51
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
52
|
GAO XIANGY, LI LIN, WANG XIAOH, WEN XIANZ, JI KE, YE LIN, CAI JUN, JIANG WENG, JI JIAF. Inhibition of sphingosine-1-phosphate phosphatase 1 promotes cancer cells migration in gastric cancer: Clinical implications. Oncol Rep 2015; 34:1977-87. [DOI: 10.3892/or.2015.4162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
|
53
|
Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc Natl Acad Sci U S A 2015; 112:7707-12. [PMID: 26056268 DOI: 10.1073/pnas.1503491112] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production.
Collapse
|
54
|
Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 2015; 125:1379-87. [PMID: 25831442 DOI: 10.1172/jci76369] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Membrane sphingolipids are metabolized to sphingosine-1-phosphate (S1P), a bioactive lipid mediator that regulates many processes in vertebrate development, physiology, and pathology. Once exported out of cells by cell-specific transporters, chaperone-bound S1P is spatially compartmentalized in the circulatory system. Extracellular S1P interacts with five GPCRs that are widely expressed and transduce intracellular signals to regulate cellular behavior, such as migration, adhesion, survival, and proliferation. While many organ systems are affected, S1P signaling is essential for vascular development, neurogenesis, and lymphocyte trafficking. Recently, a pharmacological S1P receptor antagonist has won approval to control autoimmune neuroinflammation in multiple sclerosis. The availability of pharmacological tools as well as mouse genetic models has revealed several physiological actions of S1P and begun to shed light on its pathological roles. The unique mode of signaling of this lysophospholipid mediator is providing novel opportunities for therapeutic intervention, with possibilities to target not only GPCRs but also transporters, metabolic enzymes, and chaperones.
Collapse
|
55
|
West DB, Pasumarthi RK, Baridon B, Djan E, Trainor A, Griffey SM, Engelhard EK, Rapp J, Li B, de Jong PJ, Lloyd KCK. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines. Genome Res 2015; 25:598-607. [PMID: 25591789 PMCID: PMC4381530 DOI: 10.1101/gr.184184.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
Abstract
Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known.
Collapse
Affiliation(s)
- David B West
- Children's Hospital of Oakland Research Institute (CHORI), Oakland, California 94609, USA;
| | - Ravi K Pasumarthi
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Brian Baridon
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Esi Djan
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Amanda Trainor
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Stephen M Griffey
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Eric K Engelhard
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Jared Rapp
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Bowen Li
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Pieter J de Jong
- Children's Hospital of Oakland Research Institute (CHORI), Oakland, California 94609, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, California 95618, USA
| |
Collapse
|
56
|
Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul 2014; 58:38-52. [PMID: 25434743 DOI: 10.1016/j.jbior.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate.
Collapse
Affiliation(s)
- Brittany Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jane Catalina Donaldson
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina Obeid
- Northport VA Medical Center, Northport, NY 11768, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
57
|
Spincemaille P, Cammue BP, Thevissen K. Sphingolipids and mitochondrial function, lessons learned from yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:210-224. [PMID: 28357246 PMCID: PMC5349154 DOI: 10.15698/mic2014.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Bruno P. Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052,
Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
58
|
Couttas TA, Kain N, Daniels B, Lim XY, Shepherd C, Kril J, Pickford R, Li H, Garner B, Don AS. Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. Acta Neuropathol Commun 2014; 2:9. [PMID: 24456642 PMCID: PMC3906863 DOI: 10.1186/2051-5960-2-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background The greatest genetic risk factor for late-onset Alzheimer's disease (AD) is the ϵ4 allele of Apolipoprotein E (ApoE). ApoE regulates secretion of the potent neuroprotective signaling lipid Sphingosine 1-phosphate (S1P). S1P is derived by phosphorylation of sphingosine, catalysed by sphingosine kinases 1 and 2 (SphK1 and 2), and SphK1 positively regulates glutamate secretion and synaptic strength in hippocampal neurons. S1P and its receptor family have been subject to intense pharmacological interest in recent years, following approval of the immunomodulatory drug Fingolimod, an S1P mimetic, for relapsing multiple sclerosis. Results We quantified S1P levels in six brain regions that are differentially affected by AD pathology, in a cohort of 34 post-mortem brains, divided into four groups based on Braak neurofibrillary tangle staging. S1P declined with increasing Braak stage, and this was most pronounced in brain regions most heavily affected by AD pathology. The S1P/sphingosine ratio was 66% and 64% lower in Braak stage III/IV hippocampus (p = 0.010) and inferior temporal cortex (p = 0.014), respectively, compared to controls. In accordance with this change, both SphK1 and SphK2 activity declined with increasing Braak pathology in the hippocampus (p = 0.032 and 0.047, respectively). S1P/sphingosine ratio was 2.5-fold higher in hippocampus of ApoE2 carriers compared to ApoE4 carriers, and multivariate regression showed a significant association between APOE genotype and hippocampal S1P/sphingosine (p = 0.0495), suggesting a new link between APOE genotype and pre-disposition to AD. Conclusions This study demonstrates loss of S1P and sphingosine kinase activity early in AD pathogenesis, and prior to AD diagnosis. Our findings establish a rationale for further exploring S1P receptor pharmacology in the context of AD therapy.
Collapse
|
59
|
Abstract
Sphingosine 1-phosphate (S1P), a lipid mediator produced by sphingolipid metabolism, promotes endothelial cell spreading, vascular maturation/stabilization, and barrier function. S1P is present at high concentrations in the circulatory system, whereas in tissues its levels are low. This so-called vascular S1P gradient is essential for S1P to regulate much physiological and pathophysiological progress such as the modulation of vascular permeability. Cellular sources of S1P in blood has only recently begun to be identified. In this review, we summarize the current understanding of S1P in regulating vascular integrity. In particular, we discuss the recent discovery of the endothelium-protective functions of HDL-bound S1P which is chaperoned by apolipoprotein M.
Collapse
|
60
|
Abe K, Ohno Y, Sassa T, Taguchi R, Çalışkan M, Ober C, Kihara A. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile. J Biol Chem 2013; 288:36741-9. [PMID: 24220030 PMCID: PMC3868783 DOI: 10.1074/jbc.m113.493221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/07/2013] [Indexed: 11/06/2022] Open
Abstract
Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.
Collapse
Affiliation(s)
- Kensuke Abe
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Ohno
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takayuki Sassa
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ryo Taguchi
- the Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan, and
| | - Minal Çalışkan
- the Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| | - Carole Ober
- the Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| | - Akio Kihara
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
61
|
Abuhusain HJ, Matin A, Qiao Q, Shen H, Kain N, Day BW, Stringer BW, Daniels B, Laaksonen MA, Teo C, McDonald KL, Don AS. A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 2013; 288:37355-64. [PMID: 24265321 DOI: 10.1074/jbc.m113.494740] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies in cell culture and mouse models of cancer have indicated that the soluble sphingolipid metabolite sphingosine 1-phosphate (S1P) promotes cancer cell proliferation, survival, invasiveness, and tumor angiogenesis. In contrast, its metabolic precursor ceramide is prodifferentiative and proapoptotic. To determine whether sphingolipid balance plays a significant role in glioma malignancy, we undertook a comprehensive analysis of sphingolipid metabolites in human glioma and normal gray matter tissue specimens. We demonstrate, for the first time, a systematic shift in sphingolipid metabolism favoring S1P over ceramide, which increases with increasing cancer grade. S1P content was, on average, 9-fold higher in glioblastoma tissues compared with normal gray matter, whereas the most abundant form of ceramide in the brain, C18 ceramide, was on average 5-fold lower. Increased S1P content in the tumors was significantly correlated with increased sphingosine kinase 1 (SPHK1) and decreased sphingosine phosphate phosphatase 2 (SGPP2) expression. Inhibition of S1P production by cultured glioblastoma cells, using a highly potent and selective SPHK1 inhibitor, blocked angiogenesis in cocultured endothelial cells without affecting VEGF secretion. Our findings validate the hypothesis that an altered ceramide/S1P balance is an important feature of human cancers and support the development of SPHK1 inhibitors as antiangiogenic agents for cancer therapy.
Collapse
|
62
|
Ohkuni A, Ohno Y, Kihara A. Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway. Biochem Biophys Res Commun 2013; 442:195-201. [PMID: 24269233 DOI: 10.1016/j.bbrc.2013.11.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) plays important roles both as a bioactive lipid molecule and an intermediate of the sphingolipid-to-glycerophospholipid metabolic pathway. To identify human acyl-CoA synthetases (ACSs) involved in S1P metabolism, we cloned all 26 human ACS genes and examined their abilities to restore deficient sphingolipid-to-glycerophospholipid metabolism in a yeast mutant lacking two ACS genes, FAA1 and FAA4. Here, in addition to the previously identified ACSL family members (ACSL1, 3, 4, 5, and 6), we found that ACSVL1, ACSVL4, and ACSBG1 also restored metabolism. All 8 ACSs were localized either exclusively or partly to the endoplasmic reticulum (ER), where S1P metabolism takes place. We previously proposed the entire S1P metabolic pathway from results obtained using yeast cells, i.e., S1P is metabolized to glycerophospholipids via trans-2-hexadecenal, trans-2-hexadecenoic acid, trans-2-hexadecenoyl-CoA, and palmitoyl-CoA. However, as S1P is not a naturally occurring long-chain base 1-phosphate in yeast, the validity of this pathway required further verification using mammalian cells. In the present study, we treated HeLa cells with the ACS inhibitor triacsin C and found that inhibition of ACSs resulted in accumulation of trans-2-hexadecenoic acid as in ACS mutant yeast. From these results, we conclude that S1P is metabolized by a common pathway in eukaryotes.
Collapse
Affiliation(s)
- Aya Ohkuni
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
63
|
Rego A, Trindade D, Chaves SR, Manon S, Costa V, Sousa MJ, Côrte-Real M. The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids. FEMS Yeast Res 2013; 14:160-78. [DOI: 10.1111/1567-1364.12096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/02/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- António Rego
- Departamento de Biologia; Centro de Biologia Molecular e Ambiental; Universidade do Minho; Braga Portugal
- Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Dário Trindade
- Departamento de Biologia; Centro de Biologia Molecular e Ambiental; Universidade do Minho; Braga Portugal
- CNRS; UMR5095; Université de Bordeaux 2; Bordeaux France
| | - Susana R. Chaves
- Departamento de Biologia; Centro de Biologia Molecular e Ambiental; Universidade do Minho; Braga Portugal
| | - Stéphen Manon
- CNRS; UMR5095; Université de Bordeaux 2; Bordeaux France
| | - Vítor Costa
- Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; Porto Portugal
| | - Maria João Sousa
- Departamento de Biologia; Centro de Biologia Molecular e Ambiental; Universidade do Minho; Braga Portugal
| | - Manuela Côrte-Real
- Departamento de Biologia; Centro de Biologia Molecular e Ambiental; Universidade do Minho; Braga Portugal
| |
Collapse
|
64
|
Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:766-72. [PMID: 23994042 DOI: 10.1016/j.bbalip.2013.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022]
Abstract
The sphingolipid metabolite sphingosine 1-phosphate (S1P) is a well-known lipid mediator. As a lipid mediator, S1P must be present in extracellular space and bind to its cell surface receptors (S1P1-5). However, most S1P, synthesized intracellularly, is metabolized without being released into extracellular space, in other words, without functioning as a lipid mediator in the vast majority of cells except those supplying plasma and lymph S1P such as blood cells and endothelial cells. Instead, intracellular S1P plays an important role as an intermediate of the sole sphingolipid-to-glycerophospholipid metabolic pathway. The degradation of S1P by S1P lyase is the first irreversible reaction (committed step) of this pathway. This metabolic pathway is conserved in eukaryotes from yeast to human, indicating its much older origin than the function of S1P as a lipid mediator, which is found to be present only in vertebrates and chordates. The sphingolipid-to-glycerophospholipid metabolism takes place ubiquitously in mammalian tissues, and its defect causes an aberration of several tissue functions as well as abnormal lipid metabolism. Although this metabolic pathway has been known for over four decades, only recently the precise reactions and enzymes involved in this pathway have been revealed. This review will focus on the recent advances in our understanding of the sphingolipid metabolic pathway via S1P and its physiological and pathological roles. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
|
65
|
Natarajan V, Dudek SM, Jacobson JR, Moreno-Vinasco L, Huang LS, Abassi T, Mathew B, Zhao Y, Wang L, Bittman R, Weichselbaum R, Berdyshev E, Garcia JGN. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am J Respir Cell Mol Biol 2013; 49:6-17. [PMID: 23449739 PMCID: PMC3727889 DOI: 10.1165/rcmb.2012-0411tr] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/26/2012] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) attributable to sepsis or mechanical ventilation and subacute lung injury because of ionizing radiation (RILI) share profound increases in vascular permeability as a key element and a common pathway driving increased morbidity and mortality. Unfortunately, despite advances in the understanding of lung pathophysiology, specific therapies do not yet exist for the treatment of ALI or RILI, or for the alleviation of unremitting pulmonary leakage, which serves as a defining feature of the illness. A critical need exists for new mechanistic insights that can lead to novel strategies, biomarkers, and therapies to reduce lung injury. Sphingosine 1-phosphate (S1P) is a naturally occurring bioactive sphingolipid that acts extracellularly via its G protein-coupled S1P1-5 as well as intracellularly on various targets. S1P-mediated cellular responses are regulated by the synthesis of S1P, catalyzed by sphingosine kinases 1 and 2, and by the degradation of S1P mediated by lipid phosphate phosphatases, S1P phosphatases, and S1P lyase. We and others have demonstrated that S1P is a potent angiogenic factor that enhances lung endothelial cell integrity and an inhibitor of vascular permeability and alveolar flooding in preclinical animal models of ALI. In addition to S1P, S1P analogues such as 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), FTY720 phosphate, and FTY720 phosphonates offer therapeutic potential in murine models of lung injury. This translational review summarizes the roles of S1P, S1P analogues, S1P-metabolizing enzymes, and S1P receptors in the pathophysiology of lung injury, with particular emphasis on the development of potential novel biomarkers and S1P-based therapies for ALI and RILI.
Collapse
|
66
|
Allende ML, Sipe LM, Tuymetova G, Wilson-Henjum KL, Chen W, Proia RL. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J Biol Chem 2013; 288:18381-91. [PMID: 23637227 DOI: 10.1074/jbc.m113.478420] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1(-/-) mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1(-/-) pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1(-/-) mice. Keratinocytes isolated from the skin of Sgpp1(-/-) pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
67
|
Violet PC, Billon-Denis E, Robin P. Inhibition of lipid phosphate phosphatase activity by VPC32183 suppresses the ability of diacylglycerol pyrophosphate to activate ERK(1/2) MAP kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1394-405. [PMID: 22820196 DOI: 10.1016/j.bbalip.2012.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 11/17/2022]
Abstract
The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.
Collapse
Affiliation(s)
- Pierre-Christian Violet
- Université Paris-Sud 11, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, 91405 Orsay CEDEX, France
| | | | | |
Collapse
|
68
|
Kok BPC, Venkatraman G, Capatos D, Brindley DN. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 2012; 112:5121-46. [PMID: 22742522 DOI: 10.1021/cr200433m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
69
|
Shaping the landscape: metabolic regulation of S1P gradients. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:193-202. [PMID: 22735358 DOI: 10.1016/j.bbalip.2012.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
70
|
Nakagawa N, Kato M, Takahashi Y, Shimazaki KI, Tamura K, Tokuji Y, Kihara A, Imai H. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. JOURNAL OF PLANT RESEARCH 2012; 125:439-49. [PMID: 21910031 DOI: 10.1007/s10265-011-0451-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/06/2011] [Indexed: 05/08/2023]
Abstract
Sphingolipid metabolites, long-chain base 1-phosphates (LCBPs), are involved in ABA signaling pathways. The LCBPs synthesized by long-chain base kinase are dephosphorylated by LCBP phosphatase or degraded by LCBP lyase. Here we show that the At3g58490 gene encodes AtSPP1, a functional LCBP phosphatase. Transient expression of green fluorescent protein fusion in suspension-cultured Arabidopsis cells showed that AtSPP1 is localized in the endoplasmic reticulum. The level of dihydrosphingosine 1-phosphate was increased in loss-of-function mutants (spp1) compared with wild-type (WT) plants, suggesting a role of AtSPP1 in regulating LCBP levels. The rate of decrease in fresh weight of detached aerial parts was significantly slower in spp1 mutants than in WT plants. A stomatal closure bioassay showed that the stomata of spp1 mutants were more sensitive than the WT to ABA, suggesting that AtSPP1 is involved in guard cell signaling. However, spp1 mutants showed decreased sensitivity to ABA with respect to primary root growth but not to seed germination. The response to fumonisin B(1) did not differ between the WT and spp1 mutant. A significant decrease in AtDPL1 (LCBP lyase) transcripts in spp1 mutants was observed. We conclude that AtSPP1 is a functional LCBP phosphatase that may play a role in stomatal responses through LCBP-mediated ABA signaling.
Collapse
Affiliation(s)
- Noriko Nakagawa
- Department of Biology, Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
72
|
Chen PC, Chen YC, Lai LC, Tsai MH, Chen SK, Yang PW, Lee YC, Hsiao CK, Lee JM, Chuang EY. Use of Germline Polymorphisms in Predicting Concurrent Chemoradiotherapy Response in Esophageal Cancer. Int J Radiat Oncol Biol Phys 2012; 82:1996-2003. [DOI: 10.1016/j.ijrobp.2011.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 01/27/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
73
|
Santulli P, Marcellin L, Noël JC, Borghese B, Fayt I, Vaiman D, Chapron C, Méhats C. Sphingosine pathway deregulation in endometriotic tissues. Fertil Steril 2012; 97:904-11. [DOI: 10.1016/j.fertnstert.2011.12.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 01/11/2023]
|
74
|
Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: Transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 2012; 413:384-90. [DOI: 10.1016/j.cca.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
75
|
Immune regulation by sphingosine 1-phosphate and its receptors. Arch Immunol Ther Exp (Warsz) 2011; 60:3-12. [PMID: 22159476 DOI: 10.1007/s00005-011-0159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/28/2011] [Indexed: 01/23/2023]
Abstract
It is well established that the lysophospholipid and signalling molecule sphingosine 1-phosphate (S1P) has many important functions in immune surveillance. S1P is produced from sphingosine by two distinct sphingosine kinases, SphK1 and SphK2, and acts as an intracellular messenger and as an extracellular ligand of five G protein-coupled cell surface receptors designated S1P(1)-S1P(5). S1P not only regulates peripheral lymphocyte circulation, but also influences their differentiation, activation, infiltration, and local positioning. The therapeutic value of modulating S1P metabolism and S1P receptor function is currently tested in clinical trials and holds great promise for treatment of different autoimmune diseases. Despite its obvious contribution to immune regulation, the analysis of S1P is still challenging. A major obstacle is the difficulty to analyze S1P locally in tissues and within cells due to its high metabolic turnover and the limited resolution of current analytical techniques like liquid chromatography and mass spectrometry. This review focuses on recent advancements to our understanding how different sources of S1P contribute to immune function, and how changes in production, secretion, and degradation of S1P can influence immune responses.
Collapse
|
76
|
Liu X, Zhang QH, Yi GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 2011; 363:21-33. [DOI: 10.1007/s11010-011-1154-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
|
77
|
The in vitro metabolism of sphingosine-1-phosphate: identification; inhibition and pharmacological implications. Eur J Pharmacol 2011; 672:56-61. [PMID: 21970805 DOI: 10.1016/j.ejphar.2011.09.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 01/10/2023]
Abstract
A time-dependent decrease in S1P potency was observed in a [(35)S]-GTPγS binding assay using CHO-cell membranes expressing the human S1P(2) receptor. After a three hour incubation with membranes the pEC(50) of S1P was 7.09 ± 0.03, compared to 8.59 ± 0.10 for that obtained without pre-incubation. To determine if S1P was subjected to metabolic breakdown we developed a bioassay to measure S1P activity which confirmed the findings from the [(35)S]-GTPγS binding experiments. LC-MS/MS techniques were also used to measure the concentrations of S1P and its breakdown product sphingosine. In the presence of CHO-cell membranes the t(1/2) of S1P breakdown to sphingosine was 42.99 ± 0.40 min, this is in contrast to that obtained without the inclusion of membranes (256.30 ± 113.84 min), confirming the metabolism of S1P in vitro. Finally, the effects of different phosphatase inhibitors were investigated to determine whether it was possible to prevent the metabolism of S1P. In the presence of sodium orthovanadate, the pEC(50) for S1P obtained in the [(35)S]-GTPγS binding assay, after three hour pre-incubation with membranes was 8.91 ± 0.03. In contrast that obtained without Na(3)VO(4) was 7.19 ± 0.04. These data suggest that phosphatases are active in cell membrane preparations and are responsible for S1P metabolism in vitro. In the absence of sodium orthovanadate, it is envisaged that experiments involving exogenously applied S1P to broken cell preparations, whole cells or tissues, coupled with long incubation times will be subjected to metabolism.
Collapse
|
78
|
Cordts F, Pitson S, Tabeling C, Gibbins I, Moffat DF, Jersmann H, Hodge S, Haberberger RV. Expression profile of the sphingosine kinase signalling system in the lung of patients with chronic obstructive pulmonary disease. Life Sci 2011; 89:806-11. [PMID: 21945191 DOI: 10.1016/j.lfs.2011.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/26/2011] [Accepted: 08/28/2011] [Indexed: 01/24/2023]
Abstract
AIMS Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Despite its importance, treatment methods are limited and restricted to symptomatic care, highlighting the urgent need for new treatment options. Tissue damage in COPD is thought to result from an inability of the normal repair processes with accumulation of apoptotic material and impaired clearance of this material by macrophages in the airways. Lung inflammation involves the bioactive sphingolipid sphingosine 1-phosphate (S1P). MAIN METHODS We investigated lung tissue samples from 55 patients (25 with COPD) undergoing lobectomies for management of cancer. We analysed the sphingosine-kinase (SphK) mRNA expression profile, SphK enzyme activity as well as the localisation and expression of individual proteins related to the SphK-signalling system. KEY FINDINGS We show in this study for the first time a comprehensive expression profile of all synthesising enzymes, receptors and degrading enzymes of the SphK-signalling system in the human lung. Multivariate ANOVA showed that the relative mRNA expression of S1P receptor (S1PR) subtype 5 was reduced in COPD. There were strong positive correlations between the mRNA expression of S1PR5 and S1PR1 and S1PR3, and between S1PR3 and S1PR2. A significant negative correlation was found between S1PR1 and SphK protein activity. SIGNIFICANCE The correlations between expression levels of receptors and enzymes involved in the sphingosine kinase signalling system in the lung suggest common regulatory mechanisms. Our findings of reduced S1PR5 in COPD and the correlation with other S1P receptors in COPD identify S1PR5 as a possible novel target for pharmacotherapy.
Collapse
Affiliation(s)
- Fabian Cordts
- Centre for Neuroscience, Flinders Medical Science & Technology, Flinders University, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Siow D, Wattenberg B. The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 2011; 46:365-75. [PMID: 21864225 DOI: 10.3109/10409238.2011.580097] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.
Collapse
Affiliation(s)
- Deanna Siow
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
80
|
Wattenberg BW. Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem 2010; 1:362-8. [PMID: 21537471 PMCID: PMC3083941 DOI: 10.4331/wjbc.v1.i12.362] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 02/05/2023] Open
Abstract
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.
Collapse
Affiliation(s)
- Binks W Wattenberg
- Binks W Wattenberg, Clinical and Translational Research Building, Room 419, 505 South Hancock St. Louisville, KY 40202, United States
| |
Collapse
|
81
|
Siow DL, Anderson CD, Berdyshev EV, Skobeleva A, Natarajan V, Pitson SM, Wattenberg BW. Sphingosine kinase localization in the control of sphingolipid metabolism. ADVANCES IN ENZYME REGULATION 2010; 51:229-44. [PMID: 21075134 PMCID: PMC3079002 DOI: 10.1016/j.advenzreg.2010.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/05/2010] [Indexed: 11/30/2022]
Abstract
The sphingosine kinases (sphingosine kinase-1 and -2) have been implicated in a variety of physiological functions. Discerning their mechanism of action is complicated because in addition to producing the potent lipid second messenger sphingosine-1-phosphate, sphingosine kinases, both by producing sphingosine-1-phosphate and consuming sphingosine, have profound effects on sphingolipid metabolism. Sphingosine kinase-1 translocates to the plasma membrane upon agonist stimulation and this translocation is essential for the pro-oncogenic properties of this enzyme. Many of the enzymes of sphingolipid metabolism, including the enzymes that degrade sphingosine-1-phosphate, are membrane bound with restricted subcellular distributions. In the work described here we explore how subcellular localization of sphingosine kinase-1 affects the downstream metabolism of sphingosine-1-phosphate and the access of sphingosine kinase to its substrates. We find, surprisingly, that restricting sphingosine kinase to either the plasma membrane or the endoplasmic reticulum has a negligible effect on the rate of degradation of the sphingosine-1-phosphate that is produced. This suggests that sphingosine-1-phosphate is rapidly transported between membranes. However we also find that cytosolic or endoplasmic-reticulum targeted sphingosine kinase expressed at elevated levels produces extremely high levels of dihydrosphingosine-1-phosphate. Dihydrosphingosine is a proximal precursor in ceramide biosynthesis. Our data indicate that sphingosine kinase can divert substrate from the ceramide de novo synthesis pathway. However plasma membrane-restricted sphingosine kinase cannot access the pool of dihydrosphingosine. Therefore whereas sphingosine kinase localization does not affect downstream metabolism of sphingosine-1-phosphate, localization has an important effect on the pools of substrate to which this key signaling enzyme has access.
Collapse
Affiliation(s)
- Deanna L. Siow
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY
| | - Charles D. Anderson
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY
| | | | - Anastasia Skobeleva
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Biological Sciences Division, Department of Medicine, The University of Chicago, Chicago, IL
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Australia
| | - Binks W. Wattenberg
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
82
|
Ceramide, a crucial functional lipid, and its metabolic regulation by acid ceramidase. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
83
|
Snider AJ, Gandy KAO, Obeid LM. Sphingosine kinase: Role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 2010; 92:707-15. [PMID: 20156522 PMCID: PMC2878898 DOI: 10.1016/j.biochi.2010.02.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/09/2010] [Indexed: 12/15/2022]
Abstract
Sphingolipids and their synthetic enzymes are emerging as important mediators in inflammatory responses and as regulators of immune cell functions. In particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P) have been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. SK1 has been shown to be activated by cytokines including tumor necrosis factor-alpha (TNF-alpha) and interleukin1-beta (IL1-beta). The activation of SK1 in this pathway has been shown to be, at least in part, required for mediating TNF-alpha and IL1-beta inflammatory responses in cells, including induction of cyclo-oxygenase 2 (COX2). In addition to their role in inflammatory signaling, SK and S1P have also been implicated in various immune cell functions including, mast cell degranulation, migration of neutrophils, and migration and maturation of lymphocytes. The involvement of sphingolipids and sphingolipid metabolizing enzymes in inflammatory signaling and immune cell functions has implicated these mediators in numerous inflammatory disease states as well. The contribution of these mediators, specifically SK1 and S1P, to inflammation and disease are discussed in this review.
Collapse
Affiliation(s)
- Ashley J. Snider
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - K. Alexa Orr Gandy
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Lina M. Obeid
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States
| |
Collapse
|
84
|
Xu R, Sun W, Jin J, Obeid LM, Mao C. Role of alkaline ceramidases in the generation of sphingosine and its phosphate in erythrocytes. FASEB J 2010; 24:2507-15. [PMID: 20207939 DOI: 10.1096/fj.09-153635] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plasma sphingosine-1-phosphate (S1P) has been suggested to mainly originate from erythrocytes; however, within the erythrocyte, how sphingosine (SPH) generation--the precursor to S1P--is controlled is unknown. SPH is only generated from the hydrolysis of ceramides via ceramidases. Five human ceramidases have been identified: 1 acid, 1 neutral, and 3 alkaline ceramidases (ACER1, ACER2, and ACER3). Here, we demonstrate that only alkaline ceramidase activity is expressed in erythrocytes and that it is instrumental for SPH generation. Erythrocytes have alkaline but not acid or neutral ceramidase activity on D-e-C(18:1)-ceramide, a common substrate of ceramidases. Not only alkaline ceramidase activity but also the generation of SPH and S1P are increased during erythroid differentiation in K562 erythroleukemic cells. Such SPH and S1P increases were inhibited by the alkaline ceramidase inhibitor D-e-MAPP, suggesting that alkaline ceramidases have a role in the generation of SPH and S1P in erythroid cells. Alkaline ceramidase activity is highly expressed in mouse erythrocytes, and intravenous administration of D-e-MAPP decreased both SPH and S1P in erythrocytes and plasma. Collectively, these results suggest that alkaline ceramidase activity is important for the generation of SPH, the S1P precursor in erythrocytes.
Collapse
Affiliation(s)
- Ruijuan Xu
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
85
|
Claas RF, ter Braak M, Hegen B, Hardel V, Angioni C, Schmidt H, Jakobs KH, Van Veldhoven PP, Heringdorf DMZ. Enhanced Ca2+ storage in sphingosine-1-phosphate lyase-deficient fibroblasts. Cell Signal 2010; 22:476-83. [DOI: 10.1016/j.cellsig.2009.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
|
86
|
Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:1-23. [PMID: 20919643 PMCID: PMC3069696 DOI: 10.1007/978-1-4419-6741-1_1] [Citation(s) in RCA: 773] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sphingolipids constitute a class of lipids defined by their eighteen carbon amino-alcohol backbones which are synthesized in the ER from nonsphingolipid precursors. Modification of this basic structure is what gives rise to the vast family of sphingolipids that play significant roles in membrane biology and provide many bioactive metabolites that regulate cell function. Despite the diversity of structure and function of sphingolipids, their creation and destruction are governed by common synthetic and catabolic pathways. In this regard, sphingolipid metabolism can be imagined as an array of interconnected networks that diverge from a single common entry point and converge into a single common breakdown pathway. In their simplest forms, sphingosine, phytosphingosine and dihydrosphingosine serve as the backbones upon which further complexity is achieved. For example, phosphorylation of the C1 hydroxyl group yields the final breakdown products and/or the important signaling molecules sphingosine-1-phosphate, phytosphingosine-1-phosphate and dihydrosphingosine-1-phosphate, respectively. On the other hand, acylation of sphingosine, phytosphingosine, or dihydrosphingosine with one of several possible acyl CoA molecules through the action of distinct ceramide synthases produces the molecules defined as ceramide, phytoceramide, or dihydroceramide. Ceramide, due to the differing acyl CoAs that can be used to produce it, is technically a class of molecules rather than a single molecule and therefore may have different biological functions depending on the acyl chain it is composed of. At the apex of complexity is the group of lipids known as glycosphingolipids (GSL) which contain dozens of different sphingolipid species differing by both the order and type of sugar residues attached to their headgroups. Since these molecules are produced from ceramide precursors, they too may have differences in their acyl chain composition, revealing an additional layer of variation. The glycosphingolipids are divided broadly into two categories: glucosphingolipids and galactosphingolipids. The glucosphingolipids depend initially on the enzyme glucosylceramide synthase (GCS) which attaches glucose as the first residue to the C1 hydroxyl position. Galactosphingolipids, on the other hand, are generated from galactosylceramide synthase (GalCerS), an evolutionarily dissimilar enzyme from GCS. Glycosphingolipids are further divided based upon further modification by various glycosyltransferases which increases the potential variation in lipid species by several fold. Far more abundant are the sphingomyelin species which are produced in parallel with glycosphingolipids, however they are defined by a phosphocholine headgroup rather than the addition of sugar residues. Although sphingomyelin species all share a common headgroup, they too are produced from a variety of ceramide species and therefore can have differing acyl chains attached to their C-2 amino groups. Whether or not the differing acyl chain lengths in SMs dictate unique functions or important biophysical distinctions has not yet been established. Understanding the function of all the existing glycosphingolipids and sphingomyelin species will be a major undertaking in the future since the tools to study and measure these species are only beginning to be developed (see Fig 1 for an illustrated depiction of the various sphingolipid structures). The simple sphingolipids serve both as the precursors and the breakdown products of the more complex ones. Importantly, in recent decades, these simple sphingolipids have gained attention for having significant signaling and regulatory roles within cells. In addition, many tools have emerged to measure the levels of simple sphingolipids and therefore have become the focus of even more intense study in recent years. With this thought in mind, this chapter will pay tribute to the complex sphingolipids, but focus on the regulation of simple sphingolipid metabolism.
Collapse
Affiliation(s)
- Christopher R Gault
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
87
|
Daum G, Grabski A, Reidy MA. Sphingosine 1-phosphate: a regulator of arterial lesions. Arterioscler Thromb Vasc Biol 2009; 29:1439-43. [PMID: 19592471 DOI: 10.1161/atvbaha.108.175240] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid that is critical in the development of blood vessels, and in the adult regulates vascular functions including vascular tone, endothelial integrity, and angiogenesis. Further, S1P may regulate arterial lesions in disease and after injury by controlling leukocyte recruitment and smooth muscle cell functions.
Collapse
Affiliation(s)
- G Daum
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
88
|
Ohno Y, Ito A, Ogata R, Hiraga Y, Igarashi Y, Kihara A. Palmitoylation of the sphingosine 1-phosphate receptor S1P1is involved in its signaling functions and internalization. Genes Cells 2009; 14:911-23. [DOI: 10.1111/j.1365-2443.2009.01319.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
89
|
The influence of sphingosine-1-phosphate receptor signaling on lymphocyte trafficking: how a bioactive lipid mediator grew up from an "immature" vascular maturation factor to a "mature" mediator of lymphocyte behavior and function. Immunol Res 2009; 43:187-97. [PMID: 18854957 DOI: 10.1007/s12026-008-8066-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since the initial observations that highlighted the importance of lymphocyte trafficking for immune responses, the pathways utilized by B and T lymphocytes to recirculate and properly position themselves have been intensely studied. Most of the chemoattractants along with their cognate receptors that affect lymphocyte trafficking have been identified. Some of their functions are promotion of lymphocyte ingress into immune organs, localization of cells to specific regions within those organs, maintenance of lymphocyte basal motility in immune organs, facilitation of lymphocyte egress from these organs, and control of migration and homing of lymphocytes in the periphery. Since the seminal discovery that agonism of sphingosine-1-phosphate receptors evokes changes in lymphocyte homing and trafficking, considerable effort has been undertaken to characterize the mechanism utilized by these receptors to influence lymphocyte behavior. This review will focus on the influence of sphingosine-1-phosphate signaling system on lymphocyte localization, egress from lymph organs, and its effects on the lymphatic vasculature.
Collapse
|
90
|
Kirby RJ, Jin Y, Fu J, Cubillos J, Swertfeger D, Arend LJ. Dynamic regulation of sphingosine-1-phosphate homeostasis during development of mouse metanephric kidney. Am J Physiol Renal Physiol 2008; 296:F634-41. [PMID: 19073640 DOI: 10.1152/ajprenal.90232.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Branching morphogenesis of the metanephric kidney is critically dependent on the delicate orchestration of diverse cellular processes including proliferation, apoptosis, migration, and differentiation. Sphingosine-1-phosphate (S1P) is a potent lipid mediator influencing many of these cellular events. We report increased expression and activity of both sphingosine kinases and S1P phosphatases during development of the mouse metanephric kidney from induction at embryonic day 11.5 to maturity. Sphingosine kinase activity exceeded S1P phosphatase activity in embryonic kidneys, resulting in a net accumulation of S1P, while kinase and phosphatase activities were similar in adult tissue, resulting in reduced S1P content. Sphingosine kinase expression was greater in the metanephric mesenchyme than in the ureteric bud, while the S1P phosphatase SPP2 was expressed at greater levels in the ureteric bud. Treatment of cultured embryonic kidneys with sphingosine kinase inhibitors resulted in a dose-dependent reduction of ureteric bud tip numbers and increased apoptosis. Exogenous S1P rescued kidneys from apoptosis induced by kinase inhibitors. Ureteric bud tip number was unaffected by exogenous S1P in kidneys treated with N,N-dimethylsphingosine, although tip number increased in those treated with d,l-threo-dihydrosphingosine. S1P1 and S1P2 were the predominant S1P receptors expressed in the embryonic kidney. S1P1 expression increased during renal development while expression of S1P2 decreased, and both receptors were expressed predominantly in the metanephric mesenchyme. These results demonstrate dynamic regulation of S1P homeostasis during renal morphogenesis and suggest that differential expression of S1P metabolic enzymes and receptors provides a novel mechanism contributing to the regulation of kidney development.
Collapse
Affiliation(s)
- R Jason Kirby
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | | | | | | | |
Collapse
|
91
|
Theofilopoulos S, Lykidis A, Leondaritis G, Mangoura D. Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:731-42. [DOI: 10.1016/j.bbalip.2008.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/29/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
|
92
|
Peest U, Sensken SC, Andréani P, Hänel P, Van Veldhoven PP, Gräler MH. S1P-lyase independent clearance of extracellular sphingosine 1-phosphate after dephosphorylation and cellular uptake. J Cell Biochem 2008; 104:756-72. [PMID: 18172856 DOI: 10.1002/jcb.21665] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sphingosine 1-phosphate (S1P) is the natural ligand for a specific family of G protein-coupled receptors (-Rs). The type 1 S1P-R (S1P(1)) is important for lymphocyte egress, and blood-borne S1P as the natural ligand for S1P(1) is involved in the maintenance of lymphocyte circulation. This report reveals that extracellular S1P was cleared by all tested primary cells and cell lines with exponential progression. Clearance of S1P, but not sphingosine (Sph) was inhibited with the protein phosphatase inhibitor sodium orthovanadate. Fluorescence microscopy and flow cytometry using fluorescently labeled S1P and Sph showed a major cellular uptake of Sph, but not S1P. HPLC-analyses with C17-Sph demonstrated that cellular Sph accumulation was transient in tested cell lines, but enduring in mouse splenocytes. Sub cellular fractionation resulted in dephosphorylation of S1P to Sph by nuclear, membrane, and cytosolic fractions. Degradation of Sph however only occurred in combined membrane and cytosolic fractions. Inhibitors for Sph kinases 1/2, ceramide synthase, and S1P-lyase, as well as S1P-lyase deficiency did not block clearance of extracellular S1P. In vivo experiments revealed a transient increase in plasma S1P levels after single intravenous injection into C57BL/6 mice. This exogenously added S1P was cleared within 15-30 min in contrast to ex vivo incubation of whole blood which required more than 8 h for comparable clearance from plasma. Our data thus show that extracellular S1P is dephosphorylated and subsequently converted by cells, which appears to be important for clearance of the signaling molecule S1P in the local tissue environment after infections or injuries.
Collapse
Affiliation(s)
- Ulrike Peest
- Institute for Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | | | | | | | | | | |
Collapse
|
93
|
KIHARA A. Production and release of sphingosine 1-phosphate and the phosphorylated form of the immunomodulator FTY720. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:496-502. [DOI: 10.1016/j.bbalip.2008.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 11/26/2022]
|
94
|
Hla T, Venkataraman K, Michaud J. The vascular S1P gradient-cellular sources and biological significance. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:477-82. [PMID: 18674637 PMCID: PMC2636563 DOI: 10.1016/j.bbalip.2008.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 01/22/2023]
Abstract
Sphingosine 1-phosphate (S1P), a product of sphingomyelin metabolism, is enriched in the circulatory system whereas it is estimated to be much lower in interstitial fluids of tissues. This concentration gradient, termed the vascular S1P gradient appears to form as a result of substrate availability and the action of metabolic enzymes. S1P levels in blood and lymph are estimated to be in the muM range. In the immune system, the S1P gradient is needed as a spatial cue for lymphocyte and hematopoietic cell trafficking. During inflammatory reactions in which enhanced vascular permeability occurs, a burst of S1P becomes available to its receptors in the extravascular compartment, which likely contributes to the tissue reactions. Thus, the presence of the vascular S1P gradient is thought to contribute to physiological and pathological conditions. From an evolutionary perspective, S1P receptors may have co-evolved with the advent of a closed vascular system and the trafficking paradigms for hematopoietic cells to navigate in and out of the vascular system.
Collapse
Affiliation(s)
- Timothy Hla
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06001, USA.
| | | | | |
Collapse
|
95
|
Yamanaka M, Anada Y, Igarashi Y, Kihara A. A splicing isoform of LPP1, LPP1a, exhibits high phosphatase activity toward FTY720 phosphate. Biochem Biophys Res Commun 2008; 375:675-9. [PMID: 18755152 DOI: 10.1016/j.bbrc.2008.07.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/29/2008] [Indexed: 12/01/2022]
Abstract
The sphingolipid metabolite sphingosine 1-phosphate (S1P) plays an essential function in the egress of T cells from the thymus and secondary lymphoid organs. The novel immunomodulating agent FTY720 is phosphorylated in vivo to the functional form FTY720 phosphate (FTY720-P), which is structurally similar to S1P. FTY720-P inhibits the S1P-mediated T cell egress as an agonist of S1P receptors. FTY720-P is not stable in plasma and is dephosphorylated to FTY720. In the present study, we investigated activities toward FTY720-P of LPP family members (LPP1, LPP1a, LPP2, and LPP3), which exhibit broad substrate specificity. Of the four, LPP1a, the splicing isoform of LPP1, had the highest activity toward FTY720-P, and the highest affinity. Among blood-facing cells tested, only endothelial cells displayed high phosphatase activity for FTY720-P. Significant levels of LPP1a expression were found in endothelial cells, suggesting that LPP1a is important for the dephosphorylation of FTY720-P in plasma.
Collapse
Affiliation(s)
- Masao Yamanaka
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
96
|
Ikeda M, Kanao Y, Yamanaka M, Sakuraba H, Mizutani Y, Igarashi Y, Kihara A. Characterization of four mammalian 3-hydroxyacyl-CoA dehydratases involved in very long-chain fatty acid synthesis. FEBS Lett 2008; 582:2435-40. [DOI: 10.1016/j.febslet.2008.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/23/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
|
97
|
Takabe K, Paugh SW, Milstien S, Spiegel S. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60:181-95. [PMID: 18552276 PMCID: PMC2695666 DOI: 10.1124/pr.107.07113] [Citation(s) in RCA: 570] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
98
|
Jo SK, Bajwa A, Awad AS, Lynch KR, Okusa MD. Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidney disease. Kidney Int 2008; 73:1220-30. [PMID: 18322542 PMCID: PMC2614447 DOI: 10.1038/ki.2008.34] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The major sphingolipid metabolite, sphingosine-1-phosphate (S1P), has important biological functions. S1P is the ligand for a family of five G-protein-coupled receptors with distinct signaling pathways that regulate angiogenesis, vascular maturation, immunity, chemotaxis, and other important biological pathways. Recently, clinical trials have targeted S1P receptors (S1PRs) for autoimmune diseases and transplantation and have generated considerable interest in developing additional, more selective compounds. This review summarizes current knowledge on the biology of S1P and S1PRs that forms the basis for future drug development and the treatment of kidney disease.
Collapse
Affiliation(s)
- S-K Jo
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - A Bajwa
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - AS Awad
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - KR Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - MD Okusa
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
99
|
Sehgal A, Hughes BT, Espenshade PJ. Oxygen-dependent, alternative promoter controls translation of tco1+ in fission yeast. Nucleic Acids Res 2008; 36:2024-31. [PMID: 18276645 PMCID: PMC2330238 DOI: 10.1093/nar/gkn027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic cells respond to changes in environmental oxygen supply by increasing transcription and subsequent translation of gene products required for adaptation to low oxygen. In fission yeast, the ortholog of mammalian sterol regulatory element binding protein (SREBP), called Sre1, activates low-oxygen gene expression and is essential for anaerobic growth. Previous studies in multiple organisms indicate that SREBP transcription factors function as positive regulators of gene expression by increasing transcription. Here, we describe a unique mechanism by which activation of Sre1-dependent transcription downregulates protein expression under low oxygen. Paradoxically, Sre1 inhibits expression of tco1(+) gene product by activating its transcription. Under low oxygen, Sre1 directs transcription of tco1(+) from an alternate, upstream promoter and inhibits expression of the normoxic tco1(+) transcript. The resulting low-oxygen transcript contains an additional 751 nt in the 5' untranslated region that is predicted to form a stable, complex secondary structure. Interestingly, polysome profile experiments revealed that this new longer transcript is translationally silent, leading to a decrease in Tco1 protein expression under low oxygen. Together, these results describe a new mechanism for oxygen-dependent control of gene expression and provide an example of negative regulation of protein expression by an SREBP homolog.
Collapse
Affiliation(s)
| | | | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
100
|
Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:325-46. [PMID: 17976918 PMCID: PMC2312460 DOI: 10.1016/j.bbagen.2007.08.015] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/17/2007] [Accepted: 08/21/2007] [Indexed: 01/11/2023]
Abstract
Based on development of various methodologies for isolation and characterization of glycosphingolipids (GSLs), we have identified a number of GSLs with globo-series or lacto-series structure. Many of them are tumor-associated or developmentally regulated antigens. The major question arose, what are their functions in cells and tissues? Various approaches to answer this question were undertaken. While the method is different for each approach, we have continuously studied GSL or glycosyl epitope interaction with functional membrane components, which include tetraspanins, growth factor receptors, integrins, and signal transducer molecules. Often, GSLs were found to interact with other carbohydrates within a specific membrane microdomain termed "glycosynapse", which mediates cell adhesion with concurrent signal transduction. Future trends in GSL and glycosyl epitope research are considered, including stem cell biology and epithelial-mesenchymal transition (EMT) process.
Collapse
Affiliation(s)
- Sen-itiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| |
Collapse
|