|
Sinnett-Smith J, Jacamo R, Kui R, Wang YM, Young SH, Rey O, Waldron RT, Rozengurt E. Protein kinase D mediates mitogenic signaling by Gq-coupled receptors through protein kinase C-independent regulation of activation loop Ser744 and Ser748 phosphorylation. J Biol Chem 2009; 284:13434-13445. [PMID: 19289471 DOI: 10.1074/jbc.m806554200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rapid protein kinase D (PKD) activation and phosphorylation via protein kinase C (PKC) have been extensively documented in many cell types cells stimulated by multiple stimuli. In contrast, little is known about the role and mechanism(s) of a recently identified sustained phase of PKD activation in response to G protein-coupled receptor agonists. To elucidate the role of biphasic PKD activation, we used Swiss 3T3 cells because PKD expression in these cells potently enhanced duration of ERK activation and DNA synthesis in response to G(q)-coupled receptor agonists. Cell treatment with the preferential PKC inhibitors GF109203X or Gö6983 profoundly inhibited PKD activation induced by bombesin stimulation for <15 min but did not prevent PKD catalytic activation induced by bombesin stimulation for longer times (>60 min). The existence of sequential PKC-dependent and PKC-independent PKD activation was demonstrated in 3T3 cells stimulated with various concentrations of bombesin (0.3-10 nm) or with vasopressin, a different G(q)-coupled receptor agonist. To gain insight into the mechanisms involved, we determined the phosphorylation state of the activation loop residues Ser(744) and Ser(748). Transphosphorylation targeted Ser(744), whereas autophosphorylation was the predominant mechanism for Ser(748) in cells stimulated with G(q)-coupled receptor agonists. We next determined which phase of PKD activation is responsible for promoting enhanced ERK activation and DNA synthesis in response to G(q)-coupled receptor agonists. We show, for the first time, that the PKC-independent phase of PKD activation mediates prolonged ERK signaling and progression to DNA synthesis in response to bombesin or vasopressin through a pathway that requires epidermal growth factor receptor-tyrosine kinase activity. Thus, our results identify a novel mechanism of G(q)-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.
Collapse
Affiliation(s)
- James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Rodrigo Jacamo
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Robert Kui
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - YunZu M Wang
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Steven H Young
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Osvaldo Rey
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Richard T Waldron
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095.
| |
Collapse
|
98
|
Liu Y, Contreras M, Shen T, Randall WR, Schneider MF. Alpha-adrenergic signalling activates protein kinase D and causes nuclear efflux of the transcriptional repressor HDAC5 in cultured adult mouse soleus skeletal muscle fibres. J Physiol 2009; 587:1101-15. [PMID: 19124542 DOI: 10.1113/jphysiol.2008.164566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The protein kinase PKD1 has recently been linked to slow fibre-type gene expression in fast skeletal muscle through phosphorylation of class II histone deacetylase (HDAC) molecules, resulting in nuclear efflux of HDAC and consequent activation of the transcription factor MEF2. However, possible upstream activators of PKD, and the time course and signalling pathway of downstream effectors have not been determined in skeletal muscle. Using fluorescent fusion proteins HDAC5-green fluorescent protein (GFP) and PKD1-mPlum expressed in fibres isolated from predominantly slow soleus muscle and maintained for 4 days in culture, we now show that alpha-adrenergic receptor activation by phenylephrine causes a transient, PKD-dependent HDAC5-GFP nuclear efflux. Concurrent to this response, PKD1-mPlum transiently redistributes from cytoplasm to plasma membrane and nuclei, and back, during 2 h exposure to phenylephrine. The recovery may reflect alpha-receptor desensitization. In contrast, the phorbol ester PMA (phorbol-12-myristate-13-acetate, a pharmacological mimic of the downstream mediator diacylglycerol in alpha-adrenergic signalling), caused continuous PKD-dependent HDAC5-GFP nuclear efflux and maintained PKD1-mPlum redistribution. In the absence of expressed HDAC, PMA increased histone H3 acetylation and increased MEF2 reporter activity in a PKD-dependent manner, consistent with PKD phosphorylation of endogenous HDAC(s) and reduced nuclear HDAC activity due to HDAC nuclear efflux. HDAC5-GFP did not respond to PMA in fibres from predominantly fast flexor digitorum brevis (FDB) muscle, but did in FDB fibres expressing exogenous PKD1. Our results demonstrate that a PKD-mediated signalling pathway for HDAC nuclear efflux is activated in slow skeletal muscle through adrenergic input, which is typically active in parallel with motor neurone input during muscular activity.
Collapse
Affiliation(s)
- Yewei Liu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
99
|
Sharlow ER, Giridhar KV, LaValle CR, Chen J, Leimgruber S, Barrett R, Bravo-Altamirano K, Wipf P, Lazo JS, Wang QJ. Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J Biol Chem 2008; 283:33516-26. [PMID: 18829454 PMCID: PMC2586241 DOI: 10.1074/jbc.m805358200] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/30/2008] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) is a novel family of serine/threonine kinases targeted by the second messenger diacylglycerol. It has been implicated in many important cellular processes and pathological conditions. However, further analysis of PKD in these processes is severely hampered by the lack of a PKD-specific inhibitor that can be readily applied to cells and in animal models. We now report the discovery of the first potent and selective cell-active small molecule inhibitor for PKD, benzoxoloazepinolone (CID755673). This inhibitor was identified from the National Institutes of Health small molecule repository library of 196,173 compounds using a human PKD1 (PKCmu)-based fluorescence polarization high throughput screening assay. CID755673 suppressed half of the PKD1 enzyme activity at 182 nm and exhibited selective PKD1 inhibition when compared with AKT, polo-like kinase 1 (PLK1), CDK activating kinase (CAK), CAMKIIalpha, and three different PKC isoforms. Moreover, it was not competitive with ATP for enzyme inhibition. In cell-based assays, CID755673 blocked phorbol ester-induced endogenous PKD1 activation in LNCaP cells in a concentration-dependent manner. Functionally, CID755673 inhibited the known biological actions of PKD1 including phorbol ester-induced class IIa histone deacetylase 5 nuclear exclusion, vesicular stomatitis virus glycoprotein transport from the Golgi to the plasma membrane, and the ilimaquinone-induced Golgi fragmentation. Moreover, CID755673 inhibited prostate cancer cell proliferation, cell migration, and invasion. In summary, our findings indicate that CID755673 is a potent and selective PKD1 inhibitor with valuable pharmacological and cell biological potential.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell 2008; 32:169-79. [PMID: 18951085 DOI: 10.1016/j.molcel.2008.08.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/07/2008] [Accepted: 08/19/2008] [Indexed: 01/13/2023]
Abstract
Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.
Collapse
|